Electronic Supplementary Information

A_x(H₃O)_{2-x}Mn₅(HPO₃)₆ (A= Li, Na, K and NH₄): Open-Framework Manganese(II) Phosphites Templated by Mixed Cationic Species

Joseba Orive,^{a,*} Roberto Fernández de Luis,^{b,c} Jesús Rodríguez Fernández,^d Luis Lezama,^{c,e} and María I. Arriortua^{b,c}

^a Departamento de Ciencia de los Materiales, FCFM, Universidad de Chile, Av. Beauchef 851, Santiago 8370448, Chile.

^b Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología,

Universidad del País Vasco (UPV/EHU), Apdo. 48940 Leioa, Spain.

^c Basque Center for Materials, Applications & Nanostructures (BC Materials) Parque Tecnológico de Zamudio, Camino de Ibaizabal, Edificio 500 - 1º, 48160 Derio, Spain.
^d CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain.
^e Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo.644, 48940 Leioa, Spain.

* Corresponding author: joseba.orive@ing.uchile.cl Phone: +56 229771076. Fax: +56 226994119

S1. Structure refinement

Three main residual electron densities were observed inside the hexagonal pores which were found to be non-interpretable. Several attempts without success were realized in order to crystallographically define the electron densities belonging to these highly disordered extraframework species.

Density	x	У	Z	Wickoff letter	Occ. Factor	е ⁻ Å- ³
Q1	0.0647	0.1358	0.6786	12g	1.0	6.07
Q2	0.0000	0.0000	0.8408	4c	0.33333	3.75
Q3	0.0000	0.0000	1.0000	2b	0.16667	2.59

Assumption 1: Q3 = Li; Q1 and $Q2 = H_2O$. Disorder parts with complementary occupation factors (PART 1 = Q3/Q1 and PART 2 = Q2).

This way, an occupation factor of 0.53 was calculated for the Li atom, which is in perfect accordance with the chemical analysis. However, this structural model implies too much short O-O distances, 2.3-2.5 Å from the H_2O molecule (Q1) to the framework, what makes this model invalid.

Assumption 2: Q1 or Q2 sites occupied by Li atoms results in occupation factors too much high, what is incongruent with the chemical analysis, as well as it would suppose a positive charge excess.

Table S1	. Bond distances	s (Å) an	d angles	(°) for	1 -Li .

Mn(1)	O(2)	O(2) ^{<i>iv</i>}	O(1)	O(1) ^{<i>iv</i>}	O(3) ^{<i>iv</i>}	O(3)
O(3)	90.5(2)	91.6(2)	78.5(2)	99.1(2)	176.8(3)	2.230(4)
O(3) ^{iv}	91.6(2)	90.5(2)	99.1(2)	78.5(2)	2.230(4)	
O (1) ^{<i>iv</i>}	168.1(2)	90.0(2)	85.1(3)	2.168(5)		
O (1)	90.0(2)	168.1(2)	2.168(5)			
O(2) ^{<i>iv</i>}	96.7(3)	2.149(6)				
O(2)	2.149(6)					

Mn(1)O₆ octahedron

Mn(2)O₆ octahedron

Mn(2)	$O(3)^i$	O(3) ⁱⁱⁱ	O(3)	O(1)	O(1) ⁱⁱⁱ	O (1) ^{<i>i</i>}
O (1) ^{<i>i</i>}	79.0(2)	162.7(2)	92.6(2)	83.8(2)	83.8(2)	2.194(5)
O(1) ^{<i>iii</i>}	92.6(2)	79.0(2)	162.7(2)	83.8(2)	2.194(5)	
O(1)	162.7(2)	92.6(2)	79.0(2)	2.194(5)		
O(3)	103.4(1)	103.4(1)	2.186(5)			
O(3) ⁱⁱⁱ	103.4(1)	2.186(5)				
O(3) ^{<i>i</i>}	2.186(5)					

Piramid [HP(1)O₃]

P(1)	O (1)	O(3) ^v	O(2) ^{<i>iii</i>}	H(1)
H(1)	105(3)	107(3)	107(3)	1.26(7)
O(2) ^{<i>iii</i>}	112.1(3)	114.1(3)	1.540(6)	
O(3) ^v	111.2(3)	1.535(4)		
0(1)	1.528(5)			

Symmetry codes: i = -x+y, -x+1, z; ii = -y+1, -x+1, z-1/2; iii = -y+1, x-y+1, z; iv = y, x, -z+3/2; v = -y+1, -x+1, z+1/2.

Sample	1-Li		2-Na		3-K		4-NH ₄	
Formula	Li _{0.55} (H ₃ O) _{1.45} . Mn ₅ (HPO ₃) ₆		$Na_{0.72}(H_3O)_{1.28-}$ $Mn_5(HPO_3)_6$		K _{0.3} (H ₃ O) _{1.7-} Mn ₅ (HPO ₃) ₆		(NH ₄) _{0.59} (H ₃ O) _{1.41} . Mn ₅ (HPO ₃) ₆]	
M. Weight (g/mol)	785.97		795.47		798.64		792.04	
Ζ	2		2		2		2	
Analysis Method	Pattern Matching	Rietveld Analysis	Pattern Matching	Rietveld Analysis	Pattern Matching	Rietveld Analysis	Pattern Matching	Rietveld Analysis
a, Å	10.4618(5)	10.4629(7)	10.4881(7)	10.4935(9)	10.4380(7)	10.4430(17)	10.4699(9)	10.4760(12)
c, Å	9.4057(8)	9.4073(11)	9.3984(10)	9.3970(12)	9.4076(10)	9.4082(16)	9.4350(12)	9.4382(15)
V, Å ³	891.5(1)	891.9(1)	895.3(1)	896.1(2)	887.7(1)	888.6(3)	895.7(2)	897.0(2)
N ^{er} Reflections	260	278	262	289	260	283	261	294
Profile Parameters	36	36	35	35	36	36	35	36
Structure Parameters		16		16		16		16
R _{Bragg}	1.29	18.4	1.00	14.3	1.13	19.5	0.82	20.2
R _f	1.97	8.58	1.05	6.42	1.28	8.75	0.78	18.2
R _p	21.1	29.0	19.1	25.3	22.5	31.2	21	28.5
R _{wp}	26.0	33.7	25.3	29.7	28.7	36.6	28	33.2
R _{exp}	19.53	17.94	17.76	16.22	21.31	19.44	19.33	19.26
χ^2	1.77	3.53	2.02	3.35	1.82	3.54	2.10	2.97

Table S2. Pattern Matching and Rietveld refinement parameters for 1-Li, 2-Na, 3-K and 4-NH₄.

Table S3. Coordination environment bond distances (Å) and bond valence calculations for **1-Li**, **2-Na**, **3-K** and **4-NH**₄ from the Rietveld analysis (without taking into account the extraframework species).

Bond distances	5 (Å)	Bond Valence	Bond distances	: (Å)	Bond Valence
(Mn1)-(O1)	2.196(12)	0.334(11)	(Mn2)-(O1)	2.205(20)	0.326(18)
(Mn1)-(O1)	2.1961(20)	0.334(18)	(Mn2)-(O1)	2.205(15)	0.326(13)
(Mn1)-(O2)	2.168(18)	0.360(18)	(Mn2)-(O1)	2.205(17)	0.326(15)
(Mn1)-(O2)	2.168(18)	0.360(17)	(Mn2)-(O3)	2.203(19)	0.328(16)
(Mn1)-(O3)	2.235(21)	0.300(17)	(Mn2)-(O3)	2.203(19)	0.328(17)
(Mn1)-(O3)	2.235(21)	0.300(17)	(Mn2)-(O3)	2.202(30)	0.328(27)
	Mn(1) SUM	1.99(4)		Mn(2) SUM	1.96(4)
2-Na					
(Mn1)-(O1)	2.196(12)	0.334(10)	(Mn2)-(O1)	2.202(18)	0.328(16)
(Mn1)-(O1)	2.196(18)	0.334(16)	(Mn2)-(O1)	2.202(13)	0.329(12)
(Mn1)-(O2)	2.168(15)	0.360(15)	(Mn2)-(O1)	2.202(15)	0.329(13)
(Mn1)-(O2)	2.168(15)	0.360(14)	(Mn2)-(O3)	2.199(19)	0.331(17)
(Mn1)-(O3)	2.238(21)	0.298(17)	(Mn2)-(O3)	2.199(19)	0.331(17)
(Mn1)-(O3)	2.238(22)	0.298(17)	(Mn2)-(O3)	2.198(30)	0.332(27)
	Mn(1) SUM	1.98(4)		Mn(2) SUM	1.98(4)
3-K					
(Mn1)-(O1)	2.201(12)	0.329(11)	(Mn2)-(O1)	2.212(21)	0.320(18)
(Mn1)-(O1)	2.201(20)	0.329(18)	(Mn2)-(O1)	2.211(15)	0.321(13)
(Mn1)-(O2)	2.165(18)	0.363(17)	(Mn2)-(O1)	2.211(17)	0.321(15)
(Mn1)-(O2)	2.165(17)	0.363(17)	(Mn2)-(O3)	2.208(21)	0.324(18)
(Mn1)-(O3)	2.243(22)	0.294(17)	(Mn2)-(O3)	2.207(19)	0.324(17)
(Mn1)-(O3)	2.243(22)	0.294(18)	(Mn2)-(O3)	2.207(30)	0.324(27)
	Mn(1) SUM	1.97(4)		Mn(2) SUM	1.93(5)
4-NH ₄					
(Mn1)-(O1)	2.192(12)	0.338(11)	(Mn2)-(O1)	2.205(19)	0.326(17)
(Mn1)-(O1)	2.192(19)	0.338(17)	(Mn2)-(O1)	2.204(14)	0.326(13)
(Mn1)-(O2)	2.158(16)	0.371(16)	(Mn2)-(O1)	2.205(16)	0.326(14)
(Mn1)-(O2)	2.157(15)	0.371(15)	(Mn2)-(O3)	2.197(20)	0.333(18)
(Mn1)-(O3)	2.240(21)	0.297(17)	(Mn2)-(O3)	2.196(18)	0.334(17)
(Mn1)-(O3)	2.240(22)	0.297(17)	(Mn2)-(O3)	2.196(30)	0.334(27)
	Mn(1) SUM	2.01(4)		Mn(2) SUM	1.98(4)

1-Li

Figure S1. Observed (red dots), calculated (black line) and difference X-ray powder diffraction pattern (blue line) for the Rietveld analysis, without taking into account the extraframework sites, of 1-Li, 2-Na, 3-K and 4-NH₄ compounds

Figure S2. XPS spectra of compounds 1-Li, 2-Na, 3-K and 4-NH₄.

Figure S3. Comparison of unit cell parameters versus A ionic radius in $A_x(H_3O)_{2-x}Mn_5(HPO_3)_6$ system (1-Li, 2-Na, 3-K and 4-NH₄) and iron compounds $A_{2-x}[Fe^{II}_{5-x}Fe^{III}_x(HPO_3)_6] \cdot nH_2O$ previously reported. The numbers in brackets indicate the atoms per unit formula of A species.

Figure S4. (a) Comparison of thermal analysis (TGA, DSC) of 1-Li as-synthesized and exposed a month to ambient conditions. (b) Thermal analysis (TGA, DSC) of 1-Li, 2-Na, 3-K and 4-NH₄. (c) Diffraction patterns of calcination products after heat treatment.

Figure S5. Thermodiffractograms of (a) 1-Li and (b) 2-Na.

Figure S6. Thermal evolution of the parameters and volume of the unit cells for 1-Li and 2-Na in the 30 to 300 °C temperature range.

Figure S7. Infrared spectra of 1-Li, 2-Na, 3-K and 4-NH₄.

Figure S8. (a) UV-Vis diffuse absorbance spectra and (b) the corresponding F(R) vs E (eV) curves of 1-Li, 2-Na, 3-K and 4-NH₄.

Figure S9. (a) X-band powdered EPR spectra at room temperature for 1-Li. (b) Thermal evolution in the 280 to 4K temperature range of 1-Li.

Figure S10. Temperature dependence of the molar susceptibility (χ_m) and $1/\chi_m$ measured at 1 kOe for 2-Na, 3-K and 4-NH₄ compounds. The solid red lines are the fits according to Curie–Weiss law. The insets show an enlargement of the low temperature region, in the lower the susceptibility (χ_m) and in the upper the derivative of the susceptibility $(d\chi_m/dT)$.

Figure S11. Thermal dependence of the magnetic entropy (S_{mag}) of **1-Li** and **2-Na** compounds. The horizontal solid line represents the theoretical value, $\Delta S_{\text{theo}} = 5R \ln (2S+1) = 74.2 \text{ J/mol K}$, expected for 5 magnetic ions with a S=5/2 spin state.

Figure S12. Schematic view of the most important magnetic exchange pathways for 1-Li.