Supplementary Information

Coordination structure and extraction behavior of a silver ion with N-substituted-9-aza-3,6,12,15-tetrathiaheptadecanes: significant effect of Ph-C-N framework on the extractability

S. Iwatsuki,* A. Ichiyama, S. Tanooka, M. Toyama, K. Katagiri, M. Kawahata, K. Yamaguchi, H. Danjo and K. Chayama*

Estimation procedure of K_{ex}^{pic}

The overall extraction equilibrium in the presence of an additional picrate ion (pic^{-}) at pH 6 (cf. Fig. 5c) is expressed as eqn S1:

$$Ag^+ + L_{org} + X^- \implies Ag(L)X_{org}$$
 (X = pic, CH₃COO, or OH) (S1)

The apparent distribution ratio of Ag^+ (D_{Ag}) is expressed as eqn S2:

$$D_{Ag}' = \frac{[Ag(L)X]_{org}}{[Ag^+]} = \frac{[Ag(L)(pic)]_{org} + [Ag(L)(CH_3COO)]_{org} + [Ag(L)(OH)]_{org}}{[Ag^+]}$$
(S2)

Since the distribution ratio (D_{Ag}^{abs}) in the absence of additional counter anions at pH 6 is expressed as eqn 7 in the text, the distribution ratio with respect to the extraction with pic⁻ counter anion (D_{Ag}^{pic}) can be calculated by $D_{Ag}^{pic} = D_{Ag}' - D_{Ag}^{abs}$, where the D_{Ag}' and D_{Ag}^{abs} values were obtained from the data at pH 6 in Figs. 5c and 5a, respectively. By using the extraction constant $K_{ex}^{pic} = [Ag(L)(pic)]_{org}/([Ag^+][L]_{org}[pic^-])$, the D_{Ag}^{pic} is expressed as eqn S3:

$$D_{Ag}^{pic} = \frac{[Ag(L)(pic)]_{org}}{[Ag^+]} = K_{ex}^{pic}[L]_{org}[pic^-]$$

$$\log K_{ex}^{pic} = \log D_{Ag}^{pic} - \log[L]_{org} - \log[pic^-]$$
(S3)

So the log $K_{\rm ex}{}^{\rm pic}$ values for all extractant systems were calculated on the basis of eqn S3 from the $D_{\rm Ag}{}^{\rm pic}$ values by using the values of $[{\rm L}]_{\rm org} \approx C_{\rm L} = 5 \times 10^{-5}$ M and $[\rm pic^{-}] \approx C_{\rm pic} = 5 \times 10^{-5}$ M (because of $C_{\rm L}$ and $C_{\rm pic} >> C_{\rm Ag}$), and listed in Table 4.

Estimation procedure of K_{ex}^{OAc} and K_{ex}^{OH}

In the absence of additional counter anions, the possible counter monoanions at pH 6 (acetate buffer) for the Ag⁺ extraction with L are CH₃COO⁻ and OH⁻. The distribution ratio D_{Ag}^{abs} is expressed as eqn 7 in the text. Equation 7 can convert to a logarithmic equation S4 by using $(K_{\rm ex}^{\rm OAc})$ OH^{-} both extraction with CH₃COO⁻ and constants $K_{\rm ex}^{\rm OH}$ $[Ag(L)(CH_3COO)]_{org}/([Ag^+][L]_{org}[CH_3COO^-])$ and = $[Ag(L)(CH_3COO)]_{org}([Ag^+][L]_{org}[OH^-], respectively):$

$$\log D_{\text{Ag}}^{\text{abs}} = \log[\text{L}]_{\text{org}} + \log(K_{\text{ex}}^{\text{OAc}}[\text{CH}_{3}\text{COO}^{-}] + K_{\text{ex}}^{\text{OH}}[\text{OH}^{-}])$$
(S4)

Equation S4 indicates that the dependence of log D_{Ag}^{abs} on log [CH₃COO⁻] can be analyzed by nonlinear least-squares fitting under the conditions of $C_{Ag} \ll C_L$ at a constant pH, since [L]_{org} and [OH⁻] are considered to be constant under these conditions. Fig. S6 shows the log D_{Ag}^{abs} vs. log [CH₃COO⁻] plots for the *N*-Bn-ATH and *N*-Ph₂CH-ATH systems at $C_{Ag} =$ 5×10^{-5} M $\ll C_L = 5 \times 10^{-5}$ M \approx [L]_{org}, and pH 6 ([OH⁻] = 1×10^{-8} M) adjusted by acetate buffer. In this figure, [CH₃COO⁻] at pH 6.0 was calculated from the buffer concentration using the reported p $K_a = 4.58$ of acetic acid.^[S1] The fitting curves using eqn S4 in Fig. S6 for both systems are consistent with the experimental data, indicating the nonlinear least-squares analyses are valid. The log K_{ex}^{OAc} and log K_{ex}^{OH} values are listed in Table 4.

Ref. [S1] E. Dubler, U. K. Häring, K. H. Scheller, P. Baltzer, H. Sigel, *Inorg. Chem.* 1984, **23**, 3785–3792.

1	1 0 / 0		
L (substituent)	slope	intercept	$\log K_{\mathrm{ex}}^{\mathrm{NO3 a}}$
<i>N</i> -H-ATH	$0.90{\pm}0.04$	3.1±0.1	7.4±0.1
N-Bn-ATH	$0.91{\pm}0.07$	4.6±0.3	8.9±0.3
N-NO ₂ Bn-ATH	$0.92{\pm}0.05$	4.3±0.2	8.6±0.2
<i>N</i> -Ph ₂ CH-ATH	0.93±0.03	3.9±0.1	8.2±0.1

Table S1. Slope and intercept in Fig. 6, and $\log K_{ex}^{NO3}$

^a Estimated from the equation: intercept = $\log [L]_{org} + \log K_{ex}^{NO3}$ (cf. eqn 8 in the text)

Table S2a. Crystal and experimental data of [Ag(*N*-Bn-ATH)](BF₄)

Chemical formula: C₁₉H₃₃AgBF₄NS₄ Formula weight = 598.38T = 200 KCrystal system: Monoclinic Space group: $P2_1/c$ a = 12.9763(18)Å b = 13.0824(18)Å $\beta = 94.566(2)^{\circ}$ c = 15.111(2)Å $V = 2557.1(6)\text{\AA}^3$ Z = 4 $D_{\rm x} = 1.554 \text{ g/cm}^3$ Radiation: Mo K_{α} ($\lambda = 0.71073$ Å) μ (Mo K_{α}) = 1.151 mm⁻¹ F(000) = 1224Crystal size = $0.50 \times 0.40 \times 0.20 \text{ mm}^3$ No. of reflections collected = 11172No. of independent reflections = 4396 [R(int) = 0.0228] θ range for data collection: 2.06 to 24.78° Data/Restraints/Parameters = 4396/0/300 Goodness-of-fit on $F^2 = 1.070$ *R* indices $[I > 2\sigma(I)]$: *R*1 = 0.0316, *wR*2 = 0.0709 *R* indices (all data): R1 = 0.0422, wR2 = 0.0760 $(\Delta/\sigma)_{\rm max} = 0.001$ $(\Delta \rho)_{\rm min} = -0.391 \text{ e}\text{\AA}^{-3}$ $(\Delta \rho)_{\rm max} = 0.468 \ {\rm e}{\rm \AA}^{-3}$ Measurement: Bruker APEX II CCD Area Detector Program system: Olex2 Structure determination: direct method (ShelXT-2015) Refinement: full matrix least-squares on F^2 (ShelXL-2015) CCDC deposition number: 1026848

Table S2b. Crystal and experimental data of [Ag(*N*-Ph₂CH-ATH)](BF₄)

Chemical formula: C₂₅H₃₇AgBF₄NS₄ Formula weight = 674.48T = 173 KSpace group: $P\overline{1}$ Crystal system: Triclinic $\alpha = 74.344(4)^{\circ}$ a = 8.7519(5)Å b = 10.4885(5)Å $\beta = 88.806(4)^{\circ}$ c = 16.6546(8)Å $\gamma = 81.965(4)^{\circ}$ $V = 1457.40(13)\text{\AA}^3$ Z = 2 $D_{\rm x} = 1.555 \ {\rm g/cm^3}$ Radiation: Cu K_{α} ($\lambda = 1.54184$ Å) μ (Cu K_{α}) = 8.606 mm⁻¹ F(000) = 700Crystal size = $0.15 \times 0.07 \times 0.03 \text{ mm}^3$ No. of reflections collected = 13332No. of independent reflections = 5618 [R(int) = 0.0456] θ range for data collection: 4.421 to 75.007° Data/Restraints/Parameters = 5618/0/327 Goodness-of-fit on $F^2 = 1.064$ *R* indices $[I > 2\sigma(I)]$: *R*1 = 0.0494, *wR*2 = 0.1306 *R* indices (all data): R1 = 0.0586, wR2 = 0.1381 $(\Delta/\sigma)_{\rm max} = 0.001$ $(\Delta \rho)_{\rm max} = 1.242 \text{ e}\text{\AA}^{-3}$ $(\Delta \rho)_{\rm min} = -0.486 \text{ e}\text{\AA}^{-3}$ Measurement: XtaLAB Pro Program system: Olex2 Structure determination: direct method (ShelXT-2015) Refinement: full matrix least-squares on F^2 (ShelXL-2015) CCDC deposition number: 1485984

Fig. S1. UV-Vis spectra of (a) *N*-Bn-ATH (0.5 mM), (b) *N*-NO₂Bn-ATH (0.05 mM), and (c) *N*-Ph₂CH-ATH (0.2 mM) at various pH in 50v/v% 1,4-dioxane aqueous solution at 25°C.

Fig. S2. The pD dependence of the ¹H NMR chemical shifts of *N*-H-ATH in 50v/v% 1,4-dioxane- d_8 in D₂O at 24°C. Chemical shifts (A) and (B) correspond to the NCH₂ and NCH₂CH₂S protons, respectively. Internal reference: tetramethylammonium perchlorate (δ 3.19 ppm).

Fig. S3. The dependence of the absorbance at 250 nm of (a) *N*-H-ATH (0.5 mM), (b) *N*-Bn-ATH (0.5 mM), (c) *N*-NO₂Bn-ATH (0.05 mM), and (d) *N*-Ph₂CH-ATH (0.5 mM) on the AgBF₄ concentration in CH₃CN at 25°C. All bending points correspond to $Ag^+:L = 1:1$.

Fig. S4. The dependence of the Ag⁺ extraction efficiency (%*E*) on the concentration of sulfate ion ([SO₄²⁻]) for the *N*-Bn-ATH system. Initial concentration: $C_{Ag} = 5.0 \times 10^{-6}$ M (pH 6.0 adjusted with 0.01 M of acetate buffer) in the aqueous phase, and $C_{L} = 5.0 \times 10^{-5}$ M in the organic phase. At 25°C.

Fig. S5. Job's plots for the Ag⁺ extraction with *N*-H-ATH (black circle), *N*-Bn-ATH (red square), *N*-NO₂Bn-ATH (blue triangle) and *N*-Ph₂CH-ATH (green diamond). A vertical broken line shows the concentration ratio of $[Ag^+]$:[L] = 1:1. Total concentration of Ag⁺ and L: $C_{Ag} + C_L = 5.0 \times 10^{-6}$ M. The concentration of nitrate ion: 5.0×10^{-4} M for *N*-H-ATH system; 5.0×10^{-3} M for *N*-Bn-ATH system; 1.0×10^{-3} M for *N*-NO₂Bn-ATH and *N*-Ph₂CH-ATH systems. At pH = 6.0 (acetate buffer), I = 0.1 (Na₂SO₄), and 25°C.

Fig. S6. The log D_{Ag}^{abs} vs. log [CH₃COO⁻] plots for the Ag⁺ extraction with *N*-Bn-ATH (red square) and *N*-Ph₂CH-ATH (green diamond) at pH 6.0 (acetate buffer). [CH₃COO⁻] at pH 6.0 was calculated using the reported p $K_a = 4.58$ of acetic acid.^[S1] The data are shown with best-fit curves based on eqn S4. Initial concentration: $C_{Ag} = 5.0 \times 10^{-6}$ M and I = 0.1 (Na₂SO₄) in aqueous phase, and $C_L = 5.0 \times 10^{-5}$ M in organic phase. At 25°C.

Ref. [S1] E. Dubler, U. K. Häring, K. H. Scheller, P. Baltzer, H. Sigel, *Inorg. Chem.* 1984, 23, 3785–3792.)

Fig. S7. The ¹H NMR spectra of $[Ag(N-H-ATH)]^+$ in CD₃CN (a), CD₂Cl₂ (b), and CD₃OD (c).

Fig. S8. The ¹H NMR spectra of $[Ag(N-Bn-ATH)]^+$ in CD₃CN (a), CD₂Cl₂ (b), and CD₃OD (c).

Fig. S9. The ¹H NMR spectra of $[Ag(N-NO_2Bn-ATH)]^+$ in CD₃CN (a), CD₂Cl₂ (b), and CD₃OD (c).

Fig. S10. The ¹H NMR spectra of $[Ag(N-Ph_2CH-ATH)]^+$ in CD₃CN (a), CD₂Cl₂ (b), and CD₃OD containing 10v/v% CD₃CN (c).