Supporting Information

Mechanochemical and Thermal Formation of 1H-Benzotriazole Coordination Polymers and Complexes of 3d-Transition Metals with Intriguing Dielectric Properties

Franziska A. Brede, Friedrich Mühlbach, Gerhard Sextl and Klaus Müller-Buschbaum

Neat grinding conditions for the reaction of MCl₂ (M = Mn, Co, Zn) and BtzH

The reactions were carried out in a stainless steel vial (volume 25 ml) with stainless steel milling balls (2 x Ø = 12 mm, 3 x Ø = 10 mm) and a frequency of 25 Hz.

transition metal chloride	milling time (min)	diffraction number
MnCla	1 S1-I	S1-I
	3	S1-II
	5	S1-III
CoCl ₂	1	S2-I
	3	S2-II
	5	S2-III
ZnCl ₂	3	S3-I
	5	S3-II
	8	S3-III

Table S1. Investigated neat grinding conditions.

Fig. S1 PXRD investigation of the mechanochemical treatment of MnCl₂ with BtzH without LAG.

Fig. S2 PXRD investigation of the mechanochemical treatment of CoCl₂ with BtzH without LAG.

Fig. S3 PXRD investigation of the mechanochemical treatment of $ZnCl_2$ with BtzH without LAG. Marked with asterisks: unknown reflections.

LAG- conditions for the reaction of MCl_2 (M = Mn, Co, Zn) and BtzH

transition metal chloride	solvent	milling time (min)	milling balls (ø)	diffraction number
MnCl ₂ .	acatonitrila	1	5x5 mm, 2x10 mm	S4-II
	acetonitriie	30	5x5 mm, 2x10 mm	S4-III
	taluara	1	15 x 3mm	S4-V
	toluene	30	5x5 mm, 2x10 mm	S4-VI
CoCl ₂		1	5x5 mm, 2x10 mm	S5-I
	acetonitrile	1	15 x 3 mm	S5-II
		30	15x5 mm, 2x10 mm	S5-III
	toluene	1	15 x 3 mm	S5-IV
		20	5x5 mm, 2x10 mm	S5-V
		20	3x10 mm	S5-VI
		30	15 x 3 mm	S5-VII
ZnCl ₂	aaatanitrila	1	15 x 3 mm	S6-I
	acetonitine	30	5x5 mm, 2x10 mm	S6-II
	taluana	1	15 x 3 mm	S6-III
	toluene	30	5x5 mm, 2x10 mm	S6-IV

Table S2. Tested LAG-conditions.

Fig. S4 PXRD investigation of the mechanochemical LAG treatment of $MnCl_2$ and BtzH with the two solvents toluene and acetonitrile.

Fig. S5 PXRD investigation of the mechanochemical LAG treatment of $CoCl_2$ and BtzH with the two solvents toluene and acetonitrile.

Fig. S6 PXRD investigation of the mechanochemical LAG treatment of $ZnCl_2$ and BtzH with the two solvents toluene and acetonitrile.

Phase transition from the monoclinic coordination polymer $\alpha_{-\infty}$ [MnCl₂(BtzH)₂] (2) into the orthorhombic form $\beta_{-\infty}$ [MnCl₂(BtzH)₂] (1)

Fig. S7 PXRD investigation of the phase transition from the monoclinic coordination polymer $\alpha_{-\infty}$ [MnCl₂(BtzH)₂] (2) (powder pattern I) in the orthorhombic form $\beta_{-\infty}$ [MnCl₂(BtzH)₂] (1) (powder pattern II) by input of thermal energy.

Fig. S8 DSC measurement of polymer $\alpha_{-\infty}$ [MnCl₂(BtzH)₂] (**2**). The phase transition into the higher symmetrical form $\beta_{-\infty}$ [MnCl₂(BtzH)₂] (**1**) takes place at a temperature of 80 °C.

PXRD investigations

Fig. S9 Comparison of the simulated powder pattern of $BtzH_2[CoCl_3BtzH]$ (8) with the dried mixture from which single crystals of 8 could be obtained.

 Table S3. Crystallographic data and results from Rietveld refinement of powder X-ray diffraction experiments of

 [CoCl₂(BtzH)₂]·BtzH (4).

	Co(4)	
Formula	$CoCl_2N_9C_{18}H_{15}$	
F _w / gmol ⁻¹	487.22	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
	a = 713.58(2)	
Cell paramter/ pm	b = 3593.72(13)	
	c = 725.95(3)	
Angles/ °	<i>β</i> = 102.825(3)	
Cell volume/ 10 ⁶ pm ³	1815.19(11)	
$ ho_{ m calcd}/ m gcm^{-3}$	1.78(1)	
μ / cm ⁻¹	90.29(1)	
Z	4	
Radiation	Cu-K _α (λ = 154.1 pm)	
Diffractometer	Bruker D8 Discover	
Geometry	Transmission	
Range/°	5 ≤ 2θ ≤ 60	
Reflections	612	
Data points	5435	
Refined parameters	616	
(Background)	(11)	
R _p	0.018	
wR _p	0.079	
R _{Bragg}	0.954	
χ²	2.66	
Wght. Durbin Watson	0.532	

Thermal investigations

Fig. S10 Simultaneous DTA/TG of $_{\infty}$ [MnCl₂(BtzH)₂] (1). Heating rate: 10 °C/min; gas flow: 40 ml/min of a 1/1 mixture of Ar and N₂.

Fig. S11 Simultaneous DTA/TG of $[ZnCl_2(BtzH)_2]$ ·BtzH (**3**). Heating rate: 10 °C/min; gas flow: 40 ml/min of a 1/1 mixture of Ar and N₂.

Fig. S12 Simultaneous DTA/TG of $[CoCl_2(BtzH)_2]$ ·BtzH (4). Heating rate: 10 °C/min; gas flow: 40 ml/min of a 1/1 mixture of Ar and N₂.

Dielectric properties

Fig. S13 Frequency-dependent and temperature-dependent dielectric constants and dielectric losses of $[CoCl_2(BtzH)_2]$ ·BtzH (4).