Supporting Information

Synthesis and Structural Characterization of Anion Complexes with Azacalix[2]dipyrrolylmethane: Effect of Anion Charge on the Conformation of the Macrocycle

Tapas Guchhait,^a Ganesan Mani,*,^a and Carola Schulzke^b

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India 721 302

^bInstitut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany. E-mail: <u>carola.schulzke@uni-greifswald.de</u>

*Corresponding Author: gmani@chem.iitkgp.ernet.in

NMR and IR spectra

Figure S1. ¹H NMR (200 MHz) spectrum of the nitrate complex, 2a in CDCl₃ at room temperature.

Figure S2. IR spectrum of the nitrate complex, 2a recorded as a KBr disc.

Figure S3. ¹H NMR (200 MHz) spectrum of the tetrafluoroborate complex, **2b** in CD₃CN at room temperature.

Figure S4. IR spectrum of the tetrafluoroborate complex, 2b recorded as a KBr disc.

Figure S5. ¹H NMR (200 MHz) spectrum of the chloride complex, 2c in CDCl₃ at room temperature.

Figure S6. IR spectrum of the chloride complex, 2c recorded as a KBr disc.

Figure S7. ¹H NMR (200 MHz) spectrum of the benzoate complex, 2d in CDCl₃ at room temperature.

Figure S8. ${}^{13}C{}^{1}H$ NMR (100.6 MHz) spectrum of the benzoate complex, 2d in CDCl₃ at room temperature.

Figure S9. IR spectrum of the benzoate complex, 2d recorded as a KBr disc.

Figure S10. ¹H NMR (200 MHz) spectrum of the perchlorate complex, 2e in DMSO- d_6 at room temperature.

Figure S11. IR spectrum of the perchlorate complex, 2e recorded as a KBr disc.

Figure S12. ¹H NMR (200 MHz) spectrum of the chromate complex, 2f recorded in CDCl₃ at room temperature.

Figure S13. IR spectrum of the chromate complex, 2f recorded as a KBr disc.

Figure S14. ¹H NMR (200 MHz) spectrum of the dichromate complex, **2g** recorded in CDCl₃ at room temperature.

Figure S15. IR spectrum of the dichromate complex, 2g recorded as a KBr disc.

Figure S16. ¹H NMR (200 MHz) spectrum of the hexafluorosilicate complex, 2h in CDCl₃ at room temperature.

Figure S17. ${}^{13}C{}^{1}H$ NMR (100.6 MHz) spectrum of the hexafluorosilicate complex, 2h in CDCl₃ at room temperature.

Figure S18. DEPT-135 $\{^{1}H\}$ NMR (100.6 MHz) spectrum of the hexafluorosilicate complex, 2h in CDCl₃ at room temperature.

Figure S19. IR spectrum of hexafluorosilicate complex, 2h recorded as a KBr disc.

Figure S20. ¹H NMR (200 MHz) spectrum of the thiosulfate complex, 2i in CDCl₃ at room temperature.

Figure S21. IR spectrum of the thiosulfate complex, 2i recorded as a KBr disc.

X-ray structures

Special refinement details

For **2a** two disorders were found, one at the nitrate for which one oxygen atom (O2; 63% vs. 37% occupancy) is split over two locations and one at the co-crystallized ethylacetate of which one carbon (C33; 71% vs. 29% occupancy) is split over two locations. Both disorders were modeled with constrained parameters (SADI/SIMU/DELU).

All hydrogen atoms on the nitrogen atoms were located and refined freely with respect to location but the U_{iso} values were constrained to 1.2 U_{eq} of their pivot atoms.

For **2b** the BF_4^- ion is disordered affecting three out of the four F atoms (F2-F4) which are all split over two positions (as a rotation around the B1-F1 axis) with occupations of 73% (major) vs. 27% (minor). No constraints or restraints were used except constraining the F1 – F(X) distances (SADI). All N-bound hydrogen atoms were located and refined freely without any constraints or restraints.

For **2c** three of the dangling ethyl groups appear to be not as well behaved as the rest of the molecule. Modelling the respective disorder did not improve the overall quality of the refinement. Therefore only some constraints (SIMU/DELU) were applied to the respective atoms (C1, C2, C18, C19, C20, C21). All N-bound hydrogen atoms were located and refined freely with respect to location. The U_{iso} values of these hydrogen atoms were constrained within two groups (aromatic vs. amine functions) using free variables.

For **2d** the co-crystallized methanol solvent is completely disordered over two positions (C47, O5; 73% vs 27% occupancy). In addition one ethyl substituent is disordered over two positions (C25, C26; 84% vs. 16% occupancy). Both disorders were modeled with constrained parameters (SADI - only for –Et/SIMU/DELU). One of the respective already split carbon atoms is still showing signs of disorder plus there is also some "movement" in other ethyl substituents and one phenyl ring of the guest molecule, none of which could be modelled properly, i.e. no improvement of the refinement was achieved. Therefore it was decided to rather accept large ADP max/min ratios for the respective atoms than to almost completely fix their refinement parameters in order to get a stable refinement. All N-bound hydrogen atoms were located and refined freely with respect to location. The U_{iso} values of these hydrogen atoms were constrained within two groups (aromatic vs. amine functions) using free variables. Overall the crystal was diffracting only very weakly in addition to the substantial disorder and consequently the obtained data are limited. However, the data which were gathered are quite consistent with a very low R_{int} value. We are therefore confident that the refined structure is an appropriate reflection of the actual situation in the crystalline solid state.

For **2e** all eight oxygen atoms of the two ClO_4^- guest ions are disordered with the tetrahedral ions tumbling around the central chlorine atoms. The occupancies are 60% vs. 40% around Cl1 and 56% vs 44% around Cl2. The respective fractions of the atoms look as if they might want to be split even further indicating that the ions do behave almost like isotropic spheres only restricted

in their movement by the hydrogen bonds with the macrocycle. The disordered oxygen atoms were constrained using SAME, SIMU and DELU. All N-bound hydrogen atoms were located and refined without any restraints or constraints.

For **2f** the N-H distances for N1, N2, N3 and N4 were constrained (SADI) and the U*iso* values of the respective hydrogen atoms were constrained to 1.2 U_{eq} of their pivot atoms. Two methyl (C17, C18) groups of two ethyl substituents on the same carbon are disordered over two positions each (both with occupancies of ca. 55% vs. 45%). The disorder was modelled using constraints (SIMU/DELU). The guest ion chromate CrO₄^{2–} is disordered by a rotation around the Cr-O1 axis. The respective fractions were set to 50%. SIMU and DELU constraints were used.

For **2g** the N-bound hydrogen atoms at N1, N3, N4, N5 and N6 were located, the respective N-H distances were constrained (SADI) and the U*iso* values of the respective hydrogen atoms were constrained to 1.2 U_{eq} of their pivot atoms. The hydrogen atom on tetrahedral N2 was placed using the riding model for a methine proton.

The dichromate guest ion is disordered over two positions concerning all atoms (both Cr and seven O). The refinement of all these atoms was constrained (SAME/SIMU/DELU). The occupancies of the two positions are 83% vs. 17%.

The crystal lattice contains quite large solvent accessible voids and residual electron density which could not be refined. The SQUEEZE/PLATON procedure yielded total void volume and electron count of 920.0Å³ and 360 e⁻. It was concluded that nine molecules water are present per formula which could not be refined. These routines necessarily contribute to the discrepancy between calculated and reported formulae in the cif-file. The solvent has been treated as a diffuse contribution to the overall scattering without specific atom positions.

The obtained hkl file was truncated due to the severe disorder (dichromate and nine water molecules) in order to avoid accounting for predominantly noise.

For **2h** the three N-bound hydrogen atoms (the whole macrocycle is generated by symmetry operation) were located and refined freely with respect to location but the U*iso* values of the respective hydrogen atoms were constrained to $1.2 U_{eq}$ of their pivot atoms for aromatic and to $1.5 U_{eq}$ for tetrahedral pivot atoms. The guest ion SiF₆²⁻ ion is disordered over two positions by a ca. 45° rotation about the F1-Si1-F2 axis. The occupancies are 86% vs. 16%. The disorder was modeled using constraints (SADI for the Si-F distances/SIMU/DELU). Per formula two methanol molecules co-crystallized, which were not refineable and were treated with the SQUEEZE/PLATON procedure yielding total void volume and electron count of 648Å³ and 168 e⁻, respectively. These routines necessarily contribute to the discrepancy between calculated and reported formulae in the cif-file. The solvent has been treated as a diffuse contribution to the overall scattering without specific atom positions.

For **2i** all N-bound hydrogen atoms were located and their positions first constrained using SADI for the N-H distances but this resulted in rather long N-H distances of 1.01 Å and many short H H distances in the structure. Consequently the N-H distances were restrained to the typical value (DFIX 0.87 0.05). The hydrogen atom's U*iso* values were constrained to 1.2 U_{eq} of their pivot atoms. All ethyl substituents (C23 C24 C25 C26 C28 C29 C30 C31) of the macrocycle are disordered over two positions each with the major occupancies ranging from 51% to 54%. The

thiosulfate anion is disordered over two positions involving all atoms of the ion. The occupancies are 83% vs. 17%. Two oxygen atoms of minor occupancy were refined isotropically. For all atoms of this disordered molecule constraints were used (SAME/SIMU/DELU).

Empirical formula $C_{36}H_{56}N_8O_8$ $C_{34}H_{48}B_2F_8N_6$ $C_{33}H_{52}Cl_2N_6O$ $C_{47}H_{62}N_6O_5$ $C_{32}H_{48}Cl_2N_6O_8$ Formula weight728.88714.40619.70791.02715.66Wavelength (Å)0.710730.710730.710730.71073Temperature (K)298(2)298(2)298(2)298(2)Crystal systemTriclinicMonoclinicTriclinicTriclinicColor and shapeColorless, prismColorless, prismColorless, prismColorless, prismSpace groupP-1 $P2_{1/c}$ P-1P-1 $a/Å$ 11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5) $b/Å$ 13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5) $c/Å$ 13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)		2a·EtOAc	2b	2c·CH₃OH	2d·0.5MeOH	2e
Formula weight728.88714.40619.70791.02715.66Wavelength (Å)0.710730.710730.710730.71073Temperature (K)298(2)298(2)298(2)298(2)Crystal systemTriclinicMonoclinicTriclinicTriclinicColor and shapeColorless, prismColorless, prismColorless, prismColorless, prismSpace group $P-1$ $P2_1/c$ $P-1$ $P-1$ $a/Å$ 11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5) $b/Å$ 13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5) $c/Å$ 13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	Empirical formula	C ₃₆ H ₅₆ N ₈ O ₈	$C_{34}H_{48}B_2F_8N_6$	C ₃₃ H ₅₂ Cl ₂ N ₆ O	C ₄₇ H ₆₂ N ₆ O ₅	C ₃₂ H ₄₈ Cl ₂ N ₆ O ₈
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 Temperature (K) $298(2)$ $298(2)$ $298(2)$ $298(2)$ $298(2)$ Crystal systemTriclinicMonoclinicTriclinicTriclinicTriclinicColor and shapeColorless, prismColorless, prismColorless, prismColorless, prismColorless, prismSpace group $P-1$ $P2_1/c$ $P-1$ $P-1$ $P-1$ $a/Å$ 11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5) $b/Å$ 13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5) $c/Å$ 13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	ormula weight	728.88	714.40	619.70	791.02	715.66
Temperature (K)298(2)298(2)298(2)298(2)298(2)Crystal systemTriclinicMonoclinicTriclinicTriclinicTriclinicColor and shapeColorless, prismColorless, prismColorless, prismColorless, prismColorless, prismSpace group $P-1$ $P2_1/c$ $P-1$ $P-1$ $P-1$ $a/Å$ 11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5) $b/Å$ 13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5) $c/Å$ 13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	Vavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal systemTriclinicMonoclinicTriclinicTriclinicTriclinicColor and shapeColorless, prismColorless, prismColorless, prismColorless, prismColorless, prismSpace group $P-1$ $P2_1/c$ $P-1$ $P-1$ $P-1$ $a/Å$ 11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5) $b/Å$ 13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5) $c/Å$ 13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	emperature (K)	298(2)	298(2)	298(2)	298(2)	298(2)
Color and shapeColorless, prismColorless, prismColor	Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Triclinic
Space group $P-1$ $P2_1/c$ $P-1$ $P-1$ $P-1$ $a/Å$ 11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5) $b/Å$ 13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5) $c/Å$ 13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	Color and shape	Colorless, prism	Colorless, prism	Colorless, prism	Colorless, prism	Colorless, prism
a/Å11.231(2)11.3232(9)11.4134(14)12.8015(8)10.826(5)b/Å13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5)c/Å13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	pace group	<i>P</i> -1	$P2_{I}/c$	P-1	<i>P</i> -1	<i>P</i> -1
b/Å13.224(3)12.4132(10)11.7294(14)13.1729(8)10.886(5)c/Å13.496(3)12.8292(10)14.5809(17)14.8039(8)15.397(7)	/Å	11.231(2)	11.3232(9)	11.4134(14)	12.8015(8)	10.826(5)
c/Å 13.496(3) 12.8292(10) 14.5809(17) 14.8039(8) 15.397(7)	/Å	13.224(3)	12.4132(10)	11.7294(14)	13.1729(8)	10.886(5)
	/Å	13.496(3)	12.8292(10)	14.5809(17)	14.8039(8)	15.397(7)
<i>α</i> /degree 86.976(6) 90.0 101.215(4) 72.028(3) 86.377(13)	/degree	86.976(6)	90.0	101.215(4)	72.028(3)	86.377(13)
β /degree 88.508(6) 98.879(2) 109.626(4) 87.892(3) 81.065(14)	/degree	88.508(6)	98.879(2)	109.626(4)	87.892(3)	81.065(14)
y/degree 85.740(6) 90.0 96.150(4) 70.142(3) 81.984(12)	/degree	85.740(6)	90.0	96.150(4)	70.142(3)	81.984(12)
Volume (Å ³) 1995.6(7) 1781.6(2) 1771.8(4) 2227.0(2) 1773.4(13)	Volume (Å ³)	1995.6(7)	1781.6(2)	1771.8(4)	2227.0(2)	1773.4(13)
Z 2 2 2 2 2 2	7 1	2	2	2	2	2
	-3	1 010	1 222	1 1 ()	1 100	1 240
D_{caled} , g cm ² 1.215 1.552 1.162 1.180 1.540	calcd, g cm ³	1.213	1.332	1.102	1.180	1.340
μ/mm^{-1} 0.087 0.108 0.217 0.077 0.240	/mm ⁻¹	0.087	0.108	0.217	0.077	0.240
F(000) 784 752 668 852 760	7000)	784	752	668	852	760
	(000)	,	,			,
θ range (degree) 1.511 to 31.444 1.820 to 31.789 1.530 to 24.171 1.450 to 20.608 1.340 to 24.663	range (degree)	1.511 to 31.444	1.820 to 31.789	1.530 to 24.171	1.450 to 20.608	1.340 to 24.663
Limiting indices $-16 \le h \le 15$ $-16 \le h \le 15$ $-12 \le h \le 13$ $-12 \le h \le 12$ $-12 \le h \le 12$	imiting indices	-16<=h<=15	-16<=h<=15	-12<=h<=13	-12<=h<=12	-12<=h<=12
-18 < = k < = 15 $-17 < = k < = 18 $ $-13 < = k < = 13 $ $-12 < = k < = 13$	88	$-18 \le k \le 15$	$-17 \le k \le 18$	$-13 \le k \le 13$	$-12 = k \le 13$	$-12 = k \le 12$
10 < k < 10, 17 < k < 10, 15 < k < 15, 12 < k < 15, 12 < k < 12, 17 < 16 < 16 < 16 < 16 < 16 < 16 < 16 <		10 < K < 15, 17 < -1 < -10	17 < K < 10, 18 < -1 < -18	15 < K < 15, 16 < -1 < -15	12 < K < 15, 14 < -1 < -14	12 < K < 12, 18 < -1 < -18
		-1/<-1/	-10<-1<-10	-10<-1<-13	-14<-1<-14	-18<-1<-18
Total/unique no. of 29256 / 10905 25832 / 5614 19156 / 5590 15300 / 4471 20498 / 5963	otal/ unique no. of	29256 / 10905	25832 / 5614	19156 / 5590	15300 / 4471	20498 / 5963
refins.	eflns.					
<i>R_{int}</i> 0.1229 0.0700 0.0640 0.0327 0.0451	int	0.1229	0.0700	0.0640	0.0327	0.0451
Data / restr./ params. 10905 / 42 / 514 5614 / 15 / 267 5590 / 21 / 406 4471 / 94 / 592 5963 / 120 / 537	Data / restr./ params.	10905 / 42 / 514	5614/ 15 / 267	5590 / 21/ 406	4471/94/592	5963 / 120 / 537
		0.040	1 012	0.007	1.020	1.010
GOF (F ²) 0.942 1.013 0.887 1.039 1.019	$OF(F^2)$	0.942	1.013	0.88/	1.039	1.019
<i>R1, wR2</i> 0.0872, 0.1637 0.0762, 0.1578 0.0700, 0.2015 0.0472, 0.1155 0.0476, 0.1071	21, wR2	0.0872, 0.1637	0.0762, 0.1578	0.0700, 0.2015	0.0472, 0.1155	0.0476, 0.1071
	(indices (all data)	0.0007 0.0000	0 1014 0 2011	0 10 41 0 00 55	0.0445 0.1010	0.0000 0.10(0
<i>K1, WK2</i> 0.3297, 0.2528 0.1914, 0.2011 0.1341, 0.2357 0.0665, 0.1310 0.0823, 0.1262	21, WK2	0.3297, 0.2528	0.1914, 0.2011	0.1341, 0.2357	0.0665, 0.1310	0.0823, 0.1262
Largest different 0.419 and -0.296 0.401 and -0.222 0.561 and -0.266 0.455 and -0.216 0.296 and -0.244 peak and hole (e $^{A-3}$)	argest different eak and hole (e $^{A-3}$)	0.419 and -0.296	0.401 and -0.222	0.561 and -0.266	0.455 and -0.216	0.296 and -0.244

Table 1 Crystallographic data for 2a, 2b, 2c, 2d and 2e.

Table 2 Crystallographic data for 2f, 2g, 2h and 2i.

 2f	2g·9H ₂ O	2h·2MeOH	2i

Empirical formula	$C_{32}H_{46}CrN_6O_4$	$C_{32}H_{66}Cr_2N_6O_{16}$	$C_{34}H_{56}F_6N_6O_2Si$	$C_{32}H_{48}N_6O_3S_2$
Formula weight	630.75	894.90	722.93	628.88
Wavelength (Å)	1.54178	1.54178	0.71073	1.54178
Temperature (K)	110(2)	110(2)	293(2)	293(2)
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic
Color and shape	yellow, needle	orange, needle	Colorless, prism	Colorless, needle
Space group	Cmc2(1)	$P2_1/n$	C2/c	$P2_1$
a/Å	17.1257(9)	8.815(3)	12.93(2)	11.660(9)
$b/\text{\AA}$	16.2367(9)	17.954(6)	10.616(16)	11.998(9)
c/Å	11.2669(6)	26.463(9)	27.70(4)	11.826(9)
a/degree	90.0	90.0	90.0	90.0
β /degree	90.0	96.493(11)	99.20(3)	92.19(2)
γ/degree	90.0	90.0	90.0	90.0
Volume (Å ³)	3132.9(3)	4162(2)	3753(10)	1653(2)
Ζ	4	4	4	2
D	1 227	1 420	1 290	1 2(2
D_{calcd} , g cm ³	1.337	1.428	1.280	1.203
μ/mm^{-1}	3.378	4.943	0.131	1.790
<i>F</i> (000)	1344	1904	1544	676
θ range (degree)	3 751 to 59 969	2.980 to 59.983	1.489 to 27.345	3.794 to 59.999
Limiting indices	10 1 10	_9<=h<=9	-16<=h<=16	-11<=h<=13
8	−19<=h<=19,	_20<=k<=20	-13 < = k < = 13	-13 < = k < = 13
	−18<=k<=18,	20 < K < 20, 20 < -1 < -20	-15 < K < -15, 24 < -1 < -22	12 < 12 < 12 < 12
	-12<=l<=12	-29<-1<-29	-34\-1\-33	-13<-15
Total/ unique no. of reflns	33664 / 2405	27489 / 5821	14408 / 3904	12097 / 4602
R.	0.0845	0 1608	0 1183	0 1222
Data / restr / narams	2405/19/252	5821 / 234 / 476	3904 / 24 / 235	4602 / 288 / 519
Data / Testi./ parallis.	2403/19/232	562172577770	57077277255	400272007517
$\operatorname{GOF}(F^2)$	1.013	0.916	0.877	0.834
R1, wR2	0.0449, 0.1091	0.0760, 0.1535	0.0689, 0.1391	0.0695, 0.1437
R indices (all data) R1,				
wR2	0.0530, 0.1114	0.1435, 0.1791	0.1744, 0.1690	0.1264, 0.1602
Largest different peak	0.212 and -0.436	0.412 and -0.317	0.227 and -0.202	0.224 and -0.233
and hole (e Å ⁻³)				

Figure S22. ORTEP diagram of the nitrate ion complex **2a**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S23. 2D diagram of the nitrate ion complex **2a**, showing the crystal packing pattern and interactions viewed along the b axis.

Figure S24. ORTEP diagram of the tetrafluoroborate ion complex **2b**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S25. (a) 2D packing diagram of the tetrafluoroborate ion complex 2b, showing the arrangements of the receptors and BF_4^- ions. (b) Packing of 2b viewed along the b axis.

Figure S26. ORTEP diagram of the chloride ion complex $2c \cdot CH_3OH$, showing the asymmetric unit (50% thermal ellipsoids).

Figure S27. 2D packing diagram of the chloride ion complex $2c \cdot CH_3OH$, showing the alternating arrangements of two different 1,2-*alternate* conformational isomers in the crystal packing viewed along b axis.

Figure S28. ORTEP diagram of the benzoate anion complex 2d·0.5MeOH, showing the asymmetric unit (50% thermal ellipsoids).

Figure S29. 2D packing diagram of the benzoate anion complex $2d \cdot 0.5$ MeOH, showing the arrangements of the receptors, benzoate anions and methanol solvents of crystallisation.

Figure S30. ORTEP diagram of the perchlorate anion complex **2e**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S31. 2D packing diagram of the perchlorate anion complex **2e**, showing the arrangements of the receptors and perchlorate anions along a axis.

Figure S32. ORTEP diagram of the chromate ion complex **2f**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S33. 2D packing diagram of the chromate ion complex **2f**, showing the arrangements of the receptors and chromate anions viewed along the c axis.

Figure S34. ORTEP diagram of the dichromate anion complex **2g**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S35. 2D packing diagram of **2g**, showing the arrangements of the receptors and dichromate anions viewed along the a axis.

Figure S36. ORTEP diagram of the hexafluorosilicate anion complex **2h**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S37. (a) 2D packing diagram of 2h, showing the arrangements of the receptors and hexafluorosilicate anions viewed along the a axis; (b) another view of the crystal packing exhibited by complex 2h.

Figure S38. ORTEP diagram of the thiosulfate anion complex **2i**, showing the asymmetric unit (50% thermal ellipsoids).

Figure S39. 2D packing diagram of **2i**, showing the arrangements of the receptors and thiosulfate anions viewed along the b axis.