Supporting Information

Metallo-Wittig Chemistry of an Alkylidene to Form a Terminal Titanium Oxo Complex

Douglas P. Solowey, Takashi Kurogi, Brian C. Manor, Patrick J. Carroll, Daniel J. Mindiola*

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States

Table of Contents

NMR Spectroscopic Data of 2 and 3	S2
NMR data of Complex 2	S2
NMR data of Complex 3	S6
UV-Vis Spectroscopic Data of 2 and 3	\$9
UV-Vis Spectroscopic Data of 2	
UV-Vis Spectroscopic Data of 3	S12
Computational Data of 2 and 3	
Optimized geometry coordinates of 2	S13
Optimized geometry coordinates of 3	S16
Crystallographic Data of 2 and 3	
References	S22

NMR Spectroscopic Data of 2 and 3

Figure S1. ¹H NMR spectrum of 2 recorded in C₆D₆ (500.39 MHz, 23 °C)

Figure S2. ³¹P{¹H} NMR spectrum of 2 recorded in C₆D₆ (145.78 MHz, 23 °C)

Figure S3. ${}^{19}F{}^{1}H{}$ NMR spectrum of 2 recorded in C₆D₆ (338.86 MHz, 23 °C)

Figure S4. ¹³C{¹H} NMR spectrum of 2 recorded in C₆D₆ (125.82 MHz, 23 $^{\circ}$ C)

Figure S5. ¹H NMR spectrum of 3 recorded in C₆D₆ (500.39 MHz, 23 °C)

Figure S6. ³¹P{¹H} NMR spectrum of 3 recorded in C_6D_6 (145.78 MHz, 23 °C)

S8

UV-Vis Spectroscopic Data of 2 and 3

Figure S8. UV-Vis-NIR absorption spectrum of Compound 2 in hexanes solution

(0.0526 mM).

$$\epsilon_{\lambda=274} = 15494 \frac{L}{mol(cm)}$$

$$\epsilon_{\lambda=302} = 6762 \frac{L}{mol(cm)}$$

Figure S9. UV-Vis-NIR absorption spectrum of Compound 2 in

hexanes solution (0.259 mM)

hexanes solution (1.178 mM)

$$\epsilon_{\lambda=511} = 661 \frac{L}{mol(cm)}$$

Figure S11. UV-Vis-NIR absorption spectrum of Compound 3 in hexanes solution (0.0513 mM)

$$\varepsilon_{\lambda=227} = 13156 \frac{L}{mol(cm)}$$
$$\varepsilon_{\lambda=335} = 7210 \frac{L}{mol(cm)}$$
$$\varepsilon_{\lambda=466} = 1643 \frac{L}{mol(cm)}$$

Computational Data for 2 and 3

 Table S1. Cartesian coordinates of B3LYP optimized geometry of 2 (singlet).

0 1			
Ti	0.283813	0.434270	-0.985170
S	-2.362127	0.976797	-2.765526
Р	0.680572	-2.041884	-1.797297
Р	0.946508	2.564609	0.437742
F	-4.047691	-1.010397	-2.284776
F	-4.588132	0.870811	-1.328783
F	-4.870453	0.618493	-3.472355
0	0.889162	1.230782	-2.264294
0	-0.892275	-0.429670	1.025971
0	-1.689130	0.463705	-1.490230
0	-1.919672	0.282009	-3.955648
0	-2.501618	2.418706	-2.767349
Ν	2.028936	-0.162325	-0.015967
С	2.264654	-1.484523	0.390607
С	3.018636	-1.814617	1.538441
Η	3.451205	-1.016311	2.133107
С	3.208515	-3.138621	1.922181
Η	3.794204	-3.348034	2.815598
С	2.655191	-4.204669	1.196973
С	1.890316	-3.881320	0.069844
Η	1.439845	-4.690746	-0.500101
С	1.691764	-2.558629	-0.343155
С	2.898573	-5.641442	1.598477
Η	3.863978	-6.007951	1.223192
Η	2.123592	-6.305863	1.200979
Η	2.915547	-5.759601	2.688543
С	-0.661270	-3.353181	-2.009366
Η	-0.156353	-4.328117	-1.983986
С	-1.670194	-3.292992	-0.852388
Η	-2.228392	-2.352569	-0.871444
Η	-1.186850	-3.387713	0.123931
Η	-2.391591	-4.114102	-0.954001
С	-1.368975	-3.205901	-3.368214
Η	-2.171845	-3.950686	-3.437806
Н	-0.692345	-3.373487	-4.212231
Η	-1.817209	-2.215255	-3.487582
С	1.796856	-2.234729	-3.316214
Η	1.145304	-1.923344	-4.142953
С	2.983620	-1.261422	-3.255749
Н	3.655634	-1.508050	-2.425994
Н	2.651713	-0.227135	-3.137812
Η	3.561512	-1.337378	-4.185621
С	2.268449	-3.676360	-3.556055

Η	2.876683	-3.716306	-4.468380
Η	1.438375	-4.378857	-3.685413
Η	2.892773	-4.031392	-2.728033
С	3.058901	0.787941	0.113642
С	4.427450	0.454086	0.001568
Η	4.707635	-0.580328	-0.167157
С	5.418433	1.423126	0.082394
Η	6.458919	1.120217	-0.020796
С	5.111943	2.780089	0.270724
С	3.760691	3.118580	0.374044
Η	3.497572	4.165731	0.505844
С	2.740566	2.158730	0.306422
С	6.200107	3.825364	0.346991
Η	5.780828	4.828236	0.479762
Η	6.809573	3.840144	-0.565722
Η	6.883700	3.638227	1.185288
С	0.649738	2.830867	2.299635
Η	-0.442631	2.826669	2.396046
С	1.191013	4.155941	2.856976
Η	0.996251	4.207145	3.936106
Η	0.719761	5.030622	2.398422
Η	2.275327	4.234659	2.716054
С	1.208710	1.644866	3.102923
Η	2.303992	1.651737	3.093512
Η	0.879580	0.681406	2.706329
Η	0.880957	1.718168	4.147592
С	0.696812	4.265865	-0.344359
Η	1.293079	4.971126	0.248931
С	-0.787117	4.663576	-0.239431
Η	-0.919628	5.684981	-0.617638
Η	-1.159640	4.641076	0.791167
Η	-1.412258	4.002268	-0.849298
С	1.176141	4.323895	-1.802556
Η	0.601672	3.644979	-2.436424
Η	2.231799	4.054550	-1.898134
Η	1.047006	5.347371	-2.178100
С	-1.649631	-0.502764	2.002911
С	-1.708225	-1.763666	2.797918
С	-0.567696	-2.583073	2.859602
Η	0.341441	-2.268516	2.359086
С	-0.603414	-3.779780	3.570512
Η	0.288715	-4.396680	3.624945
С	-1.782419	-4.186471	4.202935
Η	-1.809908	-5.125099	4.749992
С	-2.926666	-3.389066	4.128415
Η	-3.848100	-3.709537	4.606233

С	-2.889267	-2.177941	3.438472
Н	-3.782592	-1.565332	3.374210
С	-2.492383	0.661132	2.402643
С	-2.970876	1.531597	1.408765
Η	-2.762074	1.310838	0.369834
С	-3.728695	2.646812	1.760307
Н	-4.112872	3.299642	0.981992
С	-3.988505	2.923189	3.106119
Η	-4.572095	3.798542	3.378462
С	-3.499357	2.073413	4.102017
Η	-3.691439	2.291618	5.148816
С	-2.765730	0.939899	3.754218
Η	-2.382449	0.285491	4.530467
С	-4.066953	0.325736	-2.443681

Figure S12. Computed Molecular Orbital 197 (LUMO) of Compound 2.

Table	S2.	Selected	Calculated	Absorptions	of 2	in	n-hexane	solution	at the	TD-DFT-
B3LYI	P lev	vel.								

Orbital Transition	CI Coef.	Transition Energy	Oscillator Strength
		(eV)	
196 (HOMO) → 197 (LUMO)	0.70466	1.9133 (648.02 nm)	0.0002

196 (HOMO) → 198 (LUMO+1)	0.69861	2.4127 (513.88 nm)	0.0341
---------------------------	---------	--------------------	--------

 Table S3. Cartesian coordinates of B3LYP optimized geometry of 3 (singlet).

0 1			
Ti	1.122162	-0.927504	0.377287
Р	1.683998	-0.061007	2.813660
Р	1.884965	-1.408001	-2.123359
0	1.021747	-2.534631	0.753996
0	-0.527646	-0.114609	0.075381
Ν	3.100795	-0.223348	0.279755
С	3.520370	0.905113	1.019691
С	4.463727	1.833967	0.528717
Н	4.901225	1.675016	-0.451819
С	4.837005	2.944871	1.276539
Н	5.565074	3.638531	0.859435
С	4.291819	3.199772	2.544868
С	3.342953	2.292564	3.025662
Η	2.896368	2.477405	3.999586
С	2.954280	1.163187	2.294036
С	4.723115	4.398660	3.357859
Н	4.689010	5.322732	2.767461
Н	5.753523	4.290894	3.722319
Н	4.079377	4.539185	4.232504
С	2.573908	-1.312584	3.928902
Н	1.764510	-1.975985	4.261329
С	3.574715	-2.160709	3.129697
Н	4.391065	-1.546735	2.733922
Н	3.091652	-2.674579	2.294432
Н	4.017931	-2.915988	3.791617
С	3.238350	-0.669756	5.154705
Η	3.716942	-1.446090	5.764793
Η	2.525091	-0.141835	5.796829
Η	4.015950	0.040854	4.852639
С	0.504335	0.851063	3.969421
Н	1.120229	1.382203	4.706982
С	-0.398868	-0.137137	4.726309
Η	-1.112723	0.421521	5.344243
Η	0.165413	-0.795881	5.393730
Η	-0.980489	-0.764308	4.042532
С	-0.325162	1.882121	3.189993
Н	-0.972532	1.395785	2.453457
Η	0.300752	2.603723	2.657904
Η	-0.965013	2.440867	3.884626
С	4.056999	-0.914922	-0.498107
С	5.413178	-1.029555	-0.117555
Н	5.750243	-0.549435	0.795287

С	6.319854	-1.752235	-0.882255
Η	7.352643	-1.821618	-0.545196
С	5.936799	-2.406278	-2.064023
С	4.596678	-2.299442	-2.442786
Η	4.271024	-2.803987	-3.349751
С	3.662459	-1.573032	-1.690462
С	6.929588	-3.205264	-2.875686
Н	7.279634	-4.090731	-2.328691
Η	7.817916	-2.612047	-3.126417
Η	6.487432	-3.553698	-3.815103
С	1.378530	-3.020020	-2.957999
Н	2.005518	-3.124119	-3.853411
С	1.625145	-4.227976	-2.041223
Η	1.075904	-4.129062	-1.101737
Η	2.686071	-4.341661	-1.798394
Η	1.291495	-5.141575	-2.549958
С	-0.093450	-2.934819	-3.398867
Η	-0.378625	-3.859855	-3.914015
Η	-0.275320	-2.103102	-4.089732
Η	-0.760717	-2.820326	-2.538549
С	1.825700	-0.096985	-3.497420
Η	0.755790	0.109548	-3.624887
С	2.506734	1.196660	-3.023684
Η	3.590370	1.059470	-2.939576
Η	2.138302	1.524952	-2.047635
Η	2.319407	2.001010	-3.744696
С	2.405940	-0.545585	-4.846260
Η	2.335453	0.278933	-5.567079
Η	1.871118	-1.399679	-5.273571
Η	3.465202	-0.811991	-4.754194
С	-1.815337	0.243097	-0.146550
С	-2.888340	-0.582503	0.276807
С	-4.197484	-0.144122	0.059389
Η	-5.002266	-0.771728	0.431204
С	-4.508882	1.052171	-0.600366
С	-3.430271	1.825225	-1.037908
Η	-3.609688	2.744075	-1.584675
С	-2.097271	1.459604	-0.812344
С	-2.637268	-1.936529	0.940211
Η	-1.611689	-1.919859	1.325329
С	-2.684883	-3.108886	-0.049991
С	-1.775917	-4.167028	0.105091
Η	-0.994994	-4.089319	0.855784
С	-1.844179	-5.297288	-0.712695
Η	-1.128827	-6.103818	-0.572718
С	-2.816219	-5.386875	-1.711064

Н	-2.870683	-6.266107	-2.348121
С	-3.712889	-4.331657	-1.888488
Η	-4.469905	-4.383526	-2.667274
С	-3.647233	-3.204883	-1.065294
Н	-4.351830	-2.394005	-1.218835
С	-3.550826	-2.160163	2.163376
С	-4.234772	-3.360616	2.391557
Н	-4.163112	-4.166981	1.670153
С	-5.011605	-3.539911	3.540919
Н	-5.533011	-4.482176	3.690450
С	-5.120862	-2.522647	4.487085
Н	-5.725139	-2.662683	5.379572
С	-4.446825	-1.317619	4.271449
Н	-4.524663	-0.510767	4.996199
С	-3.676287	-1.141034	3.123277
Н	-3.174781	-0.191687	2.957844
С	-5.978359	1.458646	-0.812275
С	-6.708546	0.364077	-1.626832
Н	-7.758872	0.639560	-1.784560
Н	-6.693356	-0.603178	-1.113380
Н	-6.241019	0.230765	-2.609386
С	-6.671343	1.617791	0.562334
Н	-7.726114	1.890552	0.431040
Н	-6.188499	2.404364	1.154036
Н	-6.634809	0.692456	1.146762
С	-6.112882	2.790061	-1.576008
Н	-5.659078	2.737323	-2.572163
Н	-5.647467	3.621067	-1.033420
Н	-7.173167	3.035376	-1.707160
С	-0.962265	2.365338	-1.288032
Н	-0.075221	1.726623	-1.354097
С	-1.209021	2.898188	-2.711415
С	-1.489670	1.980522	-3.739367
Н	-1.581677	0.924593	-3.496769
С	-1.677123	2.403028	-5.053999
Н	-1.894338	1.672091	-5.829046
С	-1.594561	3.761866	-5.373314
Н	-1.743270	4.095245	-6.396981
С	-1.325378	4.683074	-4.363231
Η	-1.263755	5.743546	-4.594693
С	-1.132928	4.255104	-3.044934
Η	-0.920986	4.987875	-2.273754
С	-0.604917	3.468672	-0.285369
С	0.740564	3.818217	-0.099497
Н	1.513945	3.279822	-0.641251
С	1.109305	4.845328	0.771673

Η	2.161032	5.084690	0.901714
С	0.131029	5.548412	1.477438
Η	0.412410	6.348694	2.156986
С	-1.212527	5.209425	1.305528
Η	-1.983925	5.745745	1.852665
С	-1.575484	4.179190	0.435161
Η	-2.623324	3.918888	0.324826

Table S4. Selected Calculated Absorptions of **3** in n-hexane solution at the TD-DFT-B3LYP level.

Orbital Transition	CI Coef.	Transition Energy	Oscillator Strength
		(eV)	
245 (HOMO) → 246 (LUMO)	0.70254	2.5384 (488.44 nm)	0.0808

Crystallographic Data

For description of solid-state structure analysis and refinement for 2 and 3, refer to Experimental Procedure.

For compound **2**, A total of 85632 reflections were measured over the ranges $1.489 \le 0 = 27.00^{\circ}$, $-21 \le h \le 21$, $-15 \le k \le 15$, $-35 \le l \le 35$ yielding 12515 unique reflections (Rint = 0.0471). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS¹ (minimum and maximum transmission 0.6834, 0.7456). The structure was solved by direct methods (SHELXS-97²). Refinement was by full-matrix least squares based on F² using SHELXL-2014. All reflections were used during refinement. The weighting scheme used was w=1/[$\sigma^2(F_o^2)$ + (0.0927P)² + 2.8904P] where P = ($F_o^2 + 2F_c^2$)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0539 and wR2=0.1519 for 9264 observed reflections for which F > 4 σ (F) and R1=0.0758 and wR2=0.1618 and GOF =1.051 for all 12515 unique, non-zero reflections and 536 variables.³ The maximum $\Box \Box$ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +1.400 and -0.779 e/Å³.

For compound **3**, A total of 135355 reflections were measured over the ranges $1.271 \le \theta \le 27.498^{\circ}$, $-14 \le h \le 14$, $-28 \le k \le 28$, $-31 \le 1 \le 31$ yielding 13521 unique reflections (R_{int} = 0.0792). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS (minimum and maximum transmission 0.7205, 0.7456). The structure was solved by direct methods SHELXS-97. Refinement was by full-matrix least squares based on F² using SHELXL-2014. All reflections were used during refinement. The weighting scheme used was w=1/[$\sigma^2(F_o^2)$ + (0.0837P)² + 4.9007P] where P = (F_o^2 + 2F_c^2)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0595 and wR2=0.1466 for 9482 observed reflections for which F > 4 σ (F) and R1=0.0958 and wR2=0.1704 and GOF =1.064 for all 13521 unique, non-zero reflections and 721 variables. The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +1.162 and -0.544 e/Å³.

These results were checked using the IUCR's CheckCIF routine. Any Level A, B, or C alerts in the output are related to disordered tert-butyl and isopropyl groups, as well as the presence of disordered, co-crystallized solvent molecules.

	Compound 2	Compound 3
Empirical formula	C ₅₀ H ₇₅ NP ₂ SO _{7.5} F ₃ Ti	C ₆₉ H ₈₁ NO ₂ P ₂ Ti
Formula weight	1009.01	1066.18
Temperature	100(1) K	100(1) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/n$
Cell constants:		
a	16.5327(12) Å	11.4489(3)Å
b	12.0477(8) Å	21.9022(6)Å
с	27.564(2) Å	23.9798(6)Å
β	97.271(4)°	101.442(2)°
Volume	5446.2(7) Å ³	5893.6(3)Å ³
Z	4	4
Density	1.231 g/cm ³	1.202 g/cm ³
Absorption coefficient	0.312 mm^{-1}	0.245 mm^{-1}
F(000)	2148	2280
Crystal size	0.48 x 0.33 x 0.13 mm ³	$0.15\times0.08\times0.06\ mm^3$
Theta range for data collection	1.489 to 27.500°	1.271 – 27.498°
Index ranges	$-21 \le h \le 21, -15 \le k \le 15, -35 \le 1$	$-14 \le h \le 14, -28 \le k \le 28, -31 \le 1$
	\leq 35	≤ 31
Reflections collected	85632	135355
Independent reflections	12515 [R(int) = 0.0471]	13521[R(int) = 0.0792]
Completeness to theta = 27.52°	100%	100%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6834	0.7456 and 0.7205
Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2
Data / restraints / parameters	12515/0/536	13521/45/721
Goodness-of-fit on F2	1.051	1.064
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0539, wR_2 = 0.1519$	$R_1 = 0.0595, wR_2 = 0.1466$
R indices (all data)	$R_1 = 0.0758, wR_2 = 0.1618$	$R_1 = 0.0958, wR_2 = 0.1704$
Largest diff. peak and hole	1.400/-0.779 eÅ ⁻³	1.162/-0.544 eÅ ⁻³

Table S5: Summary of Structure Determinations for Compounds 2 and 3

References

1) G. M. Sheldrick, SADABS. University of Gottingen, Germany, 2007. 2) G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112-122. 3) $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{\frac{1}{2}}$ $GOF = [\Sigma w (F_o^2 - F_c^2)^2 / (n - p)]^{\frac{1}{2}}$ where n = the number of reflections and p = the number of parameters refined