1	Supplementary Data
2	
3	Structure characterization of non-crystalline complexes of copper salts
4	with native cyclodextrins.
5	Manuel I. Velasco, ^a Claudio R. Krapacher, ^a Rita Hoyos de Rossi, ^a Laura I. Rossi. ^{a*}
6	^a Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) - CONICET,
7	Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad
8	Nacional de Córdoba, Ciudad Universitaria. X5000HUA Córdoba, Argentina.
9	

^{*} Corresponding author

^a (INFIQC-CONICET) Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. X5000HUA Córdoba, Argentina. Tel: +54-351-5353867. E-mail address: mvelasco@fcq.unc.edu.ar (Manuel I. Velasco); ckrapacher@fcq.unc.edu.ar (Claudio R. Krapacher); ritah@fcq.unc.edu.ar (Rita Hoyos de Rossi); lauraros@fcq.unc.edu.ar (Laura I. Rossi)*

11 Figure 1S: TGA of aCD CuCl₂ complex

12

13 Figure 2S: RD UV-Vis of αCD CuCl₂ complex

16 Figure 3S: TGA of βCD CuCl₂ complex

18 Figure 4S: RD UV-Vis of βCD CuCl₂ complex

23 Figure 5S: TGA of γCD CuCl₂ complex

24

25 Figure 6S: RD UV-Vis of γCD CuCl₂ complex

26

29 Figure 7S: TGA of aCD Cu(NO₃)₂ complex

30

31 Figure 8S: RD UV-Vis of αCD Cu(NO₃)₂ complex

35

36 Figure 10S: RD UV-Vis of βCD Cu(NO₃)₂ complex

39 Figure 11S: TGA of γCD Cu(NO₃)₂ complex

40

41 Figure 12S: RD UV-Vis of γCD Cu(NO₃)₂ complex

42

45 Figure 13S: TGA of βCDCuBr₂ complex

52 Figure 15S: TGA of γCDCuBr₂ complex

54 Figure 16S: RD UV-Vis of **γCDCuBr₂ complex**

Native or		Farmerla	Elemental Analysis % found ; % calculated			
Complex CDs	M _w ^a (EA _w) ^b	Formula				
			С	Н	Metal	
αCD	5.8 [6-7]°	C ₃₆ H ₆₀ O ₃₀	;44.45	;6.22		
βCD	7.4 [11-12]°	$C_{42}H_{70}O_{35}$;44.45	;6.22		
γCD	6.0 [17] °	$C_{48}H_{80}O_{40}$;44.45	;6.22		
αCDCuCl ₂	7.5 (6)	$xH_2O \cdot (C_{36}H_{60}O_{30})$ $\cdot (CuCl_2)$	39.34; 35.58	4.26; 5.97	4.02; 5.22	
βCDCuCl ₂	8.3 (9)	$xH_2O \cdot (C_{42}H_{70}O_{35})$ $\cdot (CuCl_2)$	34.76; 35.24	5.92; 6.20	4.90; 4.44	
γCDCuCl ₂	8.6 (11)	$xH_2O \cdot (C_{48}H_{80}O_{40})$ $\cdot (CuCl_2)$	34.54; 35.37	6.03; 6.31	4.02; 3.90	
αCDCuBr ₂	9.4 (6)	$xH_2O \cdot (C_{36}H_{60}O_{30})$ $\cdot (CuBr_2)$	35.83; 35.57	3.93; 5.91	4.09; 5.11	

 59^{a} M_w: Mol of water per mole of cyclodextrin by TGA.

 $60^{b}(EA_{w}) = Mol of water per mole of cyclodextrin by elemental analysis.$

61 ^c Reference 44

63 Table 2S: Kinetic parameters of the thermal decomposition of natives CD and their64 complexes.

Native CD or Complex ^a	Decomposition Temperature (K) (DTGA max or average: weight %)	E* (kJ·mol ⁻¹)	A (s ⁻¹) (logA)	∆S* (kJ·mol ⁻¹ ·K ⁻¹)	∆H* (kJ·mol ⁻¹)	∆G* (kJ·mol ⁻¹)
	313 - 323	144.38	7.10×10^{19}	0.13	141.69	98.25
αCD 1.6140x10 ⁻³ g	(323;97.69) 337 - 349 (244.02,47)	44.42	(19.85) 1.33x10 ³	-0.19	41.56	105.67
1.660x10 ⁻⁶ mol	(344;93.47) 559 - 593	162.80	(3.13) 1.26x10 ¹²	-0.02	157.97	168.91
	313 - 343	51.45	(12.11) 2.26x10 ⁴	-0.16	48.66	103.29
βCD 2 5350x10 ⁻³ g	(336;94.79) 345 – 359	28.80	(4.35) 4.36	-0.23	25.86	108.05
2.233x10 ⁻⁶ mol	(353;89.63) 593 - 613 (600:55.40)	332.09	(0.64) 4.01x10 ²⁶ (26.63)	0.26	327.10	171.93
	313 - 339	44.04	1.11×10^3	-0.19	41.24	104.49
γCD 1.6130x10 ⁻³ g	(337;95.75) 341 - 351 (346:94.40)	18.96	(3.05) 6.32×10^{-2} (-1.20)	-0.27	16.08	109.21
1.244x10 ⁻⁶ mol	565 - 597 (583;56.93)	222.85	(1.20) 3.02x10 ¹⁷ (17.50)	0.08	218.00	168.93
	311 - 321	146.04	2.86x10 ²⁰	0.15	143.39	96.76
	(319;97.22) 419 - 423 (421:01 12)	20.30	(20.46) 3.17x10 ⁻²	-0.28	16.80	133.22
αCDCuCl ₂	(421;91.12) 429 - 435 (433:87.87)	63.09	(-1.50) 1.57x10 ⁴ (4.20)	-0.17	59.49	132.11
1.1170x10 ⁻³ g 1.009x10 ⁻⁶ mol	523 - 563 (541:67.67)	49.59	3.61×10^{1} (1.56)	-0.22	45.10	164.17
	563 - 653	17.60	1.35×10^{-2}	-0.29	12.54	186.81
	653 - 713 (658·23 34)	28.55	1.65×10^{-1} (-0.78)	-0.27	23.08	198.46
	321 - 331 (326:96 31)	39.10	2.46×10^2	-0.20	36.39	101.57
	(320,90.31) 331 - 349 (345.90.93)	16.76	(2.39) 4.44 x10 ⁻² (-1.35)	-0.27	13.89	107.76
β CDCuCl ₂ 1.2840×10 ⁻³ α	(419 - 425) (422.86.47)	7.24	4.54×10^{-4}	-0.31	3.74	135.34
1.011x10 ⁻⁶ mol	(422, 80.47) 457 - 465 (458, 84, 04)	1.39	1.61×10^{-5}	-0.34	-2.42	153.44
	487 - 495	25.98	1.30×10^{-1}	-0.27	21.90	152.54
	(491,80.93) 533 - 563 (548.65.24)	52.41	73.02	-0.21	47.85	165.32
	313 - 329 (325.96 71)	53.65	7.30×10^4	-0.15	50.95	100.53
	(323,90.71) 347 - 353 (350.93.04)	38.24	1.19×10^2	-0.21	35.33	107.62
$\begin{array}{c} \gamma CDCuCl_{2} \\ 0.6440x10^{-3}g \end{array}$	417 - 423 (421.89.60)	8.31	(2.00) 5.79 x10 ⁻⁴	-0.31	4.81	135.25
4.499x10 ⁻⁷ mol	(421,05.00) 489 - 497 (494.84.46)	53.00	(-3.24) 1.56 x10 ² (2 20)	-0.21	48.89	151.24
	533 - 573	54.53	(2.20) 125.80 (2.10)	-0.21	49.92	166.43

	311 - 319	176.81	2.75x10 ²⁵	0.24	174.17	97.34
	(318;98.37)		(25.44)			
	337 - 345	38.91	1.36×10^{2}	-0.21	36.06	106.46
CD C D	(343;94.70)		(2.13)			
$\alpha CDCuBr_2$	413 - 419	73.49	8.36x10 ⁵	-0.13	70.02	126.05
1.1140x10 ⁻³ g	(417;86.95)		(5.93)			
9.313x10 ⁻⁷ mol	503 - 543	26.62	1.62×10^{-1}	-0.26	22.28	160.49
	(522;67.09)		(-0.79)			
	573 - 723	19.42	2.08x10 ⁻²	-0.28	14.39	185.65
	(605;41.17)		(-1.68)			
	311 - 327	58.94	7.56 x10 ⁵	-0.13	56.29	98.70
$\beta CDCuBr_2$	(319;97.5)		(5.88)			
1.1300X10 ⁻⁹ g	417 - 421	122.80	2.85 x10 ¹²	-0.93 x10 ⁻²	119.31	123.23
8.319X10 /mol	(420;83.74)		(12.47)			
	317 - 333	67.80	9.67 x10 ⁶	-0.11	65.07	101.93
	(329;97.44)		(6.99)			
vCDCuBr	415 - 431	34.20	3.55	-0.24	30.68	131.08
$1.4360 \times 10^{-3} \sigma$	(423;89.92)		(0.55)			
$0.444 \times 10^{-7} \text{mol}$	513 - 543	42.05	8.11	-0.23	37.63	161.25
9.444710 11101	(532;68.91)		(0.91)			
	603 - 643	23.55	6.84 x10 ⁻²	-0.27	18.37	188.70
	(623;37.71)		(-1.17)			
	307 - 315	74.43	3.70×10^8	-0.08	71.82	97.35
	(314;97.80)		(8.57)			
	323 - 353	13.85	7.58x10 ⁻³	-0.29	11.04	107.92
	(338;95.29)		(-2.12)			
$\alpha CDCu(NO_2)_2$	409 - 429	21.94	2.74x10 ⁻²	-0.28	18.40	136.77
$1 1100 \times 10^{-3} g$	(426;87.16)	10.00	(-1.57)			1.10.0-
9.566x10 ⁻⁷ mol	441 - 459	18.39	2.29x10-2	-0.28	14.66	140.27
	(449;81.98)		(-1.64)			
	543 - 583	27.29	1.62x10-1	-0.27	22.59	172.55
	(565;54.56)	02.05	(-0.80)	0.10	70.11	100.50
	683 - 701	83.85	9.34×10^{3}	-0.18	/8.11	199.50
	(690;11.44)	46.04	(3.97)	0.10	44.01	104.24
	307 - 347	46.84	3.98×10^{3}	-0.18	44.01	104.24
$\beta CDCu(NO_3)_2$	(340;93.55)	(10	(3.60)	0.22	2.59	120 (2
1.6010x10 ⁻³ g	423 - 439	6.18	2.68×10^{-4}	-0.32	2.58	139.62
1.211x10 ⁻⁶ mol	(433;85.81)	01.40	(-3.5/)	0.14	96.97	164.02
	535 - 5/3	91.49	6.55×10^{-5}	-0.14	86.87	164.03
		21.59	(3.82)	0.22	20.01	102 75
	309 - 337	51.58	1.23×10^{10}	-0.25	28.81	103.75
γCDCu(NO ₃) ₂	(333,94.03)	217	(1.09) 2 11 v 10-5	0.24	1 / 1	144.00
1.0890x10 ⁻³ g	427 - 433 (A31.80.21)	2.1/	(-1.68)	-0.34	-1.41	144.00
7.335x10 ⁻⁷ mol	553 - 583	111.00	(-4.00)	_0.10	107.15	166.87
	555 - 565 (571.44 54)	111.90	(7.62)	-0.10	107.13	100.07
	(3/1,44.34)		(7.02)			

65 ^a Mol amount was calculated considerate anhydrous native CD or anhydrous complex

Natives CD				
or their complexes	(313-383) K	(383-473) K	(473-623) K	(313-623) K
		E* (kJ/mol) ^a		
αCD	188.8		162.8	351.6
βCD	80.25		332.09	412.34
γCD	63		222.85	285.84
αCDCuCl ₂	146.04	83.39	67.19	296.62
βCDCuCl ₂	55.86	8.63	78.39	142.88
γCDCuCl ₂	91.88	8.31	107.53	207.74
αCDCuBr ₂	215.72	73.49	46.04	335.25
βCDCuBr ₂	58.94	122.8		181.74
γCDCuBr ₂	67.8	34.2	65.6	167.6
αCDCu(NO ₃) ₂	88.28	40.33	27.29	155.9
βCDCu(NO ₃) ₂	46.84	6.18	91.49	144.5
γCDCu(NO ₃) ₂	31.57	2.17	111.9	145.65

67 Table 3S: Activation energies of the thermal decomposition processes of native CDs68 and their complexes.

69 ^a These values were calculated from the sum of E* of the successive process

70

71 Figure 17S: Relationship between A_{\parallel} vs g_{\parallel} for $d_x^2 g_{-y^2}$ Cu²⁺ ground state, Peisach-

72 Blumberg correlation diagram.^a

73

^a The lines correspond to interaction of a metallic center with 4 oxygen atoms. See S.K.
Hoffmann, J. Goslar, S. Lijewski, K. Tadyszak, A. Zalewska, A. Jankowska, P.
Florczak, S. Kowalak. *Micropor. Mesopor. Mater.*, 2014, 186, 57-64.

78 Figure 18S: Experimental and simulated EPR spectra of αCDCuCl₂.

81 Figure 19S: Experimental and simulated EPR spectra of γ CDCuCl₂.