Two novel selenidostannates from mixed structure-directing systems: The large ten-membered ring of [Sn₃Se₄] semicubes and the 3D [Sn₄Se₉]_n²ⁿ⁻ with multi-channels

Cheng-Feng Du,^{*a,b*} Nan-Nan Shen,^{*a,b*} Jian-Rong Li,^{*a*} Min-Ting Hao,^{*a,c*} Zi Wang,^{*d*} Chu-Chu Cheng^{*d*} and Xiao-Ying Huang^{**a*} ^{*a*} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China, Fax: (+86) 591-63173145

^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

^c College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China.

^d College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China.

E-mail: xyhuang@fjirsm.ac.cn

Supporting Information

List of Contents

1. More Structural details

Figure S1. Perspective view of the packing diagram of 1 showing the intensive hydrogen bonding interactions. Figure S2. Perspective view of packing diagram of 2 showing the intensive hydrogen bonding interactions. Figure S3. Linkages in 3D-[Fe(bipy)₃]Sn₄Se₉·2H₂O, 3D-(Bmmim)₂[Ni(1,2-pda)₃][Sn₄Se₉]₂ and 2D-[Sn₄S₉]_n²ⁿ. Tables S1-S2. Supramolecular interactions for 1 and 2.

2. Physical measurements

Figures S4-S5. PXRD patterns of compounds 1 and 2.
Figures S6-S7. PXRD patterns of the post-TGA residues of compounds 1 and 2.
Figures S8-S9. EDX spectra of compounds 1 and 2.
Tables S3-S4. Atomic percentages of compounds 1 and 2 from EDX analyses.

1. More Structural details

Figure S1. (a) Perspective views along the *b*-axis of the packing diagram of **1** showing the intensive hydrogen bonds among cations and anionic $[Sn_3Se_7]_n^{2n-}$ layers. (b) Intensive hydrogen bonds for the cations between two adjacent anionic $[Sn_3Se_7]_n^{2n-}$ layers of **1**. Some of the hydrogen atoms on MACs and $[Bmmim]^+$ cations are omitted for clarity. (c) Stacking of $[Sn_3Se_7]_n^{2n-}$ layers and the two different channels viewed along the *c*-axis (windows of the two kinds of channels are shaped in green and purple, respectively).

Figure S2. (a) The window of the large rectangular channel is defined by the interlinkages of $[Sn_6Se_{18}]$ and $[SnSe_4]$ units. (b) A perspective view along the *b*-axis of the packing diagram of **2** showing the intensive hydrogen bonds among cations and anionic $[Sn_4Se_9]_n^{2n}$ framework of **2**. Some of the hydrogen atoms on MACs and $[Bmmim]^+$ cations are omitted for clarity.

Figure S3. (a) Linkages of $[Sn_3Se_{10}]$ and $[SnSe_5]$ in 3D- $[Fe(bipy)_3]Sn_4Se_9$ · $2H_2O$. $[SnSe_5]$ units were drawn in polyhedra. (b) Linkages of dimeric [Sn₆Se₁₈] and [Sn₂Se₈] in 3D-(Bmmim)₂[Ni(1,2-pda)₃][Sn₄Se₉]₂. [Sn₂Se₈] units were drawn in polyhedra. (c) Linkages of dimeric $[Sn_6S_{18}]$ SBUs and $[SnS_4]$ tetrahedra in 2D- $[Sn_4S_9]_n^{2n}$. $[SnS_4]$ units were drawn in polyhedra.

Table S1. Hydrogen bonds [Å and °] for 1

	Table SI. Hydrogen bonds [A a	ind for I.	
D–H···A	$d(\mathbf{H}\cdots\mathbf{A})$	$d(D \cdots A)$	∠(D–H…A)
N(1)-H(1A)Se(4)#1	3.14	3.903(5)	142.3
N(1)-H(1B)Se(6)	2.69	3.489(5)	146.7
$N(2)-H(2A)\cdots Se(5)#2$	2.76	3.572(5)	149.8
N(2)-H(2B)Se(5)#3	2.7	3.606(5)	177.9
N(3)-H(3C)Se(2)#4	2.78	3.625(5)	154.5
$N(3)-H(3H)\cdots$ Se(11)	3	3.801(5)	147.1
N(3)-H(3C)Se(2)#4	2.78	3.625(5)	154.5
$N(3)-H(3G)\cdots$ Se(6)	2.91	3.521(5)	125.9
$N(3)-H(3H)\cdots$ Se(11)	3	3.801(5)	147.1
N(5)-H(5C)Se(2)#3	2.63	3.530(5)	149.4
N(5)-H(5D)Se(5)#3	2.98	3.772(5)	137.1
N(5)-H(5C)Se(2)#3	2.63	3.530(5)	149.4
N(5)-H(5D)Se(5)#3	2.98	3.772(5)	137.1
$N(6)-H(6D)\cdots Se(8)$	2.84	3.741(7)	170.6
C(1)-H(1D)Se(2)#3	3.02	3.920(7)	151.3
C(3)-H(3A)···Se(11)	2.89	3.655(18)	134.5
$C(4)-H(4A)\cdots Se(5)#2$	2.72	3.683(16)	165.6
$C(4)-H(4B)\cdots Se(3)#2$	3.13	3.810(14)	127.3
$C(6)-H(6A)\cdots Se(1)\#5$	3.15	3.623(16)	110.6
C(6)-H(6A)Se(5)#3	2.82	3.661(18)	142.7
$C(6)-H(6A)\cdots Se(1)\#5$	3.15	3.623(16)	110.6
C(6)-H(6B) ··· Se(7)#5	3.16	4.098(16)	158.9
C(7)-H(7A)Se(11)#5	3.15	3.893(15)	132.9
$C(7)-H(7B)\cdots Se(2)#3$	3.08	3.761(19)	127
N(4B)-H(4B1)e(5)#2	2.94	3.930(14)	171
$C(3B)-H(3F)\cdots Se(2)#4$	2.95	3.619(12)	125.7
$C(4B)-H(4F)\cdots Se(1B)$	2.42	3.365(14)	160

C(6B)-H(6E)Se(1)#5	2.84	3.685(14)	144.3
C(10)-H(10A)Se(13)#6	2.9	3.84(4)	173.4
$C(12)-H(12B)\cdots Se(7)$	2.98	3.46(3)	111
C(12)-H(12B)Se(10)	2.94	3.86(2)	157.1
$C(13)-H(13B)\cdots Se(13)$	2.97	3.73(3)	135.6
C(19)-H(19A)Se(4)#1	2.92	3.79(3)	153.2
C(21)-H(21A)····Se(3)	3.02	3.94(4)	156.4
C(21)-H(21B)Se(14)#7	3.16	4.01(4)	145.9
C(24)-H(24A)Se(14)#5	3.25	4.22(4)	166.2
C(19B)-H(19B)Se(13)#8	3.15	3.84(3)	130.5
C(21B)-H(21E)Se(1B)#7	3.05	3.80(3)	134.3
C(22B)-H(22F)Se(8)	2.79	3.46(3)	126

Symmetry codes: #1 x,-y+3/2,z+1/2; #2 x,y-1,z; #3 -x,-y+1,-z+1; #4 -x,y-1/2,-z+1/2; #5 x,-y+1/2,z+1/2; #6 - x+1,y-1/2,-z+1/2; #7 x,y+1,z; #8 -x+1,-y+1,-z+1

Table S2	. Hydrogen	bonds [Å	and °]	for 2 .
----------	------------	----------	--------	----------------

D–H···A	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠(D–H…A)
N(1)-H(1D)Se(5)	2.77	3.644(9)	162.4
N(2)-H(2C)Se(17)#1	3.14	3.860(9)	130.3
N(3)-H(3C)Se(10)#2	3.15	3.717(9)	122.8
N(3)-H(3D)Se(11)#3	2.89	3.630(9)	139.4
N(3)-H(3D)Se(13)#3	3.02	3.606(8)	124.1
N(4)-H(4C)Se(12)	2.99	3.823(8)	153.7
N(4)-H(4D)Se(11)#3	2.87	3.647(8)	144.6
N(5)-H(5C)Se(4)#2	2.65	3.492(8)	141.9
N(6)-H(6C)Se(10)#2	2.59	3.499(9)	172.6
N(6)-H(6D)Se(5)	2.85	3.591(9)	139.8
N(6)-H(6D)Se(16)#1	2.77	3.362(9)	123.9
C(2)-H(2A)Se(12)	2.91	3.754(11)	143.5
C(3)-H(3A)Se(17)#1	3.13	3.765(11)	122.9
C(4)-H(4A)Se(11)#3	3.12	3.698(11)	118.6
C(4)-H(4B)Se(10)#2	2.77	3.604(11)	142.6
C(5)-H(5A)Se(9)#3	2.77	3.572(10)	137.9
C(5)-H(5B)Se(8)	3.09	3.679(11)	119.2
C(5)-H(5B)Se(16)	2.9	3.702(11)	138.2
C(6)-H(6A)Se(1)	3.12	3.983(10)	147
C(6)-H(6A)Se(8)	2.89	3.606(10)	130.1
C(7)-H(7B)Se(1)	2.93	3.820(11)	149.5
C(7)-H(7B)Se(5)	3.16	3.866(10)	129.5
C(8)-H(8B)Se(3)#2	2.77	3.723(9)	161.9
C(9)-H(9A)Se(6)#2	3.1	3.83(2)	135.2
C(12)-H(12B) Se(5)	3 1 2	3 894(18)	136.9
C(12)-H(12D)5C(3) C(14)-H(14A) Se(7)#4	3.1	3 96(3)	146.5
C(14)-H(14R) $Sc(7)$	3.06	3.98(2)	154.9
C(15)-H(15B) Se(6)#4	3.12	4 11(3)	174.9
C(13)-11(13D)5C(0)#4	5.12	4.11(5)	174.9
N(11)-H(11A)Se(15)#3	3.15	3.83(6)	135
C(20)-H(20B)Se(15)#3	2.58	3.56(8)	175
C(21)-H(21B)Se(17)#1	3.06	3.57(4)	113.8
C(23)-H(23A)Se(12)#5	3.1	3.93(4)	147.2
C(26)-H(26B)Se(14)	2.78	3.72(6)	159.5
C(27)-H(27B)Se(12)#5	2.72	3.68(5)	163.9
C(28)-H(28B)Se(15)#5	2.96	3.91(4)	159.5

Symmetry codes: #1 x,y-1,z; #2 x,-y+1/2,z-1/2; #3 x,-y+3/2,z-1/2; #4 -x,-y+1,-z+1; #5 -x+1,-y+1,-z+1

2. Physical measurements

2a) PXRD

All the crystalline samples were manually selected and used for PXRD characterizations. The PXRD patterns of compounds 1 and 2 match well with those simulated from single–crystal X-ray data, indicating the phase purity of the two compounds.

Figure S4. PXRD pattern of compound 1 and the simulated one from single-crystal X-ray structure.

Figure S5. PXRD pattern of compound 2 and the simulated one from single-crystal X-ray structure.

The post-TGA residues for the two compounds were characterized by PXRD. The residues are a mixture of $SnSe_2$ (PDF NO. 89-3197, red lines), SnSe (PDF NO. 48-1224, pink lines) and Ni_3Se_4 (PDF NO. 89-7162, blue lines) for **1** and a mixture of $SnSe_2$ (PDF NO. 89-3197, red lines), SnSe (PDF NO. 48-1224, pink lines) and $NiSe_2$ (PDF NO. 88-1711, green lines) for **2**, respectively.

Figure S6. PXRD pattern of the post-TGA residue of compound 1 compared to that of the binaries.

Figure S7. PXRD pattern of the post-TGA residue of compound 2 compared to that of the binaries.

2b) EDX spectra

Figure S8. EDX spectrum of compound 1.

Table S3. Atomic percentages from EDX analyses for compound 1.

	Atomic percentages	Theoretical molar ratio of elements	Experimental molar ratio of elements
Elements	from EDX analysis	(Ni: Sn: Se)	(Ni: Sn: Se)
Ni K	0.46		
Sn L	2.89	1: 6: 14	1: 6.28: 16.13
Se L	7.42		

Figure S9. EDX spectrum of compound 2.

Table S4. Atomic percentages from EDX analyses for compound 2.

Elements	Atomic percentages	Theoretical molar ratio of elements	Experimental molar ratio of elements
	from EDX analysis	(Ni: Sn: Se)	(Ni: Sn: Se)
Ni K	0.86		
Sn L	7.12	1: 8: 18	1: 8.28: 20.38
Se L	17.53		