Supporting information

Different magnetic responses observed in Co^{II}₄, Co^{II}₃ and Co^{II}₁-based MOFs

Chao Zhang,^a Zhong-Yi Liu,^a Ning Liu,^a Hong Zhao,^a En-Cui Yang^{*a} and Xiao-Jun Zhao^{*a, b}

Scheme S1 Binding modes of stp³⁻ ligand in 1–4.

Co(1)–O(1) ^{#1}	2.083(2)	Co(1)–N(3)	2.031(2)			
Co(2)–O(2)	2.165(2)	Co(2)–O(3) ^{#4}	2.068(2)			
Co(2)–O(5)	2.182(2)	Co(2)–O(8)	2.069(2)			
Co(2)–O(8) ^{#5}	2.072(2)	Co(2)–N(1)	2.085(2)			
Co(3)–O(1) ^{#6}	2.224(2)	Co(3)–O(4) ^{#7}	2.014(2)			
Co(3)–O(5) ^{#5}	2.305(2)	Co(3)–O(8)	2.004(2)			
Co(3)–O(9W)	2.190(5)	Co(3)–N(2)	2.059(2)			
O(1) ^{#1} -Co(1)-O(1) ^{#2}	131.18(12)	N(3)-Co(1)-O(1) ^{#1}	99.95(9)			
N(3)-Co(1)-O(1) ^{#2}	112.89(9)	N(3)#3-Co(1)-N(3)	94.36(13)			
O(2)–Co(2)–O(5)	92.03(8)	O(3) ^{#4} -Co(2)-O(2)	96.87(8)			
O(3) ^{#4} -Co(2)-O(5)	85.03(8)	O(3)#4-Co(2)-O(8)#5	97.12(8)			
O(8)–Co(2)–O(2)	83.10(8)	O(3)#4-Co(2)-N(1)	93.08(9)			
O(8)–Co(2)–O(5)	92.39(8)	O(8) ^{#5} -Co(2)-O(5)	79.62(8)			
O(8)–Co(2)–O(8) ^{#5}	82.49(8)	O(8)-Co(2)-N(1)	89.50(9)			
O(8) ^{#5} -Co(2)-N(1)	97.21(9)	N(1)-Co(2)-O(2)	91.63(9)			
O(4) ^{#7} -Co(3)-O(1) ^{#6}	98.32(8)	O(4)#7-Co(3)-O(5)#5	82.34(8)			
O(4) ^{#7} –Co(3)–O(9W)	81.98(15)	O(8)-Co(3)-O(1)#6	92.39(8)			
O(8)–Co(3)–O(4) ^{#7}	96.82(8)	O(8)-Co(3)-O(5) ^{#5}	78.10(7)			
O(8)–Co(3)–N(2)	93.63(9)	O(9W)-Co(3)-O(1) ^{#6}	79.88(15)			
O(9W)-Co(3)-O(5)#5	109.60(14)	N(2)-Co(3)-O(1)#6	100.04(9)			
N(2)-Co(3)-O(5) ^{#5}	81.43(8)	N(2)-Co(3)-O(9W)	90.18(15)			
^{<i>a</i>} Symmetry codes: ^{#1} x , $1 - y$, $z - 1/2$; ^{#2} $- x$, $1 - y$, $-z$; ^{#3} $- x$, y , $-1/2 - z$; ^{#4} $1 - x$,						
y, 1/2 - z; ^{#5} $- x, -y, -z; $ ^{#6} $- x, y, 1/2 - z; $ ^{#7} $- 1 + x, -y, z - 1/2.$						

Table S1. Selected bond lengths (Å) and angles (°) for 2^{a}

(a)

(b)

(c)

Fig. S1 (a) Local coordination environments of Co^{II} ions in 2 (H atoms were omitted for clarity. Symmetry codes: A = -x, y, -1/2 - z; B = x, 1 - y, z - 1/2; C = -x, 1 - y, -z; D = 1 - x, y, 0.5 - z; E = -x, -y, -z; F = x - 1, -y, z - 1/2). (b) 2D layer of 2 constructed from μ_3 -trz⁻ extended Co^{II}₄ and Co^{II}₁ subunits. (c) Pillared-layer framework of 2.

Fig. S2 Simulated (purple) and experimental (blue) X-ray powder diffraction patterns for 1–4.

Fig. S3 TG curves for 1–4.

Pathway	Linkages	<i>r</i> _{CoCo}	∠CoOCo	
J_1	μ ₃ -OH ⁻	3.1501(3)	98.356(6)	Colo_J_5
J_2	μ_3 -OH ⁻ μ_3 -OH ⁻	3.4409(4)	114.638(7)	J. J. J. J. J. J. Co3/
J_3	–NN– μ3-OH ⁻	3 2183(4)	104.355(6)	Co3 J ₂ J ₂ J ₂ Co2A
-	Single atom bridging sulfonate	5.2105(1)	91.189(5)	
J_4	Single atom bridging carboxylate	3.8788(4) 4.3416(4)	123.704(98)	/

Table S2. Geometric parameters (Å, deg) for the sununit of 1

Pathway	Linkages	r _{co…co}	∠CoOCo	ColB
J_1	μ ₃ -OH ⁻ μ ₃ -OH ⁻	3.1723(18)	98.3(2)	Co3B J1 Co3
J_2	μ ₃ -OH ⁻ -NN-	3.5371(18)	117.4(3)	Col J2
J_3	μ_3 -OH ⁻ Single atom bridging sulfonate	3.2177(15)	101.1(2) 89.6(2)	J4
J_4	µ-syn, anti-COO-	5.3418(25)		Co5 🎸
J_1	μ ₃ -OH ⁻ μ ₃ -OH ⁻	3.1766(18)	98.1(2)	Co2C
J_2	μ3-OH ⁻ -NN-	3.5584(18)	117.7(3)	C04 J ₃ J ₁ J ₃ C04C
J_3	μ_3 -OH ⁻ Single atom bridging sulfonate	3.2169(15)	101.1(3) 89.8(2)	
J_4	µ-syn, anti-COO⁻	5.3484(25)		V4 Co5

Table S3. Geometric parameters (Å, deg) for the sununits of ${\bf 3}$

Fig. S4 Magnetic hysteresis loop for 1 measured at 2.0 K.