Supporting Information

Structures of Potassium Calix[4]arene Crown Ether Inclusion Complexes

$$
\text { and Application in Polymerization of } r a c \text {-Lactide }
$$

Yingguo Li, Hongwei Zhao, Xiaoyang Mao, Xiaobo Pan, Jincai Wu*

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Cuiying Honors College, Lanzhou University, Lanzhou 730000,

> People's Republic of China

Table of Contents

Figure S1. Molecular structure of complex 1 (1D zigzag polymeric chain).
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra (Toluene-d8) recorded at different temperatures of complex $\mathbf{2}$.
Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ recorded at different temperatures of complex $\mathbf{3}$.
Figure S4. Molecular structure of complex $\mathbf{3}$ (two different molecular structures in one asymmetric unit).
Figure S5. Comparison of complex $\mathbf{1}+\mathbf{B n O H}$ (excess) and complex $\mathbf{2}+\mathbf{B n O H}$ (excess) on ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.
Figure S6. Comparison of complex 2, complex $\mathbf{2}+\mathbf{B n O H}$ (2 equiv.) and complex $\mathbf{2}+\mathbf{B n O H}$ (excess) on ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $25^{\circ} \mathrm{C}$).
Figure S7. Polymerization of $r a c$-LA catalyzed by complex 2 in toluene at room temperature. The relationships between $\operatorname{PDI}(■), \mathrm{Mn}$ (ㅁ) of the polymer and the initial mole ratios $[\mathrm{LA}]_{0} /[\mathrm{BnOH}]_{0}$ (Table 1, entries $1,7,8,9$) is shown.
Figure S8. Polymerization of rac-LA catalyzed by complex $\mathbf{3}$ in toluene at room temperature. The relationships between $\operatorname{PDI}(■), \mathrm{Mn}$
(ロ) of the polymer and the initial mole ratios $[\mathrm{LA}]_{0} /[\mathrm{BnOH}]_{0}$ (Table 1, entries 17, 20-23) is shown.
Figure S9. Methine region of the (a) ${ }^{1} \mathrm{H}$ NMR spectrum (b) ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the poly (rac-lactide) produced from rac-LA using complex 3 (Table 1, entry 25). Methine region of the (c) homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) (d) ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$) of the poly(L-lactide) produced from L-LA using complex $\mathbf{3}$ (Table 1, entry 26). The P_{m} values determined by homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the methine region.
Figure S10. ${ }^{1} \mathrm{H}$ NMR analysis of poly (rac-LA) obtained from polymerization of rac-LA initiated by complex 3 (Table 1, entry17).
Figure S11. Enlarged ESI-MS spectrum of poly(rac-LA) prepared by ROP of rac-LA (Table 1, entry 17).
Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex 1.
Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex 1 .
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 2.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 2.
Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex 3 .
Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex 3 .
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 4.
Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex4.
Table S1. Details of the X-ray structure Determinations of Complexes 1-4.

Figure S1. Molecular structure of complex 1 (1D zigzag polymeric chain).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra (Toluene-d8) recorded at different temperatures of complex $\mathbf{2}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ recorded at different temperatures of complex $\mathbf{3}$.

Figure S4. Molecular structure of complex $\mathbf{3}$ (two different molecular structures in one asymmetric unit).

Figure S5. Comparison of complex $\mathbf{1}+\mathbf{B n O H}$ (excess) and complex $\mathbf{2}+\mathbf{B n O H}$ (excess) on ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6,2} 25^{\circ} \mathrm{C}\right)$.

Figure S6. Comparison of complex 2, complex $2+\mathbf{B n O H}$ (2 equiv.) and complex $2+\mathbf{B n O H}$ (excess) on ${ }^{1} H$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $25^{\circ} \mathrm{C}$).

Figure S7. Polymerization of $r a c$-LA catalyzed by complex 2 in toluene at room temperature. The relationships between $\operatorname{PDI}(■)$, Mn (ם) of the polymer and the initial mole ratios $[\mathrm{LA}]_{0} /[\mathrm{BnOH}]_{0}$ (Table 1, entries $1,7,8,9$) is shown.

Figure S8. Polymerization of rac-LA catalyzed by complex $\mathbf{3}$ in toluene at room temperature. The relationships between $\operatorname{PDI}(■)$, $\operatorname{Mn}(\square)$ of the polymer and the initial mole ratios $[\mathrm{LA}]_{0} /[\mathrm{BnOH}]_{0}$ (Table 1, entries 17, 20-23) is shown.

Figure S9. Methine region of the (a) ${ }^{1} \mathrm{H}$ NMR spectrum (b) ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$) of the poly (rac-lactide) produced from rac-LA using complex 3 (Table 1, entry 25). Methine region of the (c) homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz})(\mathrm{d}){ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$) of the poly(L-lactide) produced from L-LA using complex $\mathbf{3}$ (Table 1, entry 26). The P_{m} values determined by homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the methine region. ${ }^{1}$

Figure S10. ${ }^{1} \mathrm{H}$ NMR analysis of the small molecular weight poly ($\mathrm{rac}-\mathrm{LA}$) obtained from polymerization of rac -LA initiated by complex $\mathbf{3}$ (Table 1 , entry $\left.17,[\mathrm{LA}]_{0} /[\text { cat. }]_{0} /[\mathrm{BnOH}]_{0}=200: 1: 10\right)$

Figure S11. Enlarged ESI-MS spectrum of poly(rac-LA) prepared by ROP of rac-LA (Table 1, entry 17)
In EMS-MS spectrum
1): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
(1)': $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+72.02$
(2): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}$
(2)': $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}^{+}+72$
(3): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}^{+}+2 \mathrm{H}_{3} \mathrm{O}^{+}$
(3)': $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}^{+}+2 \mathrm{H}_{3} \mathrm{O}^{+}+72$
(4): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{K}^{+}$
(5): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{NH}_{4}$
(6): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{Na}^{+}+\mathrm{K}^{+}$
(7): $144.04 \mathrm{n}+\mathrm{BnOH}+\mathrm{K}^{+}$
(8): $144.04 \mathrm{n}+\mathrm{BnOH}+2 \mathrm{Na}^{+}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex $\mathbf{1}$.

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex $\mathbf{1}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 2.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 2.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3,} 25^{\circ} \mathrm{C}\right)$ of complex 3 .

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of complex 3 .

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 4 .

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ of complex 4 .

Table S1. Details of the X-ray structure Determinations of Complexes 1-4.

	1	2	3	4
Formula	$\mathrm{C}_{50} \mathrm{H}_{66} \mathrm{~K}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{62} \mathrm{H}_{90} \mathrm{~K}_{2} \mathrm{O}_{10}$	$\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~K}_{2} \mathrm{O}_{7}$	$\mathrm{C}_{52} \mathrm{H}_{69} \mathrm{KO}_{7} \mathrm{THF}$
Fw	808.23	1072.68	882.42	916.53
Temp	220.60(10)	173.00(10)	296(2)	293(2)
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	Pnma	C2/c	P 21	$\mathrm{P} 21 / \mathrm{c}$
$\mathrm{a} \AA$	12.2579(5)	11.1093(3)	13.4859(10)	16.3022(3)
b A	17.9504(9)	26.4085(9)	20.6897(15)	29.2158(5)
c \AA	21.1486(6)	20.4600(7)	20.2255(15)	15.5007(3)
α°	90.00	90.00	90.00	90.00
β°	90.00(3)	92.614(3)	109.1440(10)	94.8725(19)
γ°	90.00	90.00	90.00	90.00
$\mathrm{V} \AA^{3}$	4653.4(3)	5996.3(3)	5331.2(7)	7356.0(2)
Z	4	8	2	4
Density(calcd) $\mathrm{g} \cdot \mathrm{cm}^{-3}$	1.155	1.189	1.214	1.154
Absorb.coeff. mm^{-1}	0.245	0.213	0.231	1.102
F(000)	1744	2320	2092	2784
Index ranges	$\begin{aligned} & -8 \leq h \leq 16 \\ & -23 \leq \mathrm{k} \leq 24 \\ & -25 \leq 1 \leq 27 \end{aligned}$	$-14 \leq h \leq 14$ $-32 \leq k \leq 35$ $-15 \leq 1 \leq 25$	$-18 \leq h \leq 18$ $-19 \leq k \leq 29$ $-26 \leq 1 \leq 26$	$-17 \leq h \leq 19$ $-31 \leq k \leq 35$ $-18 \leq 1 \leq 18$
Data/restr./param	5681/28/321	6823/84/373	15886/133/1276	13341/7/907
GOF	1.06	1.00	0.91	1.025

$[I>2 \sigma(I)]$	$R_{1}=0.086$	$R_{1}=0.0497$	$\mathrm{R}_{1}=0.060$,	$R_{1}=0.068$
	$\mathrm{w} R_{2}=0.253$	$\mathrm{w} R_{2}=0.1156$	$\mathrm{wR}_{2}=0.133$	$\mathrm{w} R_{2}=0.214$
CCDC number	1456971	1456970	1456968	1456969

References

(1) (a) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229. (b) Kasperczyk, J.; Bero, M. Polymer 2000, 41, 391.

