Supplementary Information to the Paper

2,6-Dipicolinoylbis(N,N-dialkylthioureas) as Versatile Building Blocks for Oligoand Polynuclear Architectures

Hung Huy Nguyen,^a* Jecob Jesudas Jegathesh,^b Aref Takiden,^b Dirk Hauenstein,^b Chien Thang Pham,^b Canh Dinh Le,^a and Ulrich Abram^b*

^a Department of Chemistry, Hanoi University of Science, 19 Le Thanh Tong, Hanoi, Vietnam [§] Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, D-14195 Berlin, Germany

1. X-Ray structure determinations

Fig. S1: Ellipsoid plot of $[Ni_2(L^a)_2(MeOH)(H_2O)]$ (5) Table S1: Selected bond lengths and angles of $[Ni_2(L^a)_2(MeOH)(H_2O)]$ (5)

Fig. S2: Ellipsoid plot of $[Ni_2Pr(L^a)_2(OAc)_3(MeOH)_2]$ Table S2: Selected bond lengths and angles in $[Ni_2Pr(L^a)_2(OAc)_3(MeOH)_2]$

Fig. S3: Ellipsoid plot of $[Ni_2Ba(L^a)_3]$ Table S3: Selected bond lengths and angles in $[Ni_2Ba(L^a)_3]$

Fig. S4: Ellipsoid plot of $\{[Cu_2Dy(L^a)_2(p-O_2C-C_6H_4-CO_2)]Cl\}$ Table S4: Selected bond lengths and angles in $\{[Cu_2Dy(L^a)_2(p-O_2C-C_6H_4-CO_2)]Cl\}$

Fig. S5: Ellipsoid plot of $[Mn_2Ba(MeOH)(L^b)_3]_{a}$ Table S5: Selected bond lengths and angles in $[Mn_2Ba(MeOH)(L^b)_3]_{a}$

2. Computational Calculations

Fig. S6: Optimized structure of compound **5** Table S6: Structural optimization of **5** and comparison with experimental data

Fig. S1: Ellipsoid plot of $[Ni_2(L^a)_2(MeOH)(H_2O)]$ (5)

Table S1: Selected bond lengths and angles of $[Ni_2(L^a)_2(MeOH)(H_2O)]$ (5)

Bond lengths (A)			
Ni1-011	2.193(3)	Ni2-011	2.081(3)
Ni1-031	2.229(3)	Ni2-031	2.075(3)
Ni1–N23	2.086(4)	Ni2-S15	2.381(1)
Ni1–N43	2.085(3)	Ni2-S35	2.362(1)
Ni1-N51	1.989(3)	Ni2–O2	2.145(3)
Ni1–N61	1.992(3)	Ni2-03	2.109(3)
Angles (°)			
O11-Ni1-N23	150.0(1)	O11-Ni2-S35	168.8(1)
O31- Ni1-N43	150.6(1)	O31- Ni2-S15	172.1(1)
N51- Ni1-N61	176.4(1)	O2- Ni2-O3	170.5(1)

Fig. S2: Ellipsoid plot of $[Ni_2Pr(L^a)_2(OAc)_3(MeOH)_2]$

Table S2: Selected bond lengths and angles in $[Ni_2Pr(L^a)_2(OAc)_3(MeOH)_2]$

Bond lengths (Å)			
Pr-O1/ O1 ⁽¹⁾	2.592(2)	Ni1-05	2.143(2)
Pr -O3/O3 ⁽¹⁾	2.437(2)	Ni1–O11	2.084(2)
Pr -N51/N51 ⁽¹⁾	2.643(2)	Ni1–O21 ⁽¹⁾	2.045(2)
Pr -011/011 ⁽¹⁾	2.580(2)	Ni1-S15	2.387(1)
Pr -O21/O21 ⁽¹⁾	2.537(2)	Ni1– S25 ⁽¹⁾	2.339(1)
Ni1–O4	2.069(2)		
Angles (°)			
O11-Ni1-S25 ⁽¹⁾	173.12(6)	N51-Ln-N51 ⁽¹⁾	174.71(10)
S15- Ni1-O21 ⁽¹⁾	171.27(6)	011-Ln-011 ⁽¹⁾	143.83(8)
05- Ni1-O4	178.57(8)	021-Ln-021 ⁽¹⁾	157.92(9)

Symmetry codes: $^{(1)}$ –x, y, 1/2 –z.

Table S3: Selected bond lengths and angles in $[Ni_2Ba(L^a)_3]$

Bond lengths (Å)			
Ba1-O11/ O11 ⁽¹⁾	2.776(1)	Ni1-011	2.072(1)
Ba1-O21/O21 ⁽¹⁾	2.821(1)	Ni1–S15	2.381(1)
Ba1-O31/O31 ⁽¹⁾	2.750(1)	Ni1–O21 ⁽¹⁾	2.077(1)
Ba1-N51/N51 ⁽¹⁾	2.893(2)	Ni1–S25 ⁽¹⁾	2.381(1)
Ba1-N61	2.928(3)	Ni1-031	2.076(1)
Ba1-Ni1/Ni1 ⁽¹⁾	3.658(1)	Ni1– S35	2.457(1)
Angles (°)			
O31-Ni1-S15	172.12(5)	05- Ni1-O4	168.71(5)
011- Ni1-S25 ⁽¹⁾	169.97(4)	Ni1-Ba-Ni1 ⁽¹⁾	179.046(10)

Fig. S4: Ellipsoid plot of $[Cu_2Dy(L^a)_2(p-O_2C-C_6H_4-CO_2)]^+$

Table S4: Selected bond lengths in $[Cu_2Dy(L^a)_2(p-O_2C-C_6H_4-CO_2)]^+$

Bond lengths (Å)		
Cu-S11	2.776(1)	Cu-O41	2.072(1)
Cu-O15	1.989(4)	Dy-O15	2.462(4)
Dy-N1	2.246(2)	Dy-031	2.463(4)

Fig. S5: Ellipsoid plot of $[Mn_2Ba(MeOH)(L^{D})_3]_{a}$

Table S5: Selected bond lengths in $[Mn_2Ba(MeOH)(L^b)_3]_{\circ}$

Bond lengths (Å)			
Mn1-O15/O35/O55	2.155(9)/2.145(9)/2.182(9)	Ba1-015/035/055	2.2.79(1)/2.775(8)/2.810(9)
Mn1-S11/S31/S51	2.604(5)/2.579(4)/2.539(5)	Ba1-N66/N76/N86	2.2.98(1)/3.02(1)/2.98(1)
Mn2-05/025/045	2.2.146(9)/2.151(9)/2.152(9)	Ba1-O20A/O30a'/O91	3.09(1)/3.021(9)/3.02(2)
Mn2-S1/S21/S41	2.555(4)/2.549(5)/2.554(4)	Ba1A-O5A/O25A/O45A	2.837(9)/2.752(9)/2.78(1)
Mn1A-O5A/O25A/O45A	2.147(9)/2.17(1)/2.23(1)	Ba1A-N66A/N76A/N86A	3.04(1)/2.90(1)/2.90(1)
Mn1A-S1A/S21A/S41A	2.566(5)/2.620(4)/2.523(4)	Ba1A-O91A	2.87(1)
Mn2A-O15A/O35A/O55A	2.17(1)/2.201(9)/2.16(1)		
Mn2A-S11A/S31A/S51A	2.585(5)/2.564(5)/2.571(5)		

Fig. S6: Optimized structure of 5. Hydrogen atoms bonded to carbon atoms are omitted for clarity.

Table S6: Comparison between experimental and calculated data

Bond lengths (Å)		
Bonds	Experimental	Calculated*
Ni1–O11	2.193(3)	2.239(3)
Ni1-O31	2.229(3)	2.321(3)
Ni1-N23	2.086(4)	2.086(3)
Ni1-N43	2.085(3)	2.052(4)
Ni1-N51	1.989(3)	2.003(8)
Ni1-N61	1.992(3)	2.006(4)
Ni2–O11	2.081(3)	2.069(9)
Ni2-O31	2.075(3)	2.071(6)
Ni2-S15	2.381(1)	2.416(4)
Ni2-S35	2.362(1)	2.376(8)
Ni2-O2	2.145(3)	2.105(2)
Ni2-O3	2.109(3)	2.117(1)
Angles (°)		
Angels	Experimental	Calculated*
O11-Ni1-N23	150.0(1)	147.5(4)
O31- Ni1-N43	150.6(1)	149.1(3)
N51- Ni1-N61	176.4(1)	179.3(7)
O11-Ni2-S35	168.8(1)	171.1(2)
O31- Ni2-S15	172.1(1)	172.1(4)
02- Ni2-O3	170.5(1)	168.6(4)

 * DFT calculation with PBE1PBE exchange correlation functional with the basis sets LanL2TZ/ 6-311G*/ 6-311G for Ni/ C, O, N, S/ H atoms, respectively.