Structural Flexibility of Potassium Uranyl Oxo-tellurates Isolated from High-Temperature/High-Pressure Reactions

Bin Xiao^{†,‡}, Philip Kegler[†], Dirk Bosbach[†], and Evgeny V. Alekseev^{†,‡,*}

[†]Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

[‡]Institut für Kristallographie, RWTH Aachen University, 52066 Aachen, Germany

*contact E-Mail: <u>e.alekseev@fz-juelich.de</u>

Figure S1 (a). BSE image of $K_2[(UO_2)_3(Te^{IV}O_3)_4]$ and locals of EDS measurements (1, 2, 3).

	U	K	Te
Point1	1	0.66	1.30
Point2	1	0.66	1.23
Point3	1	0.90	1.59
Average	1	0.74	1.37

Table S1 (a). Atom ratio of $K_2[(UO_2)_3(Te^{IV}O_3)_4]$. (U is keep as 1)

Figure S1 (b). BSE image of $K_2[(UO_2)Te^{IV}_6O_{14}]$ and locals of EDS measurements (1, 2, 3).

	U	K	Te
Point1	1	1.87	6.05
Point2	1	2.99	6.01
Point3	1	2.88	6.42
Average	1	2.58	6.16

Table S1 (b). Atom ratio of $K_2[(UO_2)Te^{IV}_6O_{14}]$. (U is keep as 1)

Figure S1 (c). BSE image of α -K₂[(UO₂)Te^{VI}O₅] and locals of EDS measurements (1, 2, 3).

	U	K	Te
Point1	1	2.13	1.10
Point2	1	2.07	1.14
Point3	1	2.25	1.22
Average	1	2.58	6.16

Table S1 (c). Atom ratio of α -K₂[(UO₂)Te^{VI}O₅]. (U is keep as 1)

Figure S1 (d). BSE image of β -K₂[(UO₂)Te^{VI}O₅] and locals of EDS measurements (1, 2, 3).

	U	K	Te
Point1	1	2.45	1.02
Point2	1	2.06	1.34
Point3	1	2.55	1.26
Average	1	2.35	1.21

Table S1 (d). Atom ratio of β -K₂[(UO₂)Te^{VI}O₅]. (U is keep as 1)

Figure S2. Powder XRD of reaction product of $K_2[(UO_2)_3(Te^{IV}O_3)_4]$, $K_2[(UO_2)Te^{IV}_6O_{14}]$, α - $K_2[(UO_2)Te^{VI}O_5]$ and β - $K_2[(UO_2)Te^{VI}O_5]$, respectively.