Conformational variety of flexible mono-dentate ligands in coordination compounds; influence of π -involving interactions

Hamid Reza Khavasi,* Sima Kavand

Faculty of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran

1983963113, Iran

Figure S1. Representation of the 1D linear chain in **2**, (a), **3**, (b) and **4**, (c), through $\pi_{naphtA} \dots \pi_{naphtB}$, Hg... π_{py} , and N-H...O interactions.

(c)

Figure S2. Generation of overall supramolecular packing of complexes 2, (a), 3, (b), and 4, (c) by the cooperation of the C-H... π_{naphtB} interactions and C-H...O hydrogen bonds.

Figure S3. Polar packing in the structure of complex **5**. All molecules have the same orientation along the polar *b*-axis, *e.g.* all Br-Hg-Br moleties are oriented parallel to each other.

Figure S4. Overall supramolecular structure of **8** from the linkage of neighbouring coordination polymer chains through $\pi_{py...}\pi_{naphtA/B}$ interactions in *a*-direction. Different colours show different adjacent linear chains.

Figure S5. Polar packing in the structure of complex 7, (a) and 8, (b). The 1D linear chains are oriented in the same direction along the polar *b*-axis and all $I_{terminal}$ -Hg-(I_{bridge})-Hg- $I_{terminal}$ moieties are all pointing in the same direction.

		Complex			
		1 (X = Cl)	2 (X = Cl)	3 (X = Br)	4 (X = I)
Bond	Hg1-X1	2.351(6)	2.342(6)	2.484(3)	2.649(2)
distance	Hg1-N1	2.465(13)	2.411(14)	2.449(11)	2.48(2)
Bond	X1-Hg1-N1	96.7(4), 98.0(4) ⁱ	95.6(4), 99.0(4) ⁱⁱ	98.0(4), 97.3(4) ⁱⁱⁱ	97.5(5), 97.9(5) ^{iv}
angle	X1-Hg1-X1	157.44(17)	157.56(19)	155.14(8)	154.15(8)
	N1-Hg1-N1	98.5(4)	98.3(5)	103.5(4)	106.9(6)
		5 (X=Br)	6 (X = Br)	7 (X = I)	8 (X = I)
Bond	Hg1-X1	2.482(3)	2.495(4)	2.650(2)	2.660(2)
distance	Hg1-X2	-		2.7422(15), 2.8875(15) ^v	2.7451(19), 2.8975(19)vi
	Hg2-X2	2.477(3)	-	-	-
	Hg1-N1	2.446(19)	2.421(15)	2.38(2)	2.37(2)
	Hg2-N3	2.44(2)	-	-	-
Bond	X1-Hg1-X2	-	-	129.60(6), 110.11(5)vii	129.44(6), 109.52(6) ^{ix}
angle	X1-Hg1-X1	154.32(10) ^v	149.21(7) ^{viii}	-	-
	X1-Hg1-N1	101.2(5), 95.9(4) ^v	90.46(13)	112.9(4)	113.1(4)
	N1-Hg1-N1	96.3(6) ^v	-	-	-
	X2-Hg1-N1	-	-	98.6(4)	98.0(4)
	X2-Hg1-X2	-		102.49(4) ^{vii}	103.49(6) ^{ix}
	X2-Hg1-N3	-	97.7(6), 102.9(6) ^{viii}	-	-
	N3-Hg1-N3	-	97.3(6) ^{viii}	-	-
	X2-Hg2-X2	152.97(10)vi	-	-	-
	X2-Hg2-N3	100.2(5), 97.2(5)vi	-	-	-
	N3-Hg2-N3	99.5(7)	-	-	-

Table S1. Selected bond length (Å) and angles (°) around mercury(II) for complexes 1-8.

Symmetry codes: (i) 1-x, y, 1.5-z, (ii) -x, y, 1/2-z, (iii) 1-x, y, 1/2-z, (iv) 1-x, y, 1/2-z (v) -x, y, -z, (vi) -x, y, 1-z, (vii) x, -1/2+y, 1/2-z, (viii) 1-x, y, 1/2-z, (ix) x, 1/2+y, -1.5+z

Table S2. Coordination geometry, dimensionality and aromatic interaction parameters (Å and °) for description of π - π interaction in complexes **1-8**. Schematic representation of geometrical parameters for definition of π - π stacking between adjacent aromatic rings is shown in Scheme S1. Color of the background behind the interactions is chosen according to Scheme S2 for better clarity.

Complex	Coordination geometry/	Cg(I)-Cg(J)	Type of $\pi\pi$ stacking	$d_{\rm Cg-Cg}{}^{\rm a}$	α^{b}	β, γ^{c}	$d_{\text{plane-plane}}^{\text{d}}$	$d_{ m offset}{}^{ m e}$
	dimension							
[HgCl ₂ (L ^{amide-Cl}) ₂], 1	Seesaw/discrete	$Cg(2)$ - $Cg(3)^i$	$\pi_{\text{naphA}\dots}\pi_{\text{naphB}}$	3.669	0.84	14.99, 15.82	3.544, 3.669	0.94, 1.00
		Hg-Cg(1) ⁱⁱ	Hg π_{pv}	3.675	-	9.92	3.620	0.663
[HgCl ₂ (L ^{amide-Br}) ₂], 2	Seesaw/discrete	Cg(2)-Cg(3) ⁱⁱⁱ	$\pi_{\text{naphA}\dots}\pi_{\text{naphB}}$	3.687	1.45	15.78, 14.47	3.548, 3.570	1.00, 0.92
		Hg-Cg(1) ^{iv}	$\mathrm{Hg}\pi_{\mathrm{py}}$	3.643	-	9.31	3.595	0.58
[HgBr ₂ (L ^{amide-Br}) ₂], 3	Seesa/discrete	Cg(2)-Cg(3) ^v	$\pi_{\text{naphA}} \dots \pi_{\text{naphB}}$	3.678	0.65	14.61, 14.55	3.559, 3.560	1.23, 0.92
		Hg-Cg(1)vi	Hg <i>π</i> _{py}	3.755	-	8.67	3.712	0.56
$[HgI_2(L^{amide-Br})_2], 4$	Seesaw/discrete	Cg(2)-Cg(3)vii	$\pi_{\text{naphA}\dots}\pi_{\text{naphB}}$	3.668	1.66	14.69, 13.27	3.548, 3.570	0.98
		Hg-Cg(1)viii	Hg π_{py}	3.882	-	10.25	3.820	0.69
[HgBr ₂ (L ^{imine-Cl}) ₂], 5	Seesaw/discrete	Hg-Cg(1) ^{ix}	Hg π_{py}	3.764	-	9.80	3.709	0.64
		C_{Imine} - $Cg(1)^x$	$\pi_{\text{Imine}} \dots \pi_{\text{py}}$	3.358	-	31.67	3.201	2.95
		Hg-Cg(1) ^{xi}	$Hg\pi_{py}$	3.868	-	11.52	3.790	0.77
[HgBr ₂ (L ^{imine-Br})2]. 6	Seesaw/discrete	Hg-Cg(1) ^{ixv}	Hg π_{pv}	3.897	-	11.98	3.812	0.80
		C_{Imine} - $Cg(1)^{xv}$	$\pi_{\text{Imine}} \dots \pi_{\text{py}}$	4.177	-	37.60	3.309	2.54
		C_{Imine} - $Cg(3)^{xvi}$	$\pi_{\text{Imine}} \dots \pi_{\text{naphtB}}$	3.553	-	10.89	3.489	0.67
$[HgI_2(L^{imine-Cl})]_n, 7$	Seesaw/polymer	$Cg(1)$ - $Cg(2)^{xii}$	$\pi_{py}\pi_{naphA}$	3.785	10.78	18.80, 27.21	3.583, 3.366	1.21, 1.73
1 8 2 () 10		$Cg(1)$ - $Cg(3)^{xii}$	$\pi_{\rm pv} \dots \pi_{\rm naphB}$	3.725	5.90	16.14, 10.63	3.578, 3.661	1.03, 0.68
		Cg(3)-Cg(1)xiii	$\pi_{\rm py}$, $\pi_{\rm paphB}$	3.725	5.90	24.52, 19.92	3.389, 3.502	1.54, 1.26
[Hol.(Limine-Br)] 8	Seesaw/polymer	Cg(1)-Cg(2) ^{xvii}	$\pi_{nv} \dots \pi_{nanhA}$	3.785	9.62	25.96, 18.32	3.403, 3.593	1.65, 1.19
[11912(12)]]n, 0	1 5	Cg(1)-Cg(3) ^{xvii}	$\pi_{\rm pv} \dots \pi_{\rm naphB}$	3.760	5.87	11.76, 17.39	3.681, 3.588	0.76, 1.12
		Cg(1)-Cg(3) ^{xviii}	$\pi_{py}\pi_{naphB}$	3.691	5.87	24.48, 19.69	3.359, 3.475	1.52, 1.24

^{*a*} Centroid-centroid distance. ^{*b*} Dihedral angle between the ring plane. ^{*c*} Offset angles: angle between Cg(I)–Cg(J) vector and normal to plane I, angle between Cg(I)-Cg(J) vector and normal to plane J ($\beta = \gamma$ when $\alpha = 0$). ^{*d*} Perpendicular distance of Cg(I) on ring J and perpendicular distance of Cg(J) on ring I. ^{*e*} Horizental displacement between Cg(I) and Cg(J), two values if the two rings are not exactly parallel ($\alpha \neq 0$). For **1-8**, Cg(1): centroid of C(1)-C(2)-C(3)-N(1)-C(4)-C(5), Cg(2): centroid of C(7)-C(8)-C(9)-C(10)-C(11)-C(16) and Cg(3): centroid of C(11)-C(12)-C(13)-C(14)-C(15)-C(16). Symmetry codes: (i) x, 1+y, z, (ii) x, -1+y, z, (iii) x, -1+y, z, (iv) x, 1+y, z, (v) -x, -1-y, (vi)-z, x, -1+y, z, (vii) 2-x, $\frac{1}{2}$ +y, -z, (viii) x, -1+y, z, (ix) x, -1+y, z, (xx) n, 1+y, z, (xx) n, 1+y

Complex	D-HA	d(D-H)/Å	d(HA)/Å	d(DA)/Å	<d-ha th="" °<=""><th>Sym. code</th></d-ha>	Sym. code
[HgCl ₂ (L ^{amide-Cl}) ₂], 1	N2-H2AO1	0.86	2.100	2.87(1)	148	x, -1+y, z
	С9-Н9О1	0.93	2.740	3.41(2)	130	1-x, 3-y, 2-z
[HgCl ₂ (L ^{amide-Br}) ₂], 2	N2-H2A01	0.86	2.06	2.86(2)	154	x, 1+y, z
	С9-Н9АО1	0.93	2.870	3.50(3)	126	1/2-x, -1.5-y, 1-z
[HgBr ₂ (L ^{amide-Br}) ₂], 3	N2-H2A01	0.86	2.090	2.86(2)	148	x, -1+y, z
$[HgI_2(L^{amide-Br})_2], 4$	N2-H2A01	0.86	2.070	2.85(5)	151	x, -1+y, z
	С9-Н9О1	0.93	2.730	3.41(4)	130	1.5-x, 3.5-y, 1-z
$[\mathrm{HgBr}_2(L^{imine-Cl})_2],5$	C2-H2Br2	0.93	2.900	3.62(2)	135	x, 1+y, -z

 Table S3.
 Selected hydrogen bonding geometries for compounds 1-6.

Table S4.	Selected	C-Hπ	geometries	for com	pound 1-6	5.
-----------	----------	------	------------	---------	-----------	----

Complex	С-Нπ	HCg	Sym. Code
[HgCl ₂ (L ^{amide-Cl}) ₂], 1	С14-Н14 <i>π</i> _{naphB}	3.182	1/2-x, -1/2+y, 3/2-z
[HgCl ₂ (L ^{amide-Br}) ₂], 2	С14-Н14 <i>π</i> _{naphB}	3.301	1/2-x,1/2+y, 1/2-z
$[HgBr_2(L^{amide-Br})_2], 3$	С14-Н14 <i>π</i> _{naphB}	3.347	3/2-x, -1/2+y, 1/2-z
$[HgI_2(L^{amide-Br})_2], 4$	С14-Н14 <i>π</i> _{naphB}	3.537	3/2-x, -1/2+y, 1/2-z
[HgBr ₂ (L ^{imine-Cl}) ₂], 5	С18-Н18 <i>π</i> _{naphB}	3.571	-x, -1+y, 1-z
[HgBr ₂ (L ^{imine-Br}) ₂], 6	С12-Н12 л _{парhB}	3.070	3/2-x, 1/2+y, 3/2-z

Scheme S2. The various $\pi...\pi$ and Hg... π synthons, $\pi_{naphtA}...\pi_{naphtB}$, (a), $\pi_{naphtA}...\pi_{py}$, (b), $\pi_{naphtB}...\pi_{py}$, (c), $\pi_{naphtB}...\pi_{py}$, (d), Hg... π_{py} (e), and $\pi_{imine}...\pi_{py}$, (f), in the crystal packing of complexes **1-8**.