Electronic Supplementary Information

Enhanced stability of Cu^{2+} -ATCUN complex under physiologically relevant conditions by insertion of structurally bulky and hydrophobic amino acid residues into ATCUN motif

Takaaki Miyamoto,^a Yuta Fukino,^a Shinichiro Kamino,^{ab} Masashi Ueda,^a and Shuichi Enomoto^{*ab}

^a Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8530 ^b Next-generation Imaging Team, RIKEN-CLST, Kobe, Hyogo 650-0047

Contents

1. Supplementary Tables and Figures

- Table S1
 Logarithms of overall protonation constants of ATCUN peptides.
- **Table S2** Logarithms of overall stability constants of Cu^{2+} -ATCUN complexes.
- **Table S3** Visible absorption spectroscopic data of CuH₋₂L species.
- **Table S4** CD spectroscopic data of CuH-2L species.
- **Table S5** Analytical data of ATCUN and ATCUN-Oct peptides.
- **Fig. S1** pH titration curves of Cu^{2+} -ATCUN complexes.
- **Fig. S2** Distribution diagrams of CuH₋₂L in aqueous solution.
- **Fig. S3** SEC-HPLC elution curves of ⁶⁴Cu-ATCUN complexes.
- **Fig. S4** SEC-HPLC elution curves of $^{nat}Cu^{2+}$ -ATCUN complexes.
- **Fig. S5** SEC-HPLC elution curves of 64 Cu- and nat Cu²⁺-ATCUN-Oct complexes.
- **Fig. S6** SEC-HPLC elution curves of 64 Cu- and nat Cu²⁺-YYH-Oct complex.
- **Fig. S7** Visible absorption and CD spectra of Cu²⁺-ATCUN-Oct complexes

2. Supplementary References

Table S1 Logarithms of overall protonation constants of ATCUN peptides									
Pentide	$\log \beta_{ m HL}{}^a$	$\log \beta_{\rm H2L}{}^a$	$\log \beta_{ m H3L}{}^a$	$\log eta_{ ext{H4L}}^a$					
reptide	$L+H \rightleftharpoons HL^b$	$HL+H \rightleftharpoons H_2 L^b$	$H_2L+H \rightleftharpoons H_3L^b$	$H_3L+H \rightleftharpoons H_4L^b$					
1^{c}	6.83 (0.006)	12.73 (0.005)	_	_					
2^c	7.15 (0.004)	13.28 (0.004)	_	_					
3 ^c	7.09 (0.003)	13.01 (0.003)	_	_					
4 ^c	7.15 (0.015)	12.68 (0.019)	_	_					
5 ^c	7.77 (0.007)	13.89 (0.008)	_	_					
6 ^{<i>c</i>}	8.18 (0.010)	14.83 (0.010)	18.52 (0.014)	20.79 (0.032)					
7^{d}	7.82 (0.003)	13.97 (0.004)	_	_					
8^d	7.17 (0.004)	13.26 (0.004)	_	_					
9^d	7.06 (0.003)	13.11 (0.003)	_	_					
^{<i>a</i>} Overall protonation constants (log β) were determined by pH titration at 25 °C in									
0.1 M KCl aqueous solution. Values in parentheses are standard deviations b I									

1. Supplementary Tables and Figures

^{*a*} Overall protonation constants (log β) were determined by pH titration at 25 °C in 0.1 M KCl aqueous solution. Values in parentheses are standard deviations. ^{*b*} L represents a fully deprotonated peptide ligand. Charges are omitted for clarity. ^{*c*} Ref. S1. ^{*d*} This work.

Pentide	$\log eta_{ ext{CuHL}}^a$	$\log \beta_{CuL}^a$	$\log \beta_{\text{CuH-1L}^a}$	$\log eta_{ ext{CuH-2L}}^a$		
replice	$Cu+H+L \rightleftharpoons CuHL^b$	$Cu+L \rightleftharpoons CuL^b$	$Cu+L \rightleftharpoons CuH_{-1}L+H^b$	$Cu+L \rightleftharpoons CuH_{-2}L+2H^b$		
1 ^c	_	_	3.53 (0.007)	-0.24 (0.002)		
2 ^c	_	_	3.40 (0.020)	-0.20 (0.003)		
3 ^c	_	_	3.16 (0.018)	-0.57 (0.004)		
4 ^c	_	_	2.94 (0.013)	-1.11 (0.004)		
5 ^c	_	_	2.78 (0.017)	-1.32 (0.003)		
6 ^{<i>c</i>}	13.85 (0.005)	9.70 (0.010)	4.60 (0.004)	-0.93 (0.003)		
7^d	_	_	3.33 (0.009)	-0.63 (0.002)		
8^d	_	_	3.55 (0.009)	-0.38 (0.003)		
9^d	_	_	3.20 (0.007)	- 0.62 (0.002)		

Table S2 Logarithms of overall stability constants of Cu²⁺-ATCUN complexes

^{*a*} Overall stability constants were determined by pH titration at 25 °C in 0.1 M KCl aqueous solution. Values in parentheses are standard deviations. ^{*b*} L represents a fully deprotonated peptide ligand. Charges are omitted for clarity. ^{*c*} Ref. S1. ^{*d*} This work.

	1 ^b	2 ^{<i>b</i>}	3 ^b	4 ^b	5 ^b	6 ^{<i>b</i>}	7 ^c	8 ^c	9 ^c
pН	6.7	5.3	6.0	6.2	6.5	8.0	10.1	7.2	7.2
λ_{\max} (nm)	526	518	523	523	522	526	530	516	533
$\overset{\epsilon}{(\mathrm{M}^{-1}~\mathrm{cm}^{-1})^a}$	113	106	110	108	110	109	95	99	105

 Table S3
 Visible absorption spectroscopic data of CuH-2L species

^{*a*} d-d transition. ^{*b*} Ref. S1. ^{*c*} This work.

	1^d	2^d	3 ^{<i>d</i>}	4 ^{<i>d</i>}	5^d	6 ^{<i>d</i>}	7 ^e	8 ^e	9 ^e
pН	6.0	5.7	5.5	5.8	6.9	9.6	10.6	7.7	8.1
λ (nm)	568	561	558	558	554	564	593	559	565
$\Delta arepsilon \ (\mathrm{M}^{-1}~\mathrm{cm}^{-1})^a$	-0.8	-0.8	-0.9	-0.9	-1.3	-0.8	-0.2	-0.8	-1.2
λ (nm)	489	483	480	477	475	484	504	484	483
$\Delta arepsilon \ (\mathrm{M}^{-1}~\mathrm{cm}^{-1})^a$	0.7	0.7	0.5	0.5	0.5	0.6	1.0	0.7	0.5
λ (nm)	311	312	306	307	312	308	303	317	311
$\Delta arepsilon \ (\mathrm{M}^{-1}~\mathrm{cm}^{-1})^b$	1.4	1.6	1.5	1.5	2.0	1.6	0.5	1.1	2.1
λ (nm)	271	269	269	269	272	271	273	268	271
$\Delta \epsilon \ (\mathrm{M}^{-1}~\mathrm{cm}^{-1})^c$	-3.0	-4.8	-3.2	-3.1	-4.8	-2.7	-0.2	-3.8	-4.7

 Table S4 CD spectroscopic data of CuH₋₂L species

^{*a*} d-d transition. ^{*b*} $N^{-}_{(amide)} \rightarrow Cu^{2+} CT$ transition. ^{*c*} $NH_2 \rightarrow Cu^{2+} CT$ transition. ^{*d*} Ref. S1. ^{*e*} This work.

		$[M+H]^+$		$[M+2H]^{2+}$		[M+3H] ³⁺			
Peptide	Purity $(\%)^a$	Calcd	Found	Calcd	Found	Calcd	Found		
1 ^e	97	668	668 ^b	334	_	223	_		
2^e	> 99	734	734^{b}	367	_	245	—		
3 ^e	> 99	752	752^{b}	376	_	251	_		
4 ^{<i>e</i>}	> 99	696	696 ^b	348	_	232	_		
5^e	> 99	638	638 ^b	319	_	213	_		
6 ^e	98	670	670^{b}	335	_	224	_		
7 ^f	> 99	554	554 ^c	277	277 ^c	185	_		
8 ^f	> 99	766	_	383	383 ^c	256	—		
9 ^f	98	642	_	321	321 ^c	214	_		
NNH-Oct ^f	> 99	1385	_	692.8	692.8 ^d	462.2	462.2^{d}		
VVH-Oct ^f	> 99	1355	_	677.8	677.8^{d}	452.2	452.2^{d}		
DDH-Oct ^f	> 99	1387	_	693.8	693.8 ^d	462.9	462.9^{d}		
GGH-Oct ^f	> 99	1271	_	635.8	—	424.2	424.2^{d}		
YYH-Oct ^f	> 99	1483	_	741.8	741.8^{d}	494.9	494.9^{d}		
TTH-Oct ^f	> 99	1359	_	679.8	679.8^{d}	453.5	453.5^{d}		

 Table S5
 Analytical data of ATCUN and ATCUN-Oct peptides

^{*a*} Purity was determined by analytical HPLC. ^{*b*} Mass values were obtained from MALDI-TOF mass spectrometry. ^{*c*} Mass values were obtained from ESI mass spectrometry. ^{*d*} Mass values were obtained from high-resolution ESI mass spectrometry. ^{*e*} Ref. S1. ^{*f*} This work.

Fig. S1 pH titration curves of Cu^{2+} -ATCUN complexes. pH titration was performed at 25 °C over the pH range of 3–10 using a total sample volume of 10 mL, under argon or nitrogen atmosphere. Ionic strength was adjusted to 0.1 M with KCl. Peptide and Cu^{2+} concentration was 1.0 mM. Potassium hydroxide (KOH) solution (0.1 M) was used as titrant. KOH equivalent represents equivalent mole of KOH per Cu^{2+} ion.

Fig. S2 Distribution diagrams of CuH₋₂L in aqueous solution. Conditions: temperature, 25 °C; KCl concentration, 0.1 M; peptide and Cu²⁺ concentration, 1.0 mM.

Fig. S3 SEC-HPLC elution curves of ⁶⁴Cu-ATCUN complexes. The complexes were analyzed before (in PBS) or after incubation at 37 °C for 24 h in plasma. Experimental conditions: instrument, LC-20AT pump and DGU-20A3 degasser (Shimadzu, Kyoto, Japan); column, TSKgel Super SW 2000 column ($300 \times 4.6 \text{ mm}$, 5 µm); solvent, 10 mM phosphate buffer containing 0.3 M NaCl; pH, 7.0; flow rate, 0.35 mL/min. Retention times of the complexes: ⁶⁴Cu-1, 13.5 min; ⁶⁴Cu-5, 13.0 min; ⁶⁴Cu-6, 12.5 min; ⁶⁴Cu-7, 13.5 min; ⁶⁴Cu-8, 14.0 min; ⁶⁴Cu-9, 13.0 min.

Fig. S4 SEC-HPLC elution curves of ^{nat}Cu²⁺-ATCUN complexes. Experimental conditions: instrument, PU-980 pump and UV-970 UV detector (Jasco, Tokyo, Japan); column, TSKgel Super SW 2000 column ($300 \times 4.6 \text{ mm}$, 5 µm); solvent, 10 mM phosphate buffer containing 0.3 M NaCl; pH, 7.0; flow rate, 0.35 mL/min; peptide-to-metal ratio, 1:1. Retention times of the complexes: Cu²⁺-1, 12.9 min; Cu²⁺-5, 13.0 min; Cu²⁺-6, 12.0 min; Cu²⁺-7, 13.0 min; Cu²⁺-8, 13.5 min; Cu²⁺-9, 12.9 min.

Fig. S5 SEC-HPLC elution curves of ⁶⁴Cu- (A) and ^{nat}Cu²⁺- (B) ATCUN-Oct complexes. Experimental conditions: instrument, LC-20AT pump and DGU-20A3 degasser (Shimadzu, Kyoto, Japan) (A), PU-980 pump and UV-970 UV detector (Jasco, Tokyo, Japan) (B); column, TSKgel Super SW 2000 column ($300 \times 4.6 \text{ mm}$, 5 µm); solvent, 10 mM phosphate buffer containing 0.3 M NaCl; pH, 7.0; flow rate, 0.35 mL/min; peptide-to-metal ratio, approximately 1000:1 (A) and 1:1 (B); detection, fractions (0.5 mL/tube) were collected and counted on a γ -counter (A), absorbance at 230 nm was monitored (B). Retention times of the complexes: NNH-Oct, 17.0 (A) and 16.6 (B) min; VVH-Oct, 18.5 (A) and 18.5 (B) min; DDH-Oct, 15.5 (A) and 14.6 (B) min; GGH-Oct, 18.0 (A) and 17.8 (B) min; TTH-Oct, 17.5 (A) and 16.7 (B) min. The small difference in retention times between ⁶⁴Cu- and ^{nat}Cu²⁺- (A) complexes was responsible for the different experimental conditions.

Fig. S6 SEC-HPLC elution curves of ⁶⁴Cu- and ^{nat}Cu²⁺-YYH-Oct complex. ⁶⁴Cu-YYH-Oct complex was purified by SEC-HPLC aftetr radiolabeling (A). Fractions eluting from 21.6 to 22.8 min in (A) (shown by the green column) were analyzed by SEC-HPLC (B). ^{nat}Cu²⁺-YYH-Oct complex was also analyzed by SEC-HPLC (C). Experimental conditions: instrument, LC-20AT pump and DGU-20A3 degasser (Shimadzu, Kyoto, Japan) (A and B), PU-980 pump and UV-970 UV detector (Jasco, Tokyo, Japan) (C); column, TSKgel Super SW 2000 column (300 × 4.6 mm, 5 µm); solvent, 10 mM phosphate buffer containing 0.3 M NaCl; pH, 7.0; flow rate, 0.35 mL/min; injected sample, a mixture of ⁶⁴CuCl₂ and YYH-Oct (approximately 1:1000) (A), fractions eluted from 21.6 to 22.8 min (B), a mixture of Cu(NO₃)₂ and peptide (1:1) (C); detection, fractions (0.6 mL/tube) were collected and counted on a γ-counter (A and B), and absorbance at 230 nm was monitored (C).

Fig. S7 Visible absorption (A) and CD (B) spectra of Cu^{2+} -ATCUN-Oct complexes. Mesurement conditions: peptide and Cu^{2+} concentration, 1.0 mM; solvent, PBS; pH, 7.4.

2. Supplementary References

S1) T. Miyamoto, S. Kamino, A. Odani, M. Hiromura and S. Enomoto, *Chem. Lett.*, 2013, 42, 1099–1101.