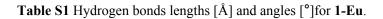
Electronic Supplementary Information


Four new lanthanide-organic frameworks: the selective luminescent sensing and magnetic properties

Yan Ning,^{a#} Lu Wang,^{a#} Guo-Ping Yang,^{*a,b} Yunlong Wu,^a Nannan Bai,^a Wenyan Zhang^a and Yao-Yu Wang^{*a}

^aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.E-mail: <u>ygp@nwu.edu.cn</u>; <u>wyaoyu@nwu.edu.cn</u>

^bState Key Laboratory of Coordination Chemistry, Nanjing University, P.R. China. [#]These authors contributed equally to this work.

D- H····A	d(D-H)	d(H···A)	d(D····A)	DHA
O(8)-H(8A)····O(6)	<mark>0.820</mark>	1.943	<mark>2.763</mark>	<mark>179.85</mark>
O(8)-H(8B)…O(10)	<mark>0.820</mark>	<mark>2.145</mark>	<mark>2.965</mark>	<mark>179.04</mark>
O(9)-H(9B)···O(10)	<mark>0.820</mark>	<mark>1.949</mark>	<mark>2.770</mark>	<mark>179.57</mark>
O(10)-H(10A)···O(5)	<mark>0.858</mark>	1.971	<mark>2.756</mark>	<mark>151.68</mark>
O(10)-H(10B)…N(1)	<mark>0.820</mark>	<mark>2.126</mark>	<mark>2.947</mark>	<mark>179.37</mark>
C(13)-H(13)····N(1)	0.930	<mark>2.542</mark>	<mark>3.279</mark>	<mark>136.42</mark>
C(16)-H(16C)····O(2)	0.960	2.530	3.422	154.73

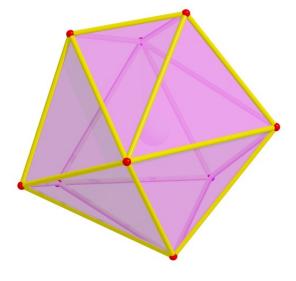


Fig. S1Coordination arrangement of Eu³⁺ centers could be described as a distorted dodecahedron.

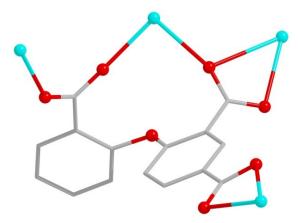


Fig. S2The three carboxylates of L^{3+} ligands take coordination with Eu^{3+} ions.

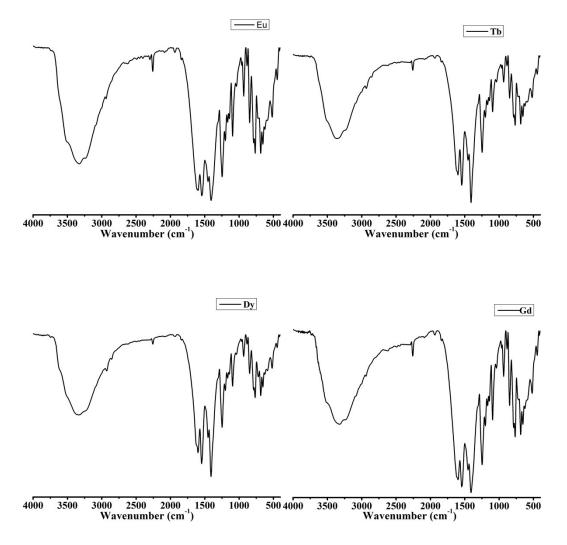
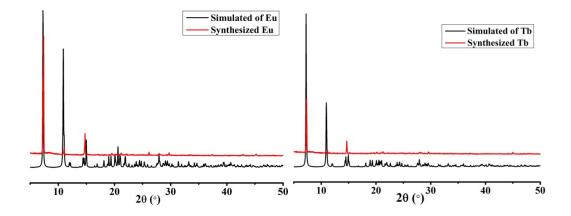
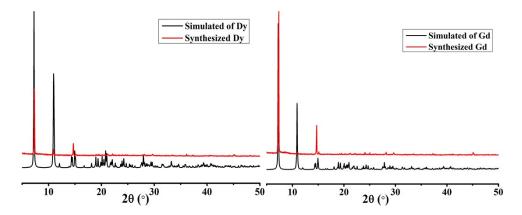
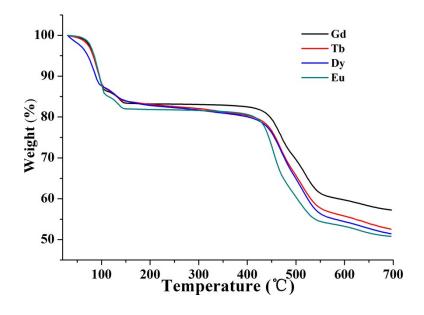





Fig. S3TheFT-IR spectrometer of1-Eu, 1-Tb, 1-Dy and 1-Gd.

Fig. S4 PXRD patterns of **1-Eu**, **1-Tb**, **1-Dy** and **1-Gd** simulated from the X-ray single-crystal structure and as-synthesized samples of **1-Eu**, **1-Tb**, **1-Dy** and **1-Gd**.

Fig.S5The TGA plots of four compounds under N₂ environment.For **1-Tb**, the first major weight loss of 16.54% from 29 to 144°C, corresponding to two coordinated water, one guest water and one acetonitrile molecules per formula unit (cala.17.17%), the major framework can keep stable to 409°C; For **1-Dy**, the first major weight loss of 16.26% from 29 to 152°C, ascribing to two coordinated water, one guest water and one acetonitrile molecules per formula unit (cala.17.06%), the major framework can keep stable to 409°C; For **1-Gd**, the first major weight loss of 16.69% from 29 to 143°C, corresponding to two coordinated water, one guest water and one acetonitrile molecules per formula unit (cala.17.22%), the major framework can keep stable to 421°C.

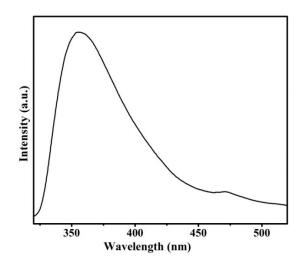
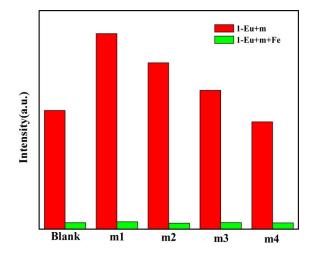
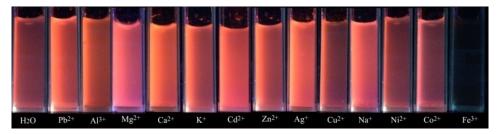




Fig. S6The emission spectra of H_3L

(b)

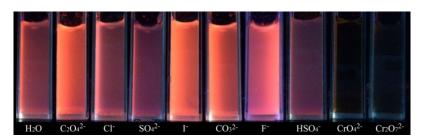
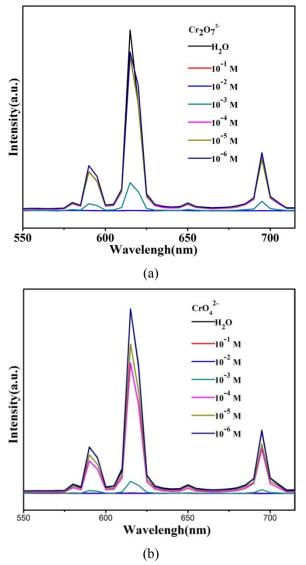
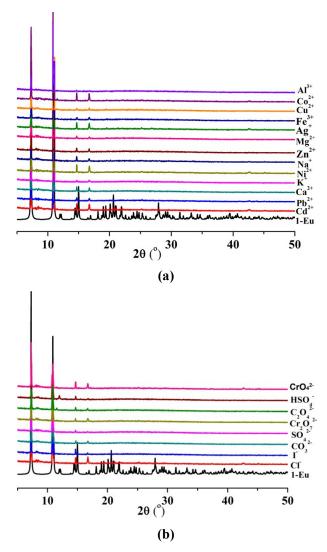




Fig. S7(a) Luminescence intensity at 617 nm of 1-Eu dispersed in water with addition of different mixed ions (10⁻¹M) mixed solution added Fe³⁺ ions (10⁻¹ M) (m1: Cu²⁺/Al³⁺/Pb²⁺; m2: Zn²⁺/Cd²⁺/Ag⁺; m3: K⁺/Mg²⁺; m4: Na⁺/Ca²⁺/Co²⁺).(b)Pictures of different Mⁿ⁺@1-Eu solutions (M = Pb²⁺, Al³⁺, Mg²⁺, Ca²⁺, K⁺, Cd²⁺, Zn²⁺, Ag⁺, Cu²⁺, Na⁺, Ni²⁺, Co²⁺, and Fe³⁺, respectively).(c)Pictures of different 1-Eu@A^{x-} solutions (A = C₂O₄²⁻, Cl⁻, SO₄²⁻, I⁻, CO₃²⁻, F⁻, HSO₄⁻, CrO₄²⁻ and Cr₂O₇²⁻, respectively).

Fig.S8Luminescent spectra of **1-Eu** in aqueoussolution with $Cr_2O_7^{2-}(a)$ and $CrO_4^{2-}(b)$ ions at different concentration (ca. 10⁻⁶-10⁻¹M).

Fig. S9(a) ThePXRD patterns of **1-Eu** treated by different $M(NO_3)_x(M = Na^+, K^+, Mg^{2+}, Ag^+, Ca^{2+}, Cd^{2+}, Zn^{2+}, Co^{2+}, Cu^{2+}, Al^{3+}, Ni^{2+}, Fe^{3+} and Pb^{2+})$ aqueous solutions.(b)ThePXRD patterns of **1-Eu** treated by differentK_x(A) (A=F⁻, Cl⁻, I⁻, C₂O₄²⁻, CO₃²⁻, Cr₂O₇²⁻, SO₄²⁻, HSO₄⁻ and CrO₄²⁻) aqueous solutions.

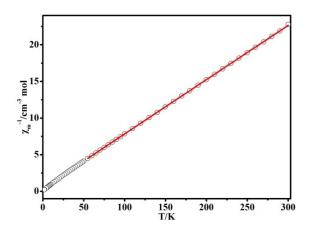


Fig. S10 The inverse magnetic susceptibility data (χ_M^{-1}) of 1-Dy.