Supplementary material for:

Germylenes and Stannylenes Stabilized within the  $N_2PE$  Rings (E= Ge or Sn): Combined Experimental and Theoretical Study.

Jan Vrána, Sergey Ketkov, Roman Jambor, Aleš Růžička, Antonín Lyčka and Libor Dostál

# Table of contents:

| 1) General consideration and syntheses         | page S2-S10  |
|------------------------------------------------|--------------|
| 2) Computational details                       | page S11-S17 |
| 3) Crystallographic data for studied compounds | page S19-S22 |
| 4) References                                  | page S23-S24 |

### 1) General consideration and syntheses

**General remarks**: <sup>1</sup>H, <sup>7</sup>Li, <sup>13</sup>C, <sup>31</sup>P and <sup>119</sup>Sn NMR spectra were recorded on Bruker Avance 500 MHz spectrometer or Bruker Ultrashield 400 MHz, using 5 mm tuneable broad-band probe. Appropriate chemical shifts in <sup>1</sup>H and <sup>13</sup>C NMR spectra were related to the residual signals of the solvent (C<sub>6</sub>D<sub>6</sub>:  $\delta(^{1}H) = 7.27$  ppm and  $\delta(^{13}C) = 77.23$  ppm; THF-d<sub>8</sub>:  $\delta(^{1}H) = 3.58$  ppm and  $\delta(^{13}C) = 67.57$  ppm). <sup>7</sup>Li, <sup>31</sup>P and <sup>119</sup>Sn NMR spectra were related to external standard LiCl in D<sub>2</sub>O, 85% H<sub>3</sub>PO<sub>4</sub> and Me<sub>4</sub>Sn, respectively. Elemental analyses were performed on an LECO-CHNS-932 analyzer.

Synthesis of [PhP(NH*t*-Bu)(N*t*-Bu)]Li(tmeda). (2)A solution of *n*-BuLi (1.51mL, 2.5M, 3.8mmol) in hexane was added dropwise to a stirred solution of PhP(NH*t*-Bu)<sub>2</sub> (0.955 g, 3.8mmol) in hexane (10 mL) at -50°C. The yellow solution was slowly warmed to room temperature and tmeda (0.57 mL, 3.8 mmol) was added forming yellow suspension of (2). The precipitate was re-dissolved by heating to 70°C and the solution was slowly cooled to room temperature and left one day for crystallization. X-Ray quality crystals were decanted and dried in *vacuo*. Yield (0.950 g, 67%).<sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.34 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.61 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 2.02 – 2.16 (m, 16H, tmeda), 7.15 (m, 1H, *p*-Ar*H*), 7.36 (m, 2H, *m*-Ar*H*), 8.06 (m, 2H, *o*-Ar*H*), N*H* not observed.<sup>13</sup>C{<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  32.6 (d, <sup>3</sup>*J*<sub>PC</sub> = 9.9 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 37.1 (d, <sup>3</sup>*J*<sub>PC</sub> = 12.8 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 46.5 (s, N(CH<sub>3</sub>)<sub>2</sub>), 51.7 (d, <sup>2</sup>*J*<sub>PC</sub> = 19.1 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 52.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 29.9 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 58.3 (s, NCH<sub>2</sub>), 126.4 (s, *p*-Ar*C*), 127.8 (s,*m*-Ar*C*), 130.4 (d, <sup>2</sup>*J*<sub>PC</sub> = 17.5 Hz, *o*-Ar*C*), 159.8 (d, <sup>1</sup>*J*<sub>PC</sub> = 39.9 Hz, *ipso*-Ar*C*). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  89.7. <sup>7</sup>Li NMR (194.3 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): 1.10. Mp 78-79 °C. Anal. Calcd for C<sub>20</sub>H<sub>4</sub>oLiN<sub>4</sub>P (374.47): C 64.2; H 10.8. Found: C 64.2; H 10.8.

Synthesis of [PhP(N*t*-Bu)(N-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Li<sub>2</sub>(Et<sub>2</sub>O) (3). A solution of *n*-BuLi (1.72mL, 2.5M, 4.3mmol) in hexane was added dropwise to a stirred solution of PhP(NH*t*-Bu)(NH-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) (0.767 g, 2.2mmol) in diethylether (10 mL) at -50°C. The yellow solution was slowly warmed to room temperature yielding slightly yellow suspension. The suspension was filtered off and the solid was dried in *vacuo*. X-Ray quality crystals were obtained by recrystallization from diethylether. Yield (0.819 g, 86%). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  103.8, 114.6, 121.5. Dp 218-219 °C. Anal. Calcd for C<sub>26</sub>H<sub>41</sub>Li<sub>2</sub>N<sub>2</sub>OP (442.48): C 70.6; H 9.3. Found: C 70.8; H 9.4.

Synthesis of [PhP(NHt-Bu)(N-2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Li(tmeda) (4). A solution of *n*-BuLi (1.31mL, 2.5M, 3.3mmol) in hexane was added dropwise to a stirred solution of PhP(NHt-Bu)(NH-2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) (1.166 g, 3.3mmol) in hexane (15 mL) at -50°C. The yellow suspension was slowly warmed to room temperature and TMEDA (0.57 mL, 3.8 mmol) was added forming yellow suspension of (4). The precipitate was re-dissolved by adding toluene (10 mL) and heating to 70°C and the solution was slowly cooled to room temperature and left one day for crystallization. X-Ray quality crystals were decanted and dried in *vacuo*. Yield (0.861 g, 55%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.26 (d, <sup>3</sup>J<sub>HH</sub> = 6.4 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.27 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.58 (d,  ${}^{3}J_{HH} = 6.4$  Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.85 (m, 16H, tmeda), 4.36 (sept,  ${}^{3}J_{HH} = 6.4$  Hz, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 7.00 (m, 1H, *p*-ArH), 7.15 (m, 1H, *p*-ArH), 7.24 (m, 2H, ArH), 7.27 (m, 2H, ArH), 7.93 (m, 2H, o-ArH), NH not observed. <sup>13</sup>C{<sup>1</sup>H} NMR (125.76 MHz,  $C_6D_6$ , 294 K):  $\delta$  26.1 (s, CH(CH\_3)<sub>2</sub>), 26.6 (d,  $J_{PC}$  = 5.2 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 29.0 (d,  $J_{PC}$  = 4.7 Hz,  $CH(CH_3)_2$ , 32.7 (d,  ${}^{3}J_{PC} = 9.2$  Hz,  $C(CH_3)_3$ ), 46.1 (s,  $N(CH_3)_2$ ), 51.8 (d,  ${}^{2}J_{PC} = 19.6$  Hz,  $C(CH_3)_3$ ), 56.9 (s, NCH<sub>2</sub>), 118.4 (s, ArC), 123.7 (s, ArC), 127.8 (s, ArC), 128.4 (d,  ${}^{3}J_{PC} = 4.9$  Hz,  $m-C_{6}H_{5}$ ), 129.9 (d,  $^{2}J_{PC} = 23.4 \text{ Hz}, o-C_{6}\text{H}_{5}$ , 144.1 (d,  $^{3}J_{PC} = 4.3 \text{ Hz}, o-C_{6}\text{H}_{3}$ ), 153.5 (d,  $^{2}J_{PC} = 20.8 \text{ Hz}, ipso-C_{6}\text{H}_{3}$ ), 157.2 (d,  ${}^{1}J_{PC} = 43.9$  Hz, *ipso-C*<sub>6</sub>H<sub>5</sub>).  ${}^{31}P{}^{1}H{}$  NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  95.5.<sup>7</sup>Li NMR (194.3MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 1.07. Mp 109-111°C. Anal. Calcd for C<sub>28</sub>H<sub>48</sub>LiN<sub>4</sub>P (478.62): C 70.3; H 10.1. Found: C 70.3; H 10.1.

**Synthesis of** [*t*-**BuP**(N-2,6-*i*-**Pr**<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>]**L**i<sub>2</sub>(**E**t<sub>2</sub>**O**)<sub>2</sub> (5). A solution of *n*-BuLi (1.58mL, 2.5M,5.8mmol) in hexane was added dropwise to a stirred solution of *t*-BuP(NH-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub> (1.277 g, 2.9mmol) in diethylether (15 mL) at -10°C. The yellow solution was slowly warmed to room temperature forming white suspension of (5.2Et<sub>2</sub>O). The precipitate was re-dissolved by heating to 55°C and then left at room temperature for one day, yielding colorless X-ray quality crystals. Yield (0.976 g, 55%).<sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  0.91 (d, <sup>3</sup>*J*<sub>HH</sub> = 9.6 Hz, 9H, C(*CH*<sub>3</sub>)<sub>3</sub>), 0.97 (t, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 12H, CH<sub>2</sub>CH<sub>3</sub>), 1.23 (m broad, 6H, CH(*CH*<sub>3</sub>)<sub>2</sub>), 1.39 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 12H, CH(*CH*<sub>3</sub>)<sub>2</sub>), 3.21 (q, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 8H, CH<sub>2</sub>CH<sub>3</sub>), 3.96 (m broad, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 4.27 (m broad, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 6.96 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.4 Hz, 2H, *p*-ArH), 7.16 (m broad, 4H, ArH).<sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  15.4 (s, OCH<sub>2</sub>CH<sub>3</sub>), 24.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 18.6 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 26.0, 26.7, 27.5, 28.0 (s broad, CH(CH<sub>3</sub>)<sub>2</sub>), 30.4 (s broad, CH(CH<sub>3</sub>)<sub>2</sub>), 40.1 (d, <sup>1</sup>*J*<sub>PC</sub> = 64.9 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 66.2 (s,

OCH<sub>2</sub>CH<sub>3</sub>), 118.1, 123.3, 125.0, 141.2, 142.6 (s, Ar*C*), 153.6 (d,  ${}^{2}J_{PC} = 10.3$  Hz, *ipso*-Ar*C*).<sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  139.4. <sup>7</sup>Li NMR (194.3MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.38. Dp 152 °C. Anal. Calcd for C<sub>36</sub>H<sub>63</sub>Li<sub>2</sub>N<sub>2</sub>O<sub>2</sub>P (600.75): C 72.0; H 10.6. Found: C 72.1; H 10.7.

**Synthesis of [***t***-BuP(N-2,6-***i***-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>]Li<sub>2</sub>(tmeda)<sub>2</sub> (5a). A solution of** *n***-BuLi (1.58mL, 2.5M, 4.0mmol) in hexane was added dropwise to a stirred solution of** *t***-BuP(NH-2,6-***i***-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub> (0.872 g, 2.0mmol) in toluene (15 mL) at -10°C. The yellow solution was slowly warmed to room temperature and tmeda (0.59 mL, 4.0 mmol) was added forming yellow suspension of (5a). The suspension was filtered off and the powder was dried in** *vacuo***. Yield (1.234 g, 91%).<sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 0.64 (d, {}^{3}J\_{PH} = 9.6 Hz, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.06 (d, {}^{3}J\_{HH} = 7.0 Hz, 12H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.16 (d, {}^{3}J\_{HH} = 6.8 Hz, 12H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.14 (s, 24H, N(CH<sub>3</sub>)<sub>2</sub>), 2.30 (s, 8H, NCH<sub>2</sub>), 4.75 (m, 4H, CH(CH<sub>3</sub>)<sub>2</sub>), 5.94 (t, {}^{3}J\_{HH} = 7.3 Hz, 2H,** *p***-Ar***H***), 6.52 (d, {}^{3}J\_{HH} = 7.3 Hz, 2H,** *m***-Ar***H***).<sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 25.9 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 26.4 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 26.6 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 27.7 (d, {}^{2}J\_{PC} = 13.9 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 39.1 (d, {}^{1}J\_{PC} = 43.8 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 46.3 (s, N(CH<sub>3</sub>)<sub>2</sub>), 58.9 (s, NCH<sub>2</sub>), 109.5 (s, Ar***C***), 122.6 (s, Ar***C***), 140.1 (s,** *o***-Ar***C***), 158.4 (d, {}^{2}J\_{PC} = 15.6 Hz,** *ipso***-Ar***C***). <sup>31</sup>P {<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 129.8. <sup>7</sup>Li NMR (194.3MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ -0.04 broad. Dp 118 °C. Anal. Calcd for C<sub>40</sub>H<sub>75</sub>Li<sub>2</sub>N<sub>6</sub>P (684.92): C 70.1; H 11.0. Found: C 70.1; H 11.1.** 

Synthesis of [*t*-BuP(NH-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(N-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Li(tmeda) (6). A solution of *n*-BuLi (0.54mL, 2.5M, 1.4mmol) in hexane was added dropwise to a stirred solution of *t*-BuP(NH-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub> (0.598 g, 1.4mmol) in hexane (10 mL) at -10°C. The yellow solution was slowly warmed to room temperature and tmeda (0.20 mL, 1.4 mmol) was added forming slightly yellow suspension of (6). The suspension was filtered off and the powder was dried in *vacuo*. Yield (0.695 g, 91%).<sup>1</sup>H NMR (500 MHz, THF-d<sub>8</sub>, 294 K):  $\delta$  -0.93 (d, <sup>3</sup>*J*<sub>PH</sub> = 10.5 Hz, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.06 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.08 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.6 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.13 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.7 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.17 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.4 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.14 (s, 12H, N(CH<sub>3</sub>)<sub>2</sub>), 2.29 (s, 4H, NCH<sub>2</sub>), 3.67 (m broad, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 4.11 (s, 1H, NH), 4.23 (m broad, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 6.35 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.2 Hz, 1H, *p*-ArH), 6.65 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.6 Hz, 1H, *p*-ArH), 6.72 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.4 Hz, 2H, *m*-ArH), 6.35 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.4 Hz, 2H, *m*-ArH). <sup>13</sup>C{<sup>1</sup>H} NMR (125.76 MHz, THF-d<sub>8</sub>, 294 K):  $\delta$  24.7 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 25.4 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 25.5 (s,

CH(CH<sub>3</sub>)<sub>2</sub>), 25.9 (d,  ${}^{5}J_{PC} = 3.4$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 26.2 (d,  ${}^{2}J_{PC} = 17.2$  Hz, C(CH<sub>3</sub>)<sub>3</sub>), 28.1 (d,  ${}^{4}J_{PC} = 8.7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 29.2 (d,  ${}^{4}J_{PC} = 8.7$  Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 37.7 (d,  ${}^{1}J_{PC} = 32.1$  Hz, C(CH<sub>3</sub>)<sub>3</sub>), 46.4 (s, N(CH<sub>3</sub>)<sub>2</sub>), 59.1 (s, NCH<sub>2</sub>), 120.5 (s, ArC), 122.9 (s, ArC), 123.4 (s, ArC), 124.1 (s, ArC), 139.1 (s, ArC), 142.3 (s, ArC), 144.1 (s, ArC), 154.9 (d,  ${}^{2}J_{PC} = 12.4$  Hz, *ipso*-ArC).  ${}^{31}P\{{}^{1}H\}$  NMR (202.46 MHz, THF-d<sup>8</sup>, 294 K):  $\delta$  127.7. <sup>7</sup>Li NMR (194.3MHz, THF-d<sub>8</sub>, 294 K):  $\delta$  0.17. Mp 47°C. Anal. Calcd for C<sub>34</sub>H<sub>60</sub>LiN<sub>4</sub>P (562.78): C 72.6; H 10.8. Found: C 72.8; H 10.9.

Synthesis of [PhP(N*t*-Bu)<sub>2</sub>]Ge (7). Asolution of 1 (0.555 g, 2.1 mmol) in THF (20 mL) was added dropwise to a stirred suspension of GeCl<sub>2</sub>.diox (0.491 g, 2.1 mmol) in diethylether (20 mL) at -50°C. The yellow solution was slowly warmed to room temperature and stirred for 2 hours. The solvent was removed under reduced pressure and the product was re-dissolved in hexane (30 ml). The solution was filtered off to remove lithium chloride and the solvent was removed under reduced pressure producing orange-red oil. Yield (0.622 g, 91%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.13 (s, 18H, C(C*H*<sub>3</sub>)<sub>3</sub>), 7.18 – 7.23 (m, 3H, Ar*H*), 7.65 (t, <sup>3</sup>*J*<sub>HH</sub> = 1.6 Hz, 2H, *o*-Ar*H*). <sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  34.1 (d, <sup>3</sup>*J*<sub>PC</sub> = 6.9 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 54.5 (d, <sup>2</sup>*J*<sub>PC</sub> = 7.8 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 128.7 (d, <sup>3</sup>*J*<sub>PC</sub> = 7.0 Hz, *m*-ArC), 130.4 (d, <sup>2</sup>*J*<sub>PC</sub> = 25.8 Hz, *o*-ArC), 130.8 (s, *p*-ArC), 147.2 (d, <sup>1</sup>*J*<sub>PC</sub> = 44.7 Hz, *ipso*-ArC). <sup>31</sup>P {<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  138.3. Anal. Calcd for C<sub>14</sub>H<sub>23</sub>GeN<sub>2</sub>P (322.96): C 52.1; H 7.2. Found C 52.2; H 7.3.

Synthesis of [PhP(Nt-Bu)(N2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ge (8).A solution of 3 (1.504 g, 3.4mmol) in THF (20 mL) was added dropwise to a stirred suspension of GeCl<sub>2</sub>.diox (0.780 g, 3.4mmol) in diethylether (20 mL) at -50 °C. The yellow solution was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the product was re-dissolved in hexane (30 mL). The suspension was filtered to remove lithium chloride and the solvent was removed to third of its volume under reduced pressure. The orange solution was stored at -30°C to give orange X-Ray quality crystals. Yield (1.089 g, 75%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.05 (d, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.35 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.46 (d, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.77 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 7.10 – 7.26 (m, 6H, Ar*H*), 7.67 (m, 2H, *o*-C<sub>6</sub>H<sub>5</sub>).<sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  25.5 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 26.6 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 29.0 (d, <sup>4</sup>J<sub>PC</sub> = 4.5 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 34.2 (d, <sup>3</sup>J<sub>PC</sub> = 6.5 Hz, C(CH<sub>3</sub>)<sub>3</sub>),

55.0 (d,  ${}^{2}J_{PC} = 8.2$  Hz,  $C(CH_{3})_{3}$ ), 123.9 (s, ArC), 125.6 (s, ArC), 128.7 (s, ArC), 130.5 (d,  ${}^{2}J_{PC} = 25.4$  Hz,  $o-C_{6}H_{5}$ ), 131.0 (s, ArC), 139.7 (d,  $J_{PC} = 4.3$  Hz, ArC), 144.6 (d,  ${}^{1}J_{PC} = 46.2$  Hz, *ipso-C*<sub>6</sub>H<sub>5</sub>), 146.1 (s, ArC).  ${}^{31}P{}^{1}H{}$  NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  158.3. Mp 107-109 °C. Anal. Calcd for C<sub>22</sub>H<sub>31</sub>GeN<sub>2</sub>P (427.11): C 61.9; H 7.3. Found: C 62.0; H 7.4.

**Synthesis of [***t***-BuP(N-2,6-***i***-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>] Ge (9). A solution of 5 (0.796 g, 1.3 mmol) in THF (15 mL) was added dropwise to a stirred solution of GeCl<sub>2</sub>.diox (0.307 g, 1.3 mmol) in THF (15 mL) at -80°C. The reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the product was re-dissolved in hexane (10 ml) at 0°C. The solution was filtered off and the solvent was removed under reduced pressure to give orange oil of 9. Yield (0.312 g, 46%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 0.85 (d, <sup>3</sup>***J***<sub>PH</sub> = 12.8 Hz, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.18 (d, <sup>3</sup>***J***<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.27 (d, <sup>3</sup>***J***<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.36 (d, <sup>3</sup>***J***<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.54 (d, <sup>3</sup>***J***<sub>HH</sub> = 6.8 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 4.06 (sept, <sup>3</sup>***J***<sub>HH</sub> = 6.8 Hz, 2H, C***H***(CH<sub>3</sub>)<sub>2</sub>), 4.39 (sept, <sup>3</sup>***J***<sub>HH</sub> = 6.8 Hz, 2H, C***H***(CH<sub>3</sub>)<sub>2</sub>), 7.04-7.18 (m, 6H, Ar***H***). <sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 23.5 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 24.0 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 24.1 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 26.0 (d, <sup>4</sup>***J***<sub>PC</sub> = 4.4 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 27.2 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 28.4 (d, <sup>2</sup>***J***<sub>PC</sub> = 14.7 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 30.0 (d, <sup>4</sup>***J***<sub>PC</sub> = 16.8 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 36.8 (d, <sup>2</sup>***J***<sub>PC</sub> = 41.6 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 124.2 (s, ArC), 124.7 (s, ArC), 125.5 (s, ArC), 140.4 (d,** *J***<sub>PC</sub> = 4.0 Hz, ArC), 143.9 (s, ArC), 144.8 (s, ArC). <sup>31</sup>P {<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 189.2. Anal. Calcd for C<sub>28</sub>H<sub>43</sub>GeN<sub>2</sub>P (511.27): C 65.8; H 8.5. Found: C 65.8; H 8.5.** 

Synthesis of [PhP(N*t*-Bu)<sub>2</sub>]Sn (10). A solution of 1 (0.745 g, 2.8 mmol) in THF (20 mL) was added dropwise to a stirred solution of SnCl<sub>2</sub> (0.535 g, 2.8 mmol) in THF (20 mL) at -50°C. The red solution was slowly warmed to room temperature and stirred for 2 hours. The solvent was removed under reduced pressure and the product was re-dissolved in hexane (30 mL). The solution was filtered off to remove lithium chloride and the solution was concentrated to third of its volume under reduced pressure. The red solution was stored at -30°C to give orange X-Ray quality crystals. Yield (0.320 g, 31%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.15 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.25 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 7.20 (m, 1H, *p*-Ar*H*), 7.28 (m, 2H, *m*-Ar*H*), 7.70 (m, 2H, *o*-Ar*H*). <sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  36.2 (d, <sup>3</sup>*J*<sub>PC</sub> = 7.8 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 54.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 14.0 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 128.8 (d, <sup>2</sup>*J*<sub>PC</sub> = 12.8 Hz, *o*-Ar*C*),

129.9 (s, *p*-Ar*C*), 130.1 (d,  ${}^{3}J_{PC} = 5.8$  Hz, *m*-Ar*C*), 151.3 (d,  ${}^{1}J_{PC} = 52.9$  Hz, *ipso*-Ar*C*).  ${}^{31}P\{{}^{1}H\}$  NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  135.0.  ${}^{119}Sn\{{}^{1}H\}$  NMR (149.2 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  698.7. Dp 93-95 °C. Anal. Calcd for C<sub>14</sub>H<sub>23</sub>SnN<sub>2</sub>P (369.03): C 45.6; H 6.3. Found: C 45.6; H 6.3.

**Synthesis of [***t***-BuP(N-2,6-***i***-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>]<b>Sn (11).** A solution of 5 (0.691 g, 1.2mmol) in THF (15 mL) was added dropwise to a stirred solution of SnCl<sub>2</sub> (0.218 g, 1.2mmol) in THF (20 mL) at -80°C. The reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the product was re-dissolved in hexane (20 mL). The solution was filtered off to remove lithium chloride and the solvent was removed under reduced pressure to give red oil of **11**. Yield (0.482 g, 75%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 0.88 (d, <sup>3</sup>*J*<sub>PH</sub> = 12.2 Hz, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>), 1.17 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 6H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.34 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 6H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.49 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 6H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.69 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.7 Hz, 6H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 4.08 (sept, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 2H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 4.57 (m, 2H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 7.05 (m, 4H, Ar*H*), 7.28 (m, 2H, Ar*H*). <sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 23.6 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 24.1 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 24.3 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 26.8 (d, <sup>4</sup>*J*<sub>PC</sub> = 5.9 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 123.8 (s, ArC), 124.4 (s, ArC), 124.7 (s, ArC), 142.9 (d, *J*<sub>PC</sub> = 5.9 Hz, ArC), 143.1 (s, ArC), 144.4 (s, ArC). <sup>31</sup>P {<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 191.3 (s, <sup>2</sup>*J*<sub>Sn</sub> = 74.8 Hz). <sup>119</sup>Sn {<sup>1</sup>H} NMR (149.2 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 592.6. Anal. Calcd for C<sub>28</sub>H<sub>43</sub>N<sub>2</sub>PSn (559.35): C 60.1; H 7.8. Found: C 60.2; H 7.9.

Synthesis of [Ph(H)P(Nt-Bu)<sub>2</sub>]GeCl (12). A solution of 2 (0.812 g, 2.2 mmol) in diethylether (10 mL) was added dropwise to a stirred suspension of GeCl<sub>2</sub>.diox (0.502 g, 2.2 mmol) in diethylether (15 mL) at -80°C. The reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the product was re-dissolved in toluene (25 mL). The solution was filtered off to remove lithium chloride and then concentrated to third of its volume. The slightly yellow solution was stored at -30°C to give colorless X-Ray quality crystals. Yield 0.312 g, 40%. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  overlapped signals 1.09 (s broad, 18H, C(CH<sub>3</sub>)<sub>3</sub>), 7.00 (m, 3H, Ar*H*), 7.98 (m, 2H, Ar*H*); major set: 8.25 (d, <sup>1</sup>J<sub>PH</sub> = 469.8 Hz, 1H, P*H*); minor set: 8.59 (d, <sup>1</sup>J<sub>PH</sub> = 462.2 Hz, 1H, P*H*). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  major signal 33.9

(d,  ${}^{1}J_{PH} = 469.8$  Hz); minor signal 36.4 (d,  ${}^{1}J_{PH} = 462.2$  Hz). Mp 140 °C. Anal. Calcd for  $C_{14}H_{24}ClGeN_2P$  (359.42): C 46.8; H 6.7. Found: C 46.9; H 6.8.

Synthesis of [P(N-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>]Li(tmeda) (13). A suspension of 5a (0.990 g, 1.4 mmol) was heated at 90°C for two hours giving orange solution. The solvent was removed under reduced pressure and the solid was recrystallized from diethylether (10 mL) giving colorless crystals of 13. Yield (0.372 g, 51%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.40 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 24H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.61 (s,4H, NC*H*<sub>2</sub>), 1.83 (s, 12H, N(C*H*<sub>3</sub>)<sub>2</sub>), 3.68 (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 4H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 7.09 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.6 Hz, 2H, *p*-Ar*H*), 7.27 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.6 Hz, 4H, *m*-Ar*H*). <sup>13</sup>C{<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  25.3 (s broad, CH(CH<sub>3</sub>)<sub>2</sub>), 28.7 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 45.2 (s, N(CH<sub>3</sub>)<sub>2</sub>), 56.4 (s, NCH<sub>2</sub>), 121.4 (s, ArC), 123.3 (s, Ar*C*), 140.4 (d, <sup>3</sup>*J*<sub>PC</sub> = 5.9 Hz, *o*-Ar*C*), 145.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 14.5 Hz, *ipso*-Ar*C*). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  335.9. <sup>7</sup>Li NMR (194.3MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  2.39. Dp 135°C. Anal. Calcd for C<sub>30</sub>H<sub>50</sub>LiN<sub>4</sub>P (504.66): C 71.4; H 10.0. Found: C 71.5; H 10.1.

Synthesis of  $[P(N-2,6-i-Pr_2C_6H_3)_2]_2$ Ge (14). A solution of 13 (1.004 g, 2.0mmol) in THF (15 mL) was added dropwise to a stirred solution of GeCl<sub>2</sub>.diox (0.230 g, 1.0mmol) in THF (20 mL) at -80°C. The reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the yellow powder was washed with hexane (10 ml). The product was then extracted with toluene (20 mL). The orange solution was stored at -30°C to give orange X-ray quality crystals of 14. Yield (0.299 g, 36%). <sup>1</sup>H NMR (500 MHz, Tol-d<sub>8</sub>, 294 K):  $\delta$  0.58 (m broad, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.95 (m broad, 12H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.21 (m broad, 18H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.37 (m broad, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.48 (m broad, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.18 (m broad, 4H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.49 (m broad, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.82 (m broad, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 6.85 (m broad, 2H, ArH), 6.98 (m broad, 8H, ArH), 7.11 (m broad, 2H, ArH). <sup>1</sup>H NMR (500 MHz, Tol-d<sub>8</sub>, 338 K):  $\delta$  1.11 (m broad, 48H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.40 (m broad, 8H, CH(CH<sub>3</sub>)<sub>2</sub>), 6.95 (m broad, 12H, ArH). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, Tol-d<sub>8</sub>, 294 K):  $\delta$  341.7. <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, Tol-d<sub>8</sub>, 294 K):  $\delta$  343.0. Mp 204 °C. Anal. Calcd for C<sub>48</sub>H<sub>66</sub>GeN<sub>4</sub>P<sub>2</sub> (835.77): C 69.0; H 8.2. Found: C 69.2; H 8.4.

Synthesis of  $[P(N-2,6-i-Pr_2C_6H_3)_2]_2Sn$  (15). A solution of 13 (1.161 g, 2.3mmol) in THF (15 mL) was added dropwise to a stirred solution of  $SnCl_2$  (0.218 g, 1.2 mmol) in THF (20 mL) at -80°C. The

reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the yellow powder was re-dissolved in hexane (30 mL). The yellow solution was stored at 4°C to give yellow X-ray quality crystals of **15**. Yield (0.385 g, 38%). <sup>1</sup>H NMR (500 MHz, Tol-d<sub>8</sub>, 338 K): δ 1.12 (s broad, 48H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.43 (s broad, 8H, CH(CH<sub>3</sub>)<sub>2</sub>), 6.92 (t,  ${}^{3}J_{HH} = 7.4$  Hz, 4H, Ar*H*), 6.99 (m, 8H, Ar*H*) ppm.  ${}^{13}C{}^{1}H$  NMR (125.76 MHz, Tol-d<sub>8</sub>, 338 K): δ 24.3 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 29.4 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 123.7 (s, ArC), 125.0 (s, ArC), 139.8 (d,  $J_{PC} = 15.2$  Hz, ArC), 142.6 (s, ArC).  ${}^{31}P{}^{1}H$  NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 350.0 (s,  ${}^{2}J_{SnP} = 120.0$  Hz).  ${}^{119}Sn{}^{1}H$  NMR (149.2 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ -204.7 (s). Mp 145-146 °C. Anal. Calcd forC<sub>48</sub>H<sub>68</sub>N<sub>4</sub>P<sub>2</sub>Sn (881.74): C 65.4; H 7.8. Found: C 66.4; H 7.9.

Synthesis of  $[P(N-2,6-i-Pr_2C_6H_3)_2]_2Pb$  (16). A solution of 13 (0.850 g, 1.7mmol) in THF (15 mL) was added dropwise to a stirred suspension of PbCl<sub>2</sub> (0.234 g, 0.8 mmol) in THF (20 mL) at -80°C. The reaction mixture was slowly warmed to room temperature and stirred for 15 minutes. The solvent was removed under reduced pressure and the yellow powder was re-dissolved in hexane (30 ml). The yellow solution was stored at -6°C to give yellow X-ray quality crystals of 15.Yield (0.474 g, 58%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.15 (s broad, 48H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.45 (m broad, 8H, CH(CH<sub>3</sub>)<sub>2</sub>), 6.90 (t, <sup>3</sup>J<sub>HH</sub> = 7.7 Hz, 4H, *p*-ArH), 7.07 (d, <sup>3</sup>J<sub>HH</sub> = 7.7 Hz, 8H, *m*-ArH). <sup>13</sup>C {<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  28.8 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 29.4 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 123.6 (s, ArC), 125.1 (s ArC), 140.5 (d, J<sub>PC</sub> = 11.8 Hz, ArC), 142.6 (s, ArC). <sup>31</sup>P {<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  349.3 (s, <sup>2</sup>J<sub>PbP</sub> = 138 Hz). Mp 122 °C. Anal. Calcd for C<sub>48</sub>H<sub>68</sub>N<sub>4</sub>P<sub>2</sub>Pb (970.23): C 59.4; H 7.1. Found: C 59.5; H 7.2.

Synthesis of  $[P(Nt-Bu)_2]Li(tmeda)$  (17). A solution of *n*-BuLi (0.95 mL, 2.5M, 2.4 mmol) in hexane was added dropwise to a stirred solution of **2** (0.891 g, 2.4mmol) in toluene (20 mL) at -50°C. The yellow emulsion was warmed to room temperature and then heated to 90°C for one week. The volatiles were removed under reduced pressure at 90°C giving slightly yellow oil. Yield (0.670 g, 95%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.47 (s, 18H, , C(CH<sub>3</sub>)<sub>3</sub>), 1.78 (s, 4H, NCH<sub>2</sub>), 1.97 (s, 12H, N(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  36.9 (d, <sup>3</sup>J<sub>PC</sub> = 12.1 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 46.4 (s, N(CH<sub>3</sub>)<sub>2</sub>), 53.1 (d, <sup>2</sup>J<sub>PC</sub> = 15.5 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 56.8 (s, NCH<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>,

294 K): δ 364.70. <sup>7</sup>Li NMR (194.3MHz, C<sub>6</sub>D<sub>6</sub>, 294 K): δ 2.44. Anal. Calcd for C<sub>14</sub>H<sub>34</sub>LiN<sub>4</sub>P (296.36): C 56.7; H 11.6. Found: C 56.7; H 11.6.

Synthesis of {[P(N*t*-Bu)<sub>2</sub>]K(tmeda)}<sub>2</sub> (18). A solution of 2 (0.548 g, 1.5 mmol) in THF (20 mL) was added to freshly prepared KC<sub>8</sub> (K: 0.057 g, 1.5 mmol, C: 0.140 g, 11.7 mmol) while stirring. After two hours of stirring at room temperature the solvent was removed by reduced pressure and the product was extracted with toluene (15 mL). The dark red solution was concentrated to half of its volume and stored at -30°C for one week yielding colorless crystals of 18. Yield (0.115 g, 24%). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  1.21 (s, 18H, C(CH<sub>3</sub>)<sub>3</sub>), 2.14 (s 12H, N(CH<sub>3</sub>)<sub>2</sub>), 2.29 (s, 4H, NCH<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125.76 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  36.8 (d, <sup>3</sup>*J*<sub>PC</sub> = 13.7 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 46.4 (s, N(CH<sub>3</sub>)<sub>2</sub>), 53.8 (d, <sup>2</sup>*J*<sub>PC</sub> = 17.7 Hz, *C*(CH<sub>3</sub>)<sub>3</sub>), 59.0 (s, NCH<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (202.46 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  351.6. Mp 72 °C. Anal. Calcd forC<sub>14</sub>H<sub>34</sub>KN<sub>4</sub>P (328.52): C 51.2; H 10.4. Found: C 51.2; H 10.4.

Synthesis of *cis*-[ $P(\mu$ -Nt-Bu)<sub>2</sub>P(t-BuN)<sub>2</sub>]Ge (19). A solution of 17 (0.756 g, 2.6 mmol) in THF (10 mL) was added dropwise to a stirred solution of GeCl<sub>2</sub>.diox (0.295 g, 1.3 mmol) in THF (10 mL) at - 80°C. The reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the yellow powder was extracted with diethylether (10 mL). The extract was stored at -30°C giving yellow amorphous precipitate. Yield (0.374 g, 70%). The spectral data were in agreement with the literature.

Synthesis of *cis*-[P( $\mu$ -Nt-Bu)<sub>2</sub>P(t-BuN)<sub>2</sub>]Sn (20). A solution of 17 (0.688 g, 2.3 mmol) in THF (10 mL) was added dropwise to a stirred solution of SnCl<sub>2</sub> (0.219 g, 1.2 mmol) in THF (10 mL) at -80°C. The reaction mixture was slowly warmed to room temperature and stirred for 1 hour. The solvent was removed under reduced pressure and the yellow powder was extracted with hexane (15 mL). The extract was stored at -30°C giving pale yellow amorphous precipitate. Yield (0.351 g, 65%). <sup>119</sup>Sn{<sup>1</sup>H} (149.2 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K):  $\delta$  430.9 (s). The other spectral data were in agreement with the literature.

## 2) Computational details.

The optimization of the 8, syn-12 - 15 molecular geometries was carried out using the Gaussian09 program package<sup>S1</sup> with the M062X hybrid functional<sup>S2</sup> and the DGDZVP double- $\zeta$  valence polarization basis set.<sup>S3</sup> The wavefunctions obtained with the AIMALL code<sup>S4</sup> were used for analysis of the electron density distribution and calculations of the AIM charges based on the Quantum Theory of Atoms in Molecules.<sup>S5</sup> Deformation densities were obtained with the Multiwfn program<sup>S6</sup> by subtracting the  $\rho$  values of the sphericalized individual atoms from the molecular electron density. The bonding critical point electron densities, ellipticities and potential energy density / kinetic energy density ratios were computed using the Multiwfn suit. The natural bond orbital (NBO) analysis<sup>S7</sup>was performed with the Gaussian09 package to investigate the Lewis pair structures of complexes, charge distribution and donor-acceptor interactions. To compare the molecular and electronic structures of the tin and lead complexes the DFT calculations were carried out at the M062X/def2-TZVP/DGDZVP level of theory for the 15 and 16 molecules as well as for model complexes 15A and 16A bearing Me groups instead of the Dip fragments. The triple- $\zeta$  valence polarization def2-TZVP basis set was used for the Sn and Pb atoms while the DGDZVP functions were taken for C, H, N and P. The charge distributions and MO structures were compared for the optimized molecular geometries.

S11



**Figure S1**. Positive deformation electron density (DED) contour maps (0.01-0.10 a.u., step 0.01 a.u.) of complexes **8**, *syn*-**12-14** in the NPN plane. The nitrogen atom notations correspond to those in Figures 4, 6-9.



**Figure S2**. Positive deformation electron density (DED) contour maps (0.01-0.10 a.u., step 0.01 a.u.) of complexes **8**, *syn***-12-14** in the planes orthogonal to NEN and containing the N-P bonds. The nitrogen atom notations correspond to those in Figures4, 6-9.



**Figure S3**. Positive deformation electron density (DED) contour maps (0.01-0.10 a.u., step 0.01 a.u.) of complexes **8**, *syn*-**12-14** in the NEN plane (E = Li, Ge). The nitrogen atom notations correspond to those in Figures 4, 6-9.



**Figure S4**. Positive deformation electron density (DED) contour maps (0.01-0.10 a.u., step 0.01 a.u.) of complexes **8**, *syn*-**12-14** in the planes orthogonal to NEN (E = Li, Ge) and containing the N-E bonds. The nitrogen atom notations correspond to those in Figures 4, 6-9.



Figure S5. The optimized M062X/def2-TZVP/DGDZVP geometries of complexes 15 (left) and 16 (right). Hydrogen atoms are omitted for clarity.

**Table S1.** M062X/DGDZVP/Def2TZVP selected bond lengths d (Å), Mulliken atomic charges q (a.u.) and frontier MO energies E (eV) in complexes **15**, **16** and corresponding model compounds **15A** and **16A** where the Dip fragments are substituted with Me groups.

| Molecular<br>parameters <sup>a</sup> | 15    | 16    | 15A   | 16A   |
|--------------------------------------|-------|-------|-------|-------|
| <i>d</i> (E-N1)                      | 2.40  | 2.50  | 2.41  | 2.54  |
| <i>d</i> (E-N2)                      | 2.26  | 2.40  | 2.21  | 2.33  |
| <i>d</i> (P-N1)                      | 1.60  | 1.60  | 1.60  | 1.60  |
| <i>d</i> (P-N2)                      | 1.63  | 1.63  | 1.62  | 1.62  |
| <i>q</i> (E)                         | +0.90 | +1.03 | +1.05 | +1.15 |
| <i>q</i> (N1)                        | -0.80 | -0.81 | -0.71 | -0.72 |
| <i>q</i> (N2)                        | -0.88 | -0.86 | -0.74 | -0.74 |
| $q(C_{N1})$                          | +0.11 | +0.11 | -0.51 | -0.51 |
| $q(C_{N2})$                          | +0.19 | +0.18 | -0.52 | -0.51 |
| E(HOMO)                              | -6.81 | -6.99 | -6.76 | -7.22 |
| E(LUMO)                              | -1.18 | -1.02 | -0.43 | -0.28 |

<sup>a</sup>E = Sn for complexes **15**, **15A**, E = Pb for complexes **16**, **16A**. The nitrogen atom notations correspond to those in Figure 9.

| Molecule | Level of theory | Energy         |
|----------|-----------------|----------------|
| 8        | M062X/DGDZVP    | -3384.05939765 |
| syn-12   | M062X/DGDZVP    | -3535.28060070 |
| anti-12  | M062X/DGDZVP    | -3535.27918660 |
| 13       | M062X/DGDZVP    | -1740.69181481 |
| 14       | M062X/DGDZVP    | -4847.55795551 |
| 15       | M062X/DGDZVP    | -8796.10355021 |
|          | M062X/def2-     |                |
| 15       | TZVP/DGDZVP     | -2985.25479774 |
|          | M062X/def2-     |                |
| 16       | TZVP/DGDZVP     | -2963.76082517 |
|          | M062X/def2-     |                |
| 15a      | TZVP/DGDZVP     | -1275.40423446 |
|          | M062X/def2-     |                |
| 16a      | TZVP/DGDZVP     | -1253.90576702 |
|          |                 |                |

**Table S2.** Calculated total electronic energies (a.u.) of the complexes studied.

### 3) Crystallographic data for studied compounds

Suitable single crystals of 2 - 5, 8, 10, 12 - 15 and 18 were mounted on a glass fiber with an oil and measured on four-circle diffractometer KappaCCD with CCD area detector by monochromatized MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å). Corresponding crystallographic data are given in Table S3. The numerical<sup>S8</sup> absorption correction from crystal shape was applied for all samples except of 5 and 13 where the SADABS multi-scan procedure has been applied.<sup>59</sup> The structures were solved by the direct method (SIR92<sup>S10</sup> or ShelXT<sup>S11</sup> for samples of **5** and **13**) and refined by a full matrix least squares procedure based on F<sup>2</sup> (SHELXL97<sup>S12</sup>, ShelXL-2014<sup>S13</sup> or Olex2.1<sup>S14</sup>). Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure the uniformity of treatment of crystal, all hydrogen atoms, except of P-H ones, were recalculated into idealized positions (riding model) and assigned temperature factors Hiso(H) = 1.2 Ueq(pivot atom) or of 1.5Ueq for the methyl moiety with C-H = 0.96 Å, 0.97, 0.98, and 0.93 Å for methyl, methylene, methine and hydrogen atoms in aromatic rings, respectively. Heavily disordered coordinated diethylether molecule is found in compound 5, and similar type of disorder has been recognized in the case of coordinated TMEDA molecule in 13. Positional disorders were also detected for the Dip part of 13 and one of *i*-Pr groups in 15, all these disordered parts of molecules were treated by standard procedures and constraints/restraints implemented in Shelxl program package.<sup>S11</sup> Crystallographic data for structural analysis has been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 1451458-1451468. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

|                                                       | 2                                                          | 3                                                          | 4                                                                                         | 5                                           | 8                    |
|-------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|
| chemical formula                                      | C <sub>20</sub> H <sub>40</sub> LiN <sub>4</sub> P         | $C_{52}H_{82}Li_4N_4O_2P_2$                                | C <sub>28</sub> H <sub>48</sub> LiN <sub>4</sub> P                                        | $C_{36}H_{63}Li_2N_2O_2P$                   | $C_{22}H_{31}GeN_2P$ |
|                                                       |                                                            | $C_4H_{10}O$                                               |                                                                                           |                                             |                      |
| crystsyst                                             | monoclinic                                                 | monoclinic                                                 | monoclinic                                                                                | orthorhombic                                | triclinic            |
| space group                                           | $P2_l/c$                                                   | $P2_l/c$                                                   | $P2_l/c$                                                                                  | Pnma                                        | P-1                  |
| a[Å]                                                  | 16.9831(16)                                                | 18.1381(19)                                                | 10.5280(4)                                                                                | 20.3440(10)                                 | 10.1790(4)           |
| <i>b</i> [Å]                                          | 16.3830(13)                                                | 11.6450(12)                                                | 15.6740(8)                                                                                | 17.6920(15)                                 | 10.6229(7)           |
| c[Å]                                                  | 19.5470(13)                                                | 27.5590(17)                                                | 18.8041(13)                                                                               | 10.6001(19)                                 | 11.3441(5)           |
| α[°]                                                  | 90                                                         | 90                                                         | 90                                                                                        | 90                                          | 105.523(5)           |
| β[°]                                                  | 118.911(6)                                                 | 95.983(6)                                                  | 106.627(5)                                                                                | 90                                          | 101.831(4)           |
| γ[°]                                                  | 90                                                         | 90                                                         | 90                                                                                        | 90                                          | 99.773(4)            |
| Z                                                     | 8                                                          | 4                                                          | 4                                                                                         | 4                                           | 2                    |
| $\mu$ [mm <sup>-1</sup> ]                             | 0.125                                                      | 0.118                                                      | 0.113                                                                                     | 0.102                                       | 1.442                |
| $D_x [Mg m^{-3}]$                                     | 1.045                                                      | 1.100                                                      | 1.069                                                                                     | 1.046                                       | 1.262                |
| cryst size [mm]                                       | 0.59x0.27x0.20                                             | 0.59×0.37×0.21                                             | 0.37×0.36×0.30                                                                            | 0.51×0.32×0.32                              | 0.39×0.30×0.29       |
| $\theta$ range, [deg]                                 | 1-27.5                                                     | 1-27.3                                                     | 1-27.5                                                                                    | 1-27.5                                      | 1-27.5               |
| $T_{min}, T_{max}$                                    | 0.956, 0.980                                               | 0.954, 0.980                                               | 0.972, 0.986                                                                              | 0.955, 0.969                                | 0.666, 0.802         |
| no. of reflnsmeasd                                    | 47 311                                                     | 42 677                                                     | 26 591                                                                                    | 27674                                       | 26310                |
| no. of unique reflns, $R_{int}^{a}$                   | 10812, 0.045                                               | 12454, 0.085                                               | 6612, 0.040                                                                               | 4435, 0.029                                 | 5146, 0.025          |
| no. of obsdreflns                                     | 7385                                                       | 7818                                                       | 4828                                                                                      | 3262                                        | 4546                 |
| no. of params                                         | 469                                                        | 622                                                        | 307                                                                                       | 242                                         | 235                  |
| S <sup>b</sup> all data                               | 1.157                                                      | 1.143                                                      | 1.144                                                                                     | 1.070                                       | 1.104                |
| final R <sup>c</sup> indices $[I > 2\sigma(I)]$       | 0.050                                                      | 0.097                                                      | 0.051                                                                                     | 0.059                                       | 0.032                |
| wR2 <sup>c</sup> indices (all data)                   | 0.107                                                      | 0.194                                                      | 0.104                                                                                     | 0.143                                       | 0.074                |
| $\Delta \rho$ , max., min. [e Å <sup>-3</sup> ]       | 0.701, -0.303                                              | 0.512, -0.246                                              | 0.512, -0.246                                                                             | 0.450, -0.468                               | 0.456, -0.491        |
| ${}^{a}R_{\text{int}} = \Sigma   F_{o}^{2} - F_{o,n}$ | $_{\text{nean}}^{2}   /\Sigma F_o^2, b \overline{S} = [2]$ | $\Sigma(w(F_{\rm o}^{2} - F_{\rm c}^{2})^{2})/(N_{\rm d})$ | $_{\rm iffrs}$ - $N_{\rm params}$ )] <sup><math>\frac{1}{2}</math></sup> . <sup>c</sup> R | $R(F) = \Sigma    F_{\rm o}  -  F_{\rm c} $ | $  /\Sigma F_{o} ,$  |

 Table S3.Crystallographic data for studied compounds.

 $wR(F^{2}) = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2})/(\Sigma w(F_{o}^{2})^{2})]^{\frac{1}{2}}.$ 

|                                                                                                                                                                                                                                     | 10                       | syn-12         | 13                                                 | 14                     | 15                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------------------------------------------------|------------------------|------------------------|
| chemical formula                                                                                                                                                                                                                    | $C_{28}H_{46}N_4P_2Sn_2$ | C14H24ClGeN4P  | C <sub>30</sub> H <sub>50</sub> LiN <sub>4</sub> P | $C_{48}H_{68}GeN_4P_2$ | $C_{48}H_{68}N_4P_2Sn$ |
|                                                                                                                                                                                                                                     |                          |                |                                                    |                        |                        |
| crystsyst                                                                                                                                                                                                                           | monoclinic               | orthorhombic   | monoclinic                                         | orthorhombic           | orthorhombic           |
| space group                                                                                                                                                                                                                         | $P2_1/c$                 | $Pna2_1$       | C12/c1                                             | $C222_1$               | $C222_{1}$             |
| a[Å]                                                                                                                                                                                                                                | 10.7590(4)               | 14.8260(6)     | 10.463(2)                                          | 15.1732(4)             | 15.4435(7)             |
| <i>b</i> [Å]                                                                                                                                                                                                                        | 11.1479(7)               | 10.2630(7)     | 24.322(5)                                          | 20.1215(8)             | 20.2430(3)             |
|                                                                                                                                                                                                                                     | 16.5240(5)               | 11.3191(12)    | 13.238(3)                                          | 15.3980(4)             | 15.3661(4)             |
| alo                                                                                                                                                                                                                                 | 90                       | 90             | 90                                                 | 90                     | 90                     |
| β[°]                                                                                                                                                                                                                                | 125.839(4)               | 90             | 107.28(3)                                          | 90                     | 90                     |
| γ[°]                                                                                                                                                                                                                                | 90                       | 90             | 90                                                 | 90                     | 90                     |
| Z                                                                                                                                                                                                                                   | 2                        | 4              | 4                                                  | 4                      | 4                      |
| μ[mm <sup>-1</sup> ]                                                                                                                                                                                                                | 1.677                    | 2.017          | 0.108                                              | 0.755                  | 0.633                  |
| $D_x$ [Mg m <sup>-3</sup> ]                                                                                                                                                                                                         | 1.526                    | 1.386          | 1.042                                              | 1.181                  | 1.219                  |
| cryst size [mm]                                                                                                                                                                                                                     | 0.45x0.26x0.11           | 0.40×0.25×0.24 | 0.43×0.27×0.24                                     | 0.36×0.30×0.21         | 0.58×0.45×0.25         |
| $\theta$ range, [deg]                                                                                                                                                                                                               | 1-27.5                   | 1-27.5         | 1-27.5                                             | 1-27.5                 | 1-27.5                 |
| T <sub>min</sub> , T <sub>max</sub>                                                                                                                                                                                                 | 0.720, 0.889             | 0.641, 0.727   | 0.628414                                           | 0.804, 0.893           | 0.788, 0.879           |
| no. of reflnsmeasd                                                                                                                                                                                                                  | 12709                    | 13375          | 12994                                              | 21691                  | 15320                  |
| no. of unique reflns, $R_{int}^{a}$                                                                                                                                                                                                 | 3651, 0.030              | 3545, 0.031    | 3671, 0.034                                        | 5355, 0.063            | 5458, 0.030            |
| no. of obsdreflns                                                                                                                                                                                                                   | 2756                     | 3304           | 2402                                               | 4475                   | 4731                   |
| no. of params                                                                                                                                                                                                                       | 163                      | 172            | 241                                                | 249                    | 253                    |
| $S^{\rm b}$ all data                                                                                                                                                                                                                | 1.155                    | 1.098          | 1.044                                              | 1.141                  | 1.206                  |
| final R <sup>c</sup> indices $[I \ge 2\sigma(I)]$                                                                                                                                                                                   | 0.029                    | 0.026          | 0.057                                              | 0.047                  | 0.032                  |
| wR2 <sup>c</sup> indices (all data)                                                                                                                                                                                                 | 0.053                    | 0.054          | 0.131                                              | 0.091                  | 0.073                  |
| $\Delta \rho$ , max., min. [e Å <sup>-3</sup> ]                                                                                                                                                                                     | 0.338, -0.421            | 0.274, -0.424  | 0.369, -0.269                                      | 1.157, -0.487          | 1.053, -0.479          |
| ${}^{a}R_{int} = \Sigma  F_{o}^{2} - F_{o,mean}^{2}  / \Sigma F_{o}^{2}, {}^{b}S = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / (N_{diffrs} - N_{params})]^{\frac{1}{2}} \cdot {}^{c}R(F) = \Sigma  F_{o}  -  F_{c}  / \Sigma  F_{o} ,$ |                          |                |                                                    |                        |                        |

 Table S3 (continue).Crystallographic data for studied compounds.

 $wR(F^2) = [\Sigma(w(F_o^2 - F_c^2)^2)/(\Sigma w(F_o^2)^2)]^{\frac{1}{2}}, dcorrected multi-scan method SADABS.$ 

|                                                  |                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | chemical formula                                | $C_{28}H_{68}K_2N_8P_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | crystsyst                                       | monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | space group                                     | C2/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  | a[Å]                                            | 14.5542(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | <i>b</i> [Å]                                    | 15.0050(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  |                                                 | 19.2902(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | α[°]                                            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | β[°]                                            | 105.712(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | γ[°]                                            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | Z                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | $\mu$ [mm <sup>-1</sup> ]                       | 0.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | $D_{\rm r}$ [Mg m <sup>-3</sup> ]               | 1.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | cryst size [mm]                                 | 0.52x0.31x0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | $\theta$ range, [deg]                           | 1-27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  | $T_{min}, T_{max}$                              | 0.902, 0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                  | no. of reflnsmeasd                              | 12 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  | no. of unique reflues, $R_{int}^{a}$            | 4387, 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | no. of obsdreflns                               | 3616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  | no. of params                                   | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                  | $S^{\rm b}$ all data                            | 1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | final R <sup>c</sup> indices $[I > 2\sigma(I)]$ | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | wR2 <sup>c</sup> indices (all data)             | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | $\Delta \rho$ , max., min. [e Å <sup>-3</sup> ] | 0.419, -0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= \Sigma \left  F^2 - F \right ^2 / \Sigma F^2$ | $b = \sum (w(E^2 - E^2)^2)/(N)$                 | $\frac{1}{12} \frac{1}{2} 1$ |

 Table S3 (continue).Crystallographic data for studied compounds.

 $wR(F^2) = [\Sigma(w(F_o^2 - F_c^2)^2)/(\Sigma w(F_o^2)^2)]^{\frac{1}{2}}.$ 

### 4) References

- [S1] *Gaussian 09, Revision B.01*, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowskiand D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [S2] Y. Zhao and D.G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.
- [S3] N. Godbout, D.R. Salahub, J. Andzelmand and E. Wimmer, Can. J. Chem., 1992, 70, 560.
- [S4] AIMAll (Version 13.05.06), T.A. Keith, TK Gristmill Software, Overland Park KS, USA, 2013, http://aim.tkgristmill.com..
- [S5] (a) F. Cortés-Guzmánand and R.F.W. Bader, *Coord. Chem. Rev.* 2005, 249, 633; (b) R.F.W
   Bader, *Atoms in Molecules: A Quantum Theory*; Oxford University Press: Oxford, U.K., 1990.
- [S6] (a) T. Lu and F. Chen, J. Comp. Chem., 2012, 33, 580; (b) T. Luand and F. Chen, J. Mol.
   Graph. Model., 2012, 38, 314.
- [S7] (a) A.E. Reed, L.A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, 88, 899; (b) F. Weinhold and J.E. Carpenter, In *The Structure of Small Molecules and Ions*, Eds. Naaman R.; Vager Z. (Plenum, 1988) 227.
- [S8] P. Coppens, In: F.R. Ahmed, S.R. Hall and C.P. Huber, Eds., Crystallographic Computing Copenhagen, Munksgaard 1970, 255.

- [S9] G.M. Sheldrick, 2003. SADABS. Version 2.10.Bruker AXS Inc., Madison, Wisconsin, USA.
- [S10] A. Altomare, G.Cascarone, C.Giacovazzo, A.Guagliardi, M.C.Burla, G.Polidori, and M. Camalli, J. Appl. Crystallogr., 1994, 27, 1045.

[S11] G.M. Sheldrick, ActaCryst., 2015, C71, 3.

- [S12] G.M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.
- [S13] G.M. Sheldrick, ActaCryst. 2015, A71, 3.
- [S14] O.V. Dolomanov, L.J.Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann,

J. Appl. Cryst. 2009, 42, 339.