SUPPORTING INFORMATION

Structural and Spectroscopic Insight into Metal Binding Properties of *o*-Aminophenol-*N*,*N*,*O*-Triacetic Acid (APTRA) Chelator: Implications for Design of Metal Indicators

Michael Brady, Sebastian D. Piombo, Chunhua Hu and Daniela Buccella*

Department of Chemistry, New York University, New York, New York 10003

Table of Contents

S1.	Supporting Figures and Tables				
S2.	Space Group Determination of [Zn(OH ₂) ₆][(APTRA)Zn] ₂				
S3.	. Spectrophotometric Determination of Metal Binding Constants 8				
SE	S3.1 Spectrophotometric Determination of Mg ²⁺ and Ca ²⁺ Apparent Binding Constants				
SE	3.2 Spectrophotometric Determination of Zn ²⁺ Apparent Binding Constant	8			
S4.	4. HPLC data for hydrolysis of APTRA trimethyl ester				
S5.	. References				

S1. Supporting Figures and Tables

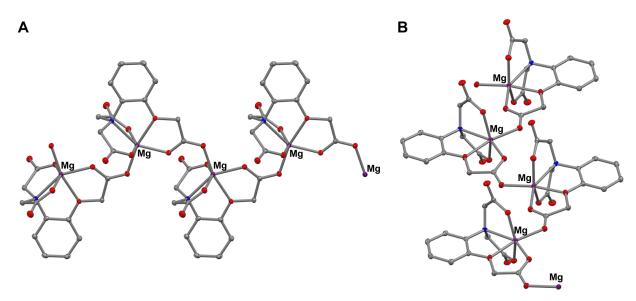

	[Mg(OH ₂) ₆][(APTRA)Mg] ₂ •6(H ₂ O)(dioxane)	$eq:ca(OH_2)_3]_2 [(APTRA)Ca-(OH_2)]_2(\mu-H_2O)_2 Cl \bullet 2(H_2O)$	[Zn(OH ₂) ₆][(APTRA)Zn] ₂ •6(H ₂ O)(dioxane)
Crystal Lattice	Monoclinic	Triclinic	Monoclinic
Formula	$C_{28}H_{52}Mg_{3}N_{2}O_{28}$	$C_{12}H_{22}Ca_2ClNO_{13}$	$C_{28}H_{52}N_2O_{28}Zn_3\\$
Formula weight	937.64	524.0	1060.89
Space group	<i>C</i> 2/ <i>c</i>	P_1^-	$P2_{1}/n$
a/Å	24.2955(12)	8.4079(5)	9.2960(3)
<i>b</i> /Å	9.4801(4)	11.2214(7)	18.4231(7)
c/Å	18.5395(9)	12.0301(8)	24.4820(9)
$\alpha/^{\circ}$	90	108.3734(10)	90
β/°	103.9470(10)	104.9899(10)	90.0021(6)
γ/°	90	96.6152(11)	90
V/Å ³	4144.2(3)	1016.26(11)	4192.8(3)
Z	4	2	4
Temperature (K)	100(2)	100(2)	100(2)
Radiation (λ, Å)	0.71073	0.71073	0.71073
ρ (calcd.), g cm ⁻³	1.503	1.647	1.681
μ (Mo K α), mm ⁻¹	0.174	0.758	1.802
θ max, deg.	28.287	28.283	28.305
Completeness to θ (%)	100	100	100
No. of data	9928	15949	10445
No. of parameters	314	298	612
No. of restraints	19	13	88
$R_1[I > 2\sigma(I)]$	0.0399	0.0435	0.0428
wR ₂ [all refs]	0.0953	0.1057	0.1241
GOF $[I > 2\sigma(I)]$	1.025	1.020	1.053

Table S1. Crystal intensity, collection and refinement data for APTRA complexes of Mg^{2+} , Ca^{2+} , Zn^{2+} and K^+ .

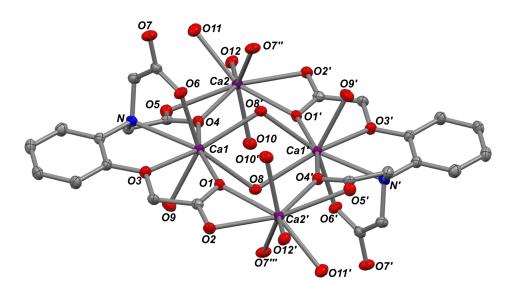

	(H ₂ APTRA)K
Crystal Lattice	Monoclinic
Formula	$C_{12}H_{12}NO_7K$
Formula weight	321.33
Space group	$P2_{1}/c$
a/Å	12.6083(7)
b/Å	12.3265(7)
c/Å	8.9860(5)
$\alpha/^{\circ}$	90
β/°	104.5060(10)
γ/°	90
V/Å ³	1352.05(13)
Z	4
Temperature (K)	100(2)
Radiation (λ, Å)	0.71073
ρ (calcd.), g cm ⁻³	1.579
μ (Mo Kα), mm ⁻¹	0.427
θ max, deg.	28.39
Completeness to θ (%)	100
No. of data	3381
No. of parameters	201
No. of restraints	1
$R_1[I > 2\sigma(I)]$	0.0309
wR ₂ [all refs]	0.0748
GOF $[I > 2\sigma(I)]$	1.038

 Table S1 (contd). Crystal intensity, collection and refinement data for APTRA complexes of

 Mg^{2+} , Ca^{2+} , Zn^{2+} and K^+ .

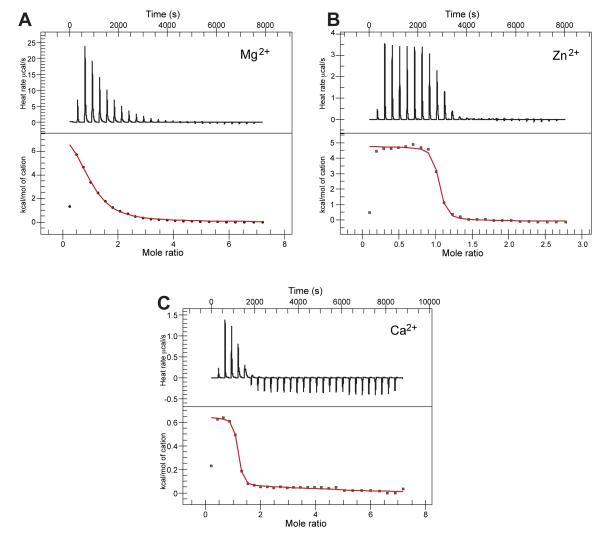

Figure S1. Crystal structure of $[Mg(OH_2)_6][(APTRA)Mg]_2$, showing the extended chain formed by carboxylate bridging of $[(APTRA)Mg]^-$ units in the solid state. Hydrogen atoms omitted for clarity. Thermal ellipsoids shown at 50% probability. (A) View down crystallographic *a* axis. (B) Alternate view.

Figure S2. Crystal structure of $\{[Ca(OH_2)_3]_2\{[(APTRA)Ca(OH_2)]_2(\mu-H_2O)_2\}\}^{2-}$ anion. Hydrogen atoms omitted for clarity. Thermal ellipsoids shown at 50% probability.

Figure S3. Van't Hoff plots for the binding of APTRA to (A) Mg²⁺, and (B) Ca²⁺ at pH 7.0

Figure S4. Representative ITC curves of APTRA treated with (A) MgCl₂, (B) ZnCl₂ or (C) CaCl₂. Values of Δ H for the binding reported in the manuscript correspond to averages of three measurements.

S2. Space Group Determination of [Zn(OH₂)₆][(APTRA)Zn]₂

1) 318 reflections violate the systematic absence in the space group of *Pnma*, which indicates the *a* glide plane is a pseudo symmetry. The correct space group is $P2_1/n$ in monoclinic. Some violating reflections are listed below.

h	k	1	Fo^2	Sigma	Why rejected
3	3	0	0.60	0.13	observed but should be systematically absent
3	3	0	0.44	0.11	observed but should be systematically absent
3	3	0	0.60	0.09	observed but should be systematically absent
3	3	0	0.48	0.09	observed but should be systematically absent
3	3	0	0.41	0.08	observed but should be systematically absent
3	3	0	0.32	0.08	observed but should be systematically absent
3	3	0	0.34	0.08	observed but should be systematically absent
3	3	0	0.34	0.08	observed but should be systematically absent
3	4	0	0.57	0.09	observed but should be systematically absent
3	4	0	0.61	0.10	observed but should be systematically absent
3	4	0	0.70	0.14	observed but should be systematically absent
3	4	0	0.73	0.14	observed but should be systematically absent
3	4	0	0.61	0.10	observed but should be systematically absent
3	4	0	0.43	0.10	observed but should be systematically absent
9	4	0	1.04	0.24	observed but should be systematically absent
9	4	0	0.98	0.17	observed but should be systematically absent
9	4	0	0.76	0.17	observed but should be systematically absent
9	4	0	0.90	0.22	observed but should be systematically absent
9	4	0	0.89	0.19	observed but should be systematically absent
5	5	0	0.61	0.11	observed but should be systematically absent
5	5	0	0.67	0.12	observed but should be systematically absent
5	5	0	0.55	0.12	observed but should be systematically absent
5	5	0	0.58	0.12	observed but should be systematically absent
1	6	0	0.93	0.19	observed but should be systematically absent
11	6	0	1.18	0.24	observed but should be systematically absent
11	6	0	1.15	0.24	observed but should be systematically absent
11	6	0	1.18	0.20	observed but should be systematically absent
11	6	0	1.32	0.20	observed but should be systematically absent
11	6	0	1.03	0.20	observed but should be systematically absent
11	6	0	1.73	0.30	observed but should be systematically absent
11	6	0	0.88	0.19	observed but should be systematically absent
11	6	0	1.52	0.30	observed but should be systematically absent
1	7	0	0.75	0.15	observed but should be systematically absent
1	7	0	0.65	0.15	observed but should be systematically absent
1	7	0	0.86	0.17	observed but should be systematically absent
1	7	0	0.69	0.14	observed but should be systematically absent
1	7	0	0.67	0.14	observed but should be systematically absent
1	7	0	0.90	0.17	observed but should be systematically absent

1	7	0	0.63	0.15	observed but should be systematically absent
3	7	0	2.74	0.20	observed but should be systematically absent
3	7	0	2.24	0.19	observed but should be systematically absent
3	7	0	2.53	0.20	observed but should be systematically absent
3	7	0	3.02	0.27	observed but should be systematically absent
3	7	0	2.87	0.20	observed but should be systematically absent
3	7	0	2.98	0.19	observed but should be systematically absent
3	7	0	4.30	0.30	observed but should be systematically absent
3	7	0	3.11	0.25	observed but should be systematically absent
3	7	0	2.89	0.25	observed but should be systematically absent
7	7	0	1.95	0.19	observed but should be systematically absent
7	7	0	1.73	0.19	observed but should be systematically absent
** etc. **					
66051 Reflections read, of which 3081 rejected					
-24 = < h = < 24, $-32 = < k = < 32$, $-12 = < 12$, Max. 2-theta = 56.59					
318 Systematic absence violations					

2) As an example the reflection 3 3 0 was found in the diffraction images, which verifies the incorrectness of the orthorhombic space group of *Pnma*.

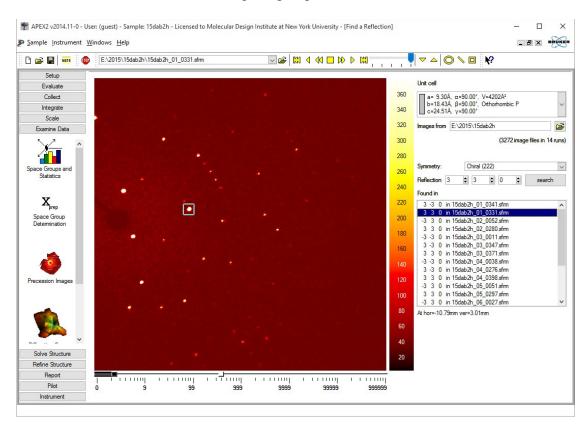


Figure S5. Reflection 3 3 0 found in the diffraction image

S3. Spectrophotometric Determination of Metal Binding Constants

S3.1 Spectrophotometric Determination of Mg²⁺ and Ca²⁺ Apparent Binding Constants

Apparent affinity constants K' for 1:1 stoichiometry metal complexes of APTRA were obtained from non-linear fit of absorbance values at 287 nm, A, as a function of metal concentration. Data fitting was performed with OriginPro 9.0 software according to equation S1, where A_{max} and A_{min} represent the absorbance values for the metal-saturated chelator and metal-free chelator at the beginning and the end of the titration, respectively.

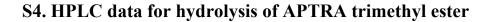
$$A = \frac{A_{\min} + A_{\max} K'[M^{2+}]}{1 + K'[M^{2+}]}$$
(S1)

For Mg^{2^+} titrations, the approximation $[Mg^{2^+}] \approx [Mg^{2^+}]_t$ was made. For Ca^{2^+} titrations, the free metal concentration at each point was obtained from $S2^1$

$$K'[Ca^{2+}]^{2} + (1 + [APTRA]_{t}K' - [Ca^{2+}]_{t}K')[Ca^{2+}] - [Ca^{2+}]_{t} = 0$$
(S2)

S3.2 Spectrophotometric Determination of Zn²⁺ Apparent Binding Constant

Zinc(II) titrations were conducted using an EGTA buffer system. The free metal ion concentration at each point was calculated from the total Zn^{2+} concentration, $[Zn^{2+}]_t$, solving equation S3 with an apparent binding constant for Zn^{2+} -EGTA of $\log K'_{ZnEGTA} = 8.24$ at pH 7.0.


$$K'_{\text{ZnEGTA}}[Zn^{2+}]^{2} + (1 + [EGTA]_{t}K'_{\text{ZnEGTA}} - [Zn^{2+}]_{t}K'_{\text{ZnEGTA}})[Zn^{2+}] - [Zn^{2+}]_{t} = 0$$
(S3)

The apparent binding constant was calculated from the absolute stability constant $\log K_{ZnEGTA}$ = 12.6 (25 °C, µ= 0.1) listed in Martell and Smith,² using Schwarzenbach's α coefficient method, according to the following equation:

$$K'_{\text{ZnEGTA}} = \alpha_{\text{EGTA}} K_{\text{ZnEGTA}}$$
 (S4)

where α_{EGTA} corresponds to the fraction of fully deprotonated EGTA at the pH of interest. The p K_a values for EGTA used to calculate α_{EGTA} were corrected upwards by 0.11 units to account for the fact that the tabulated p K_a values in Martell and Smith² are determined using concentration and not activity of the hydrogen ion. According to the National Bureau of

Standards, pH is defined as $-\log(a_{\rm H})$, where $a_{\rm H}$ is 0.78[H⁺] at 0.1 M ionic strength. As a result, the p $K_{\rm a}$ values for EGTA employed in our calculations were: p $K_{\rm a1}$ = 9.51, p $K_{\rm a2}$ = 8.89, p $K_{\rm a3}$ = 2.77, p $K_{\rm a4}$ = 2.11.

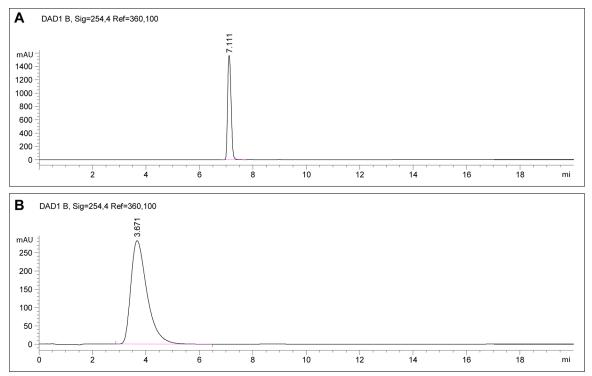


Figure S6. HPLC trace of (A) APTRA trimethyl ester and (B) APTRA free acid product of hydrolysis.

S5. References

- 1. A. E. Hargrove, Z. Zhong, J. L. Sessler and E. V. Anslyn, New J. Chem., 2010, 34, 348-354.
- 2. A. Martell and R. M. Smith, *Critical Stability Constants. First Supplement*, Plenum Press, New York, 1982.