Electronic Supplementary Information

An upconversion nanoplatform for simultaneous photodynamic

therapy and Pt chemotherapy to combat cisplatin resistance

Fujin Ai,^{ac} Tianying Sun,^b Zoufeng Xu,^{ac} Zhigang Wang,^{ac} Wei Kong,^b Man Wai To,^a Feng Wang,^{bc} and Guangyu Zhu^{*ac}

^{a.} Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR. E-mail: guangzhu@cityu.edu.hk

^{b.} Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR

^{c.} City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China

Figure S1. Photographs of PAA-UCNPs and PEG/RB-Pt(IV)-UCNPs (100 μ g mL⁻¹) in aqueous solutions before and after centrifugation.

Figure S2. ¹H NMR spectrum of *c,c,t*-[Pt(NH₃)₂Cl₂(OCOCH₂CH₂NH₃)₂]²⁺·2CF₃COO⁻ (DMSO-*d*₆)

Figure S3. ¹³C NMR spectrum *c,c,t*-[Pt(NH₃)₂Cl₂(OCOCH₂CH₂NH₃)₂]²⁺·2CF₃COO⁻ (DMSO-*d*₆)

Figure S4. ¹⁹⁵Pt NMR spectrum of *c*,*c*,*t*-[Pt(NH₃)₂Cl₂(OCOCH₂CH₂NH₃)₂]²⁺·2CF₃COO⁻ (DMSO-*d*₆)

Figure S5. Mass spectrum of $\{c, c, t-[Pt(NH_3)_2Cl_2(OCOCH_2CH_2NH_2)_2]+H\}^+$.

Figure S6. Photoluminescent spectrum of PAA-UCNPs under 808 nm laser irradiation at 6 W/cm² (black) and UV-Vis spectrum of RB (red).

Figure S7. UV-vis spectra of RB-Pt(IV)-UCNPs with different RB loading amount (0, 0.2, 0.6, 1.2, 2.6, 4.0 wt% RB on UCNPs).

Figure S8. Photoluminescent spectra of PAA-UCNPs, Pt(IV)-UCNPs, and RB-Pt(IV)-UCNPs.

Figure S9. Release of RB and Pt from PEG/RB-Pt(IV)-UCNPs in PBS buffer (120 μ g mL⁻¹) at pH 7.4 at r.t.

Figure S10. Pt release profile of PEG/RB-Pt(IV)-UCNPs in PBS buffer (400 μ g mL⁻¹) in and without the presence of 2 mM ascorbic acid (AsA) at pH 7.4 at 37 °C. One batch of sample was irradiated with an 808 nm laser for 10 min (6 W/cm²) before the release experiment was carried out.

Figure S11. Whole cell uptake of cDDP (11.4 μ M) and PEG/RB-Pt(IV)-UCNPs (80 μ g mL⁻¹) in A2780cisR cells (n=3).

Figure S12. Cellular reactive oxygen species (ROS) of PEG/RB-Pt(IV)-UCNPs (80 μ g mL⁻¹) with 808 nm laser irradiation (6 W/cm², 10 min) in A2780cisR cells. The PBS treated and PEG/RB-Pt(IV)-UCNPs (80 μ g mL⁻¹) without irradiation were also measured to compare. The H₂O₂ (3 mM) treated for 15 min was set as a positive control. Scale bar, 250 μ m.

Scheme S1. Synthetic route of PEG/RB-HA-UCNPs for photodynamic therapy alone.