Supporting information material for

Group 10 – group 14 metal complexes [E–TM]^{IV}: The role of the group 14 site as an L, X and Z-type ligand

Erik Wächtler, Robert Gericke, Erica Brendler, Birgit Gerke, Thorsten Langer, Rainer Pöttgen, Lyuben Zhechkov, Thomas Heine and Jörg Wagler*

Table of content:

Synthesis and characterisation of the complexes $Sn_2(L^b)_2$, $Sn(L^b)_2$ and $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$.

Molecular structures of the complexes $Sn_2(L^b)_2$, $Sn(L^b)_2$, $[Ni_2(bztzS)_4]$, $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$ and $O[ClGe(\mu-pyS)_2PdPPh_3]_2$ in the crystal.

Parameters of data collection and structure refinement for the structures of **2**, **3**, **4**, **9**, **10** \cdot 2 THF, **11** \cdot DCM, **12**, **13** \cdot 2 EtOH \cdot DCM, Sn₂(L^b)₂, Sn(L^b)₂ \cdot 2 MeOH, [Ni₂(bztzS)₄], [Cl₂Sn(μ -bztzS)₂NiPPh₃] and O[ClGe(μ -pyS)₂PdPPh₃]₂.

¹¹⁹Sn Mössbauer spectra of compounds **2**, **3**, **9**, **10**, **11**, **12**, **13**, $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$, $Sn_2(L^b)_2$ and $Sn(L^b)_2$ and parameters of the fitting procedure

Quantum chemical calculations

Optimized molecular structure of compound 5.

NLMOs of the E–TM bond of compounds 2, 5, 6, 7, 8, 9, 10, 11, 13 and $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$.

Atomic coordinates of optimized SnCl₄, SnCl₅⁻, SnCl₆²⁻, SnCl₃⁻, SnCl₄²⁻.

References

Synthesis and characterisation of the complexes $Sn_2(L^b)_2$, $Sn(L^b)_2$ and $[Cl_2Sn(\mu-bztzS)_2Ni-PPh_3]$:

Scheme SI1 Synthesis of $Sn_2(L^b)_2$ and $Sn(L^b)_2$.

 $Sn_2(L^b)_2$. SnCl₂(dioxane) (0.30 g, 1.08 mmol) was layered with chloroform (3 mL) followed by a layer of a chloroform solution (5 mL) of H₂L^b (0.20 g, 1.08 mmol) and triethylamine (0.30 g, 2.94 mmol). Crystals (suitable for X-ray crystallography) formed upon storage at room temperature, and after 10 d the product was isolated by decantation, washed with chloroform (3 mL) and dried *in vacuo*. Yield: 0.24 g (0.39 mmol, 74%). The compound is basically insoluble in most common organic solvents (such as toluene, THF, chloroform, acetonitrile, DMSO).

MP: not observed (stable up to 250°C).

¹¹⁹Sn MAS NMR (149.17 MHz, v_{rot} : 14 and 15 kHz): δ = -399 ppm;

¹¹⁹Sn Mössbauer (Ca^{119m}SnO₃, 78 K): $\delta = 2.94(1)$ mm s⁻¹, $\Delta = 1.97(1)$ mm s⁻¹.

Anal. calcd. for C₂₂H₁₆N₄O₂Sn₂ (605.81 g mol⁻¹): C 43.62, H 2.66, N 9.25; found: C 43.54, H 2.58, N 9.19%.

 $Sn(L^b)_2$. (NH₄)₂SnCl₆ (0.49 g, 1.34 mmol), H₂L^b (0.50 g, 2.69 mmol) and triethylamine (0.56 g, 5.50 mmol) were stirred in methanol (25 mL) at room temperature for 4 h whereby an orange precipitate formed. This was filtered off, washed with methanol (4 mL) and dried *in vacuo*. Yield: 0.39 g (0.75 mmol, 56%). Crystals for X-ray structure determination were obtained by recrystallisation from hot methanol (in this case the product crystallised as methanol solvate with one molecule of methanol per complex molecule).

MP: not observed (stable up to 300°C).

¹H NMR (400.13 MHz, CDCl₃): δ = 6.31 (m, 1H), 6.77 (m, 1H), 6.83 (m, 1H), 6.90 (m, 1H), 6.98 (m, 1H), 7.10 (m, 1H), 7.40 (m, 1H) (Aryl), 8.68 ppm (s, 1H, *H*C=N, satellites ³*J*_{1H}. (117/119)Sn = 108 Hz);

¹³C{¹H} NMR (100.63 MHz, CDCl₃): δ = 113.7, 116.6, 117.6, 118.4, 122.3, 127.7, 128.9, 133.0, 136.3 (Aryl), 143.2 (*C*=N), 155.1 ppm (*C*-O);

¹¹⁹Sn{¹H} NMR (149.21 MHz, CDCl₃): δ = -504.5 ppm;

¹¹⁹Sn Mössbauer (Ca^{119m}SnO₃, 78 K): $\delta = 0.29(1)$ mm s⁻¹, $\Delta = 0.43(1)$ mm s⁻¹.

Anal. calcd. for C₂₂H₁₆N₄O₂Sn (487.10 g mol⁻¹): C 54.25, H 3.31, N 11.50. found: C 54.11, H 3.20, N 11.47%.

[Ni₂(bztzS)₄] was prepared according to a method reported by Ballester et al..¹

 $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$. $[Ni_2(bztzS)_4]$ (200 mg, 510 µmol) was layered with THF (3 mL) and thereafter with a THF solution (5 mL) of PPh₃ (140 mg, 550 µmol) and SnCl₂(dioxane) (140 mg, 510 µmol). The product formed as a crystalline material (containing X-ray quality crystals) within several days. After 10 d, the supernatant was decanted off and the crystals washed with THF (3 mL) and dried under vacuum. Yield: 240 mg (0.28 mmol, 56%). The compound is insoluble in common organic solvents.

MP: not observed (decomposition $> 200^{\circ}$ C).

³¹P MAS NMR (162.02 MHz, v_{rot} : 10 kHz): δ = 26.0 ppm (satellites: ² $J_{31P-119Sn}$ = 2842 Hz, ² $J_{31P-117Sn}$ = 2709 Hz);

¹¹⁹Sn MAS NMR (149.17 MHz, v_{rot} : 14 and 15 kHz): δ = -470.3 ppm (d);

¹¹⁹Sn Mössbauer (Ca^{119m}SnO₃, 78 K): $\delta = 1.70(1)$ mm s⁻¹, $\Delta = 1.67(1)$ mm s⁻¹.

Anal. calcd. for $C_{32}H_{23}Cl_2N_2NiPS_4Sn$ (843.08 g mol⁻¹): C 45.59, H 2.75, N 3.32; found: C 45.78, H 2.97, N 3.29%.

Molecular structures of the complexes $Sn_2(L^b)_2$, $Sn(L^b)_2$, $[Ni_2(bztzS)_4]$, $[Cl_2Sn(\mu - bztzS)_2NiPPh_3]$ and $O[ClGe(\mu - pyS)_2PdPPh_3]_2$ in the crystal:

Fig. SI1 Molecular structures of complexes $Sn_2(L^b)_2$ (left) and $Sn(L^b)_2$ (right) in the crystal (ellipsoids set at 50% probability, hydrogen atoms are omitted). Selected bond lengths [Å] for $Sn_2(L^b)_2$: Sn1-O1 2.510(1), Sn1-N1 2.240(1), Sn1-N2 2.234(1), Sn1-O1* 2.153(1), symmetry operation *: -x, 2-y, 1-z; $Sn(L^b)_2$: Sn1-O1 2.064(1), Sn1-N1 2.142(1), Sn1-N2 2.135(1), Sn1-O2 2.058(1), Sn1-N3 2.124(1), Sn1-N4 2.136(1).

Fig. SI2 Molecular structure of [Ni₂(bztzS)₄] in the crystal (ellipsoids set at 50% probability, hydrogen atoms are omitted). Selected bond lengths [Å]: Ni1-S1 2.227(1), Ni1-S3 2.234(1), Ni1-N3 1.881(3), Ni1-N4 1.879(3), Ni2-S5 2.247(1), Ni2-S7 2.239(1), Ni2-N1 1.900(3), Ni2-N2 1.893(3), Ni1…Ni2 2.5681(6).

Fig. SI3 Molecular structure of $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$ in the crystal (ellipsoids set at 50% probability, hydrogen atoms are omitted). Selected bond lengths [Å]: Ni1-Sn1 2.4494(7), Ni1-S1 2.1623(9), Ni1-P1 2.2362(14), Sn1-N1 2.290(3), Sn1-Cl1 2.3814(12), Sn1-Cl2 2.3881(12), symmetry operation *: x, 1-y, z.

Fig. SI4 Molecular structure of $O[ClGe(\mu-pyS)_2PdPPh_3]_2$ in the crystal (ellipsoids set at 50% probability, hydrogen atoms are omitted). For clarity one part of the molecule is displayed as stick model. Selected bond lengths [Å]: Pd1-Ge1 2.381(2), Pd1-S1 2.302(2), Pd1-S2 2.298(2), Pd1-P1 2.381(2), Ge1-N1 2.192(3), Ge1-N2 2.168(3), Ge1-Cl1 2.286(3), Ge1-O1 1.761(3), Pd2-Ge2 2.3758(4), Pd2-S3 2.298(1), Pd2-S4 2.301(1), Pd2-P2 2.356(1), Ge2-N3 2.154(3), Ge2-N4 2.182(3), Ge2-Cl2 2.230(1), Ge2-O1 1.793(2). (Note: These labels for Pd, Ge, Cl, S, P and O correspond to the labels with disorder group index A in the CIF, e.g., Pd1 = Pd1A, for clarity this index has been omitted in the graphic).

Parameters of data collection and structure refinement for the structures of **2**, **3**, **4**, **9**, **10** \cdot 2 <u>THF</u>, **11** \cdot DCM, **12**, **13** \cdot 2 EtOH \cdot DCM, Sn₂(**L**^b)₂, Sn(**L**^b)₂ \cdot MeOH, [Ni₂(bztzS)₄], [Cl₂Sn(μ bztzS)₂NiPPh₃] and O[ClGe(μ -pyS)₂PdPPh₃]₂:

	2	3	4	O[ClGe(µ-pyS) ₂ Pd-
	G H GININI'NG G	G H CINEDIG C		$PPh_{3}]_{2}$
Empirical formula	$C_{28}H_{23}Cl_2N_2N_1PS_2Sn$	$C_{28}H_{23}Cl_2N_2PPtS_2Sn$	$C_{28}H_{23}Cl_2GeN_2PPdS_2$	$C_{56}H_{46}Cl_2Ge_2N_2OP_2PdS_4$
Formula weight	730.87	867.25	732.46	1410.03
<i>T</i> (K)	200(2)	200(2)	200(2)	200(2)
λ (Å)		0.	.71073	
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P2_{1}/n$	<i>P</i> -1	<i>P</i> -1	$P2_1/n$
Unit cell dimensions.				
<i>a</i> (Å)	15.6578(4)	8.7609(3)	11.7504(6)	9.5367(2)
<i>b</i> (Å)	16.2539(5)	11.8010(4)	11.9994(6)	22.0550(4)
<i>c</i> (Å)	23.8975(7)	15.1557(6)	12.0861(6)	26.8568(6)
α (°)	90	96.445(3)	60.360(4)	90
$\beta(\circ)$	106.036(2)	93.501(3)	81.827(4)	96.955(2)
$\gamma(^{\circ})$	90	107.876(3)	75.635(4)	90
$V(Å^3)$	5845.3(3)	1474.26(9)	1434.44(12)	5607.3(2)
$Z/D_{\rm c}~({\rm g~cm^{-3}})$	8 / 1.66	2 / 1.95	2 / 1.70	4 / 1.67
μ (mm ⁻¹)	1.9	6.0	2.1	2.0
<i>F</i> (000)	2912	828	728	2808
Crystal size (mm)	0.30×0.30×0.05	0.30×0.25×0.20	0.45×0.35×0.20	0.30×0.25×0.20
θ range for data collection	2.5-27.0	1.8-32.0	2.7-32.0	2.4-27.0
Reflections collected	61845	42811	29868	130137
Independent reflections / R(int)	12752 / 0.0460	10237 / 0.0353	9947 / 0.0228	12231 / 0.0670
Completeness to θ_{max}	99.9%	99.9%	99.9%	99.9%
Refinement	Full-matrix least-squares on F^2			
Data / restraints / parameters	12752 / 0 / 667	10237 / 0 / 335	9947 / 0 / 334	12231 / 1 / 712
Goodness-of-fit on F^2	1.025	1.101	1.043	1.042
$R1 / wR2 [I > 2\sigma(I)]$	0.0255 / 0.0523	0.0262 / 0.0646	0.0212 / 0.0504	0.0373 / 0.0857
R1 / wR2 (all data)	0.0411 / 0.0568	0.0294 / 0.0661	0.0261 / 0.0522	0.0542 / 0.0916
Largest diff. peak / hole [e Å ⁻³]	0.43 / -0.38	1.26 / -2.02	0.42 / -0.48	0.64 / -0.90

Table SI1 Parameters of data collection and structure refinement for the structures of **2**, **3**, **4** and O[ClGe(μ -pyS)₂PdPPh₃].

Table SI2 Parameters of data collection and structure refinement for the structures of $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$, **9**, **10** · 2 THF, **11** · DCM.

	$[Cl_2Sn(\mu -$	9	10 · 2 THF ²	11 · DCM
	bztzS) ₂ Ni–PPh ₃] ¹			
Empirical formula	C ₃₂ H ₂₃ Cl ₂ N ₂ NiPS ₄ Sn	C ₂₈ H ₄₁ Cl ₂ N ₂ PPdS ₂ Sn	C48H48Cl8N8O2Pd4S8Sn4	C40H34Cl2N5O2PPdS2Sn
Formula weight	843.03	796.71	2209.38	1007.80
<i>T</i> (K)	150(2)	150(2)	150(2)	150(2)
λ (Å)		(0.71073	• • • • • •
Crystal system	Monoclinic	Monoclinic	Tetragonal	Triclinic
Space group	Cm	$P2_1/m$	<i>I</i> -4	<i>P</i> -1
Unit cell dimensions.				
<i>a</i> (Å)	7.8975(3)	8.2710(6)	11.8143(3)	11.5645(4)
<i>b</i> (Å)	17.3839(6)	16.4657(8)	11.8143(3)	12.0423(4)
<i>c</i> (Å)	12.3904(5)	12.0613(8)	24.1508(8)	15.0296(4)
α (°)	90	90	90	80.499(3)
$\beta(^{\circ})$	107.098(3)	109.724(5)	90	73.274(2)
γ(°)	90	90	90	84.786(3)
$V(Å^3)$	1625.89(11)	1546.23(17)	3370.9(2)	1974.93(11)
$Z/D_{\rm c}~({\rm g~cm}^{-3})$	2 / 1.72	2 / 1.71	2 / 2.18	2 / 1.66
μ (mm ⁻¹)	1.8	1.8	3.1	1.4
F(000)	840	800	2112	1004
Crystal size (mm)	0.26×0.12×0.11	0.17×0.09×0.04	0.28×0.22×0.18	0.30×0.22×0.18
θ range for data collection	2.3-32.0	2.5-27.0	2.4-30.0	2.4-30.0
Reflections collected	15598	14914	40152	46100
Independent reflections / R(int)	5578 / 0.0335	3492 / 0.0617	4938 / 0.0286	11510/0.0252
Completeness to θ_{max}	99.7%	99.9%	99.9%	99.9%
Refinement	Full-matrix least-squares on F^2			
Data / restraints / parameters	5578 / 99 / 235	3492 / 0 / 178	4938 / 28 / 206	11510 / 0 / 448
Goodness-of-fit on F^2	1.066	1.021	1.176	1.022
$R1 / wR2 [I > 2\sigma(I)]$	0.0271 / 0.0694	0.0303 / 0.0613	0.0183 / 0.0394	0.0217 / 0.0482
R1 / wR2 (all data)	0.0290 / 0.0705	0.0507 / 0.0665	0.0196 / 0.0400	0.0289 / 0.0501
Largest diff. peak / hole [e Å ⁻³]	0.66 / -1.00	0.71 / -0.60	0.38 / -0.49	0.63 / -0.86

¹ Absolute structure parameter: -0.014(12)

² Structure refined as a racemic twin (73% / 27%)

Table SI3 Parameters of data collection and structure refinement for the structures of 12, 13 \cdot 2 EtOH \cdot DCM, $Sn_2(L^b)_2$, $Sn(L^b)_2$ \cdot MeOH and $[Ni_2(bztzS)_4]$.

	12	$13 \cdot 2 \text{ EtOH} \cdot \text{DCM}$	$\operatorname{Sn}_2(\mathbf{L}^{\mathbf{b}})_2$	$Sn(L^b)_2 \cdot MeOH^1$	$[Ni_2(bztzS)_4]^2$
Empirical formula	C ₃₉ H ₃₁ N ₄ OPPdS ₂ Sn	$C_{61}H_{62}Cl_4N_4O_4P_2Pd_2S_4Sn_2$	$C_{22}H_{16}N_4O_2Sn_2$	$C_{23}H_{20}N_4O_3Sn$	$C_{28}H_{16}N_4Ni_2S_8$
Formula weight	891.86	1697.31	605.81	519.12	782.35
<i>T</i> (K)	200(2)	150(2)	150(2)	200(2)	100(2)
λ (Å)			0.71073		
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pbca	Pbca	Pbcn	$P2_{1}/c$	Pbca
Unit cell dimensions.					
<i>a</i> (Å)	13.2982(3)	16.4638(4)	12.0878(2)	9.3183(2)	14.8803(4)
<i>b</i> (Å)	16.9219(4)	22.8991(5)	10.4438(2)	23.7683(5)	16.4815(4)
<i>c</i> (Å)	32.2817(7)	17.3745(6)	15.6612(3)	10.2246(3)	24.0587(7)
α (°)	90	90	90	90	90
β (°)	90	90	90	106.442(2)	90
γ(°)	90	90	90	90	90
$V(Å^3)$	7264.4(3)	6550.3(3)	1977.11(6)	2171.94(9)	5900.4(3)
$Z/D_{\rm c}~({\rm g~cm^{-3}})$	8 / 1.63	4 / 1.72	4 / 2.04	4 / 1.56	8 / 1.76
μ (mm ⁻¹)	1.4	1.7	2.6	1.2	1.9
F(000)	3552	3368	1168	1040	3168
Crystal size (mm)	0.25×0.18×0.10	0.35×0.18×0.08	0.35×0.25×0.18	0.25×0.15×0.12	0.25×0.20×0.04
θ range for data collection	2.4-30.0	2.5-28.0	2.6-37.0	1.7-32.0	2.0-25.0
Reflections collected	91301	53202	25040	45224	40361
Independent reflections / R(int)	10588 / 0.0439	7894 / 0.0498	4990 / 0.0279	7517 / 0.0362	5195 / 0.0774
Completeness to θ_{max}	99.9%	99.9%	99.2%	99.7%	100%
Refinement	Full-matrix least-squares on F^2				
Data / restraints / parameters	10588 / 0 / 442	7894 / 1 / 381	4990 / 0 / 136	7517/1 / 301	5195 / 0 / 380
Goodness-of-fit on F^2	1.050	1.050	1.042	1.149	1.011
$R1 / wR2 [I > 2\sigma(I)]$	0.0237 / 0.0476	0.0344 / 0.0724	0.0222 / 0.0544	0.0278 / 0.0702	0.0364 / 0.0820
R1 / wR2 (all data)	0.0334 / 0.0502	0.0527 / 0.0779	0.0364 / 0.0579	0.0312 / 0.0719	0.0604 / 0.0883
Largest diff. peak / hole [e Å ⁻³]	0.42 / -0.56	0.97 / -0.94	0.65 / -0.50	0.62 / -0.77	0.65 / -0.48

¹ extinction coefficient: 0.0082(6) ² extinction coefficient: 0.0011(1)

Fig. SI5¹¹⁹Sn Mössbauer spectrum of 2 at 78 K.

Fig. SI6¹¹⁹Sn Mössbauer spectrum of 2 at 5 K.

Fig. SI7¹¹⁹Sn Mössbauer spectrum of **3** at 78 K.

Fig. SI8 ¹¹⁹Sn Mössbauer spectrum of $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$ at 78 K.

Fig. SI9¹¹⁹Sn Mössbauer spectrum of 9 at 78 K.

Fig. SI10¹¹⁹Sn Mössbauer spectrum of 10 at 78 K.

Fig. SI11 ¹¹⁹Sn Mössbauer spectrum of 11 at 78 K.

Fig. SI12 ¹¹⁹Sn Mössbauer spectrum of 12 at 78 K.

Fig. SI13¹¹⁹Sn Mössbauer spectrum of 13 at 78 K.

Fig. SI14¹¹⁹Sn Mössbauer spectrum of Sn₂(L^b)₂ at 78 K.

Fig. SI15 ¹¹⁹Sn Mössbauer spectrum of $Sn(L^b)_2$ at 78 K.

Table SI4 Fitting parameters of the ¹¹⁹Sn Mössbauer spectroscopic investigations. δ : isomer shift, Δ : electric quadrupole splitting, Γ : experimental line width [mm s⁻¹] at 78 K. a) Asymmetry (A₂₁) [mm s⁻¹] = 1.25(1); b) A₂₁ = 1.16(1); c) A₂₁ = 1.10 (1); * parameter kept fixed during fitting procedure.

Compound	δ	Δ	Г
2 ^a	1.71(1)	1.68(1)	0.85(1)
2 (5K) ^b	1.76(1)	1.73(1)	1.11(1)
3	1.58(1)	1.83(1)	0.82(1)
[Cl ₂ Sn(µ-bzt	zS)2NiPPh3]		
	1.69(1)	1.69(1)	0.89(1)
9 °	1.75(1)	1.83(1)	0.88(1)
10	1.53(1)	1.77(1)	0.84(1)
impurity (4%	6) -0.15(1)	0^{*}	0.85^{*}
11	1.32(1)	2.06(1)	0.85(1)
12	1.27(1)	1.86(1)	0.85(1)
13	1.30(1)	1.88(1)	0.86(1)
$\operatorname{Sn}_2(\mathbf{L}^{\mathbf{b}})_2$	2.94(1)	1.97(1)	0.91(2)
$Sn(L^b)_2$	0.29(1)	0.43(1)	0.9*

Optimizations of the molecular structures have been carried out using DFT methodology as implemented in the adf2012.01a and adf2013.01a software packages.² The X-ray structure of the Ge/Pd heterobimetallic complex **4** was used as starting point for the full optimisation for the Si/Pd complex **5**. For all other calculations, the non-H atomic coordinates obtained from the crystal structures (after exclusion of solvent molecules) have been kept constant while the hydrogen atoms have been relaxed. The optimizations have been carried out using scalar relativistic corrections,³ applying a Triple-Zeta polarised (TZP) basis set for the elements of the first and second row of the periodic table, and a Triple-Zeta double polarised (TZ2P) basis set for the heavier elements.⁴ NBO/NLMO analyses have been carried out with adf2013.01a² using NBO version 6.0.⁵ The calculations have been carried out using hybrid PBE⁶ functional and all electron ZORA TZ2P basis set⁴ and scalar relativistics³ for the optimised molecular structures.

For the optimization of Sn(II) and Sn(IV) benchmark compounds the atomic coordinates from the crystal structures of SnCl₄⁷, SnCl₅⁻⁸, SnCl₆²⁻⁹, SnCl₃⁻¹⁰ and SnCl₄²⁻⁹ were used. In the case of SnCl₄²⁻ the axial Cl-Sn-Cl bond angle of the see-saw shaped anion was constrained in order to retain this relative molecular arrangement. The other chlorotin compounds were optimized without any constraints.

Optimization of the structure of 5

Fig. SI16 Molecular structure (gas phase) of 5 (H atoms are not depicted) after full optimization. Selected bond lengths [Å]: Pd-Si 2.352, Pd-S 2.312, Pd-S 2.299, Pd-P 2.429, Si-N 2.095, Si-N 2.073, Si-Cl 2.142, Si-Cl 2.142.

Table SI5 Atomic coordinates of 5 after full optimisation.

Н	-1.35564128	-1.47628643	-4.73659684
Н	-3.35503656	-2.96984389	-4.70318289
С	-1.94617042	-1.58308586	-3.82556245
С	-3.06583692	-2.42095820	-3.80432532
Н	-4.67050407	-3.23164624	-2.59870834
С	-3.80422412	-2.56730082	-2.62559053
Н	-0.67195292	-0.26865842	-2.67645832
С	-1.56541358	-0.89628083	-2.67083898
Н	-4.44998932	3.50130062	-2.26643950
Н	-3.34995773	1.28358820	-2.17616771
Cl	4.28502077	0.01840815	-1.65469657
С	-3.93189372	3.19426736	-1.35594069
С	-3.30953249	1.94220502	-1.30707919
С	-3.43410058	-1.87073256	-1.47156486
С	-2.31524098	-1.02492350	-1.48832022
Н	-4.38152270	5.02051601	-0.28636196
Н	-4.00951118	-2.00061301	-0.55412602
С	-3.89335614	4.04406354	-0.24677809
С	-2.64348479	1.53116174	-0.14357159
Н	5.32848644	2.03209710	-0.06897907
Н	5.96238593	-4.06193682	0.62351436
Н	5.40019282	-1.63540616	0.52838713
Н	5.73843868	4.48780684	-0.20614150
С	4.50367473	2.74061005	-0.10175073
С	4.93287151	-3.74087410	0.46953229
С	4.62995947	-2.39610324	0.42044430
С	4.72114542	4.09993490	-0.17777583
Ν	3.26310205	2.18973843	-0.06876063
Р	-1.74448875	-0.06846938	-0.02687937
Si	3.03000132	0.13545465	0.07656763
Ν	3.36893048	-1.92469375	0.24619505
Н	4.07042503	-5.73767208	0.35063554
С	3.87843429	-4.66316237	0.31904364
С	2.17010198	2.99050842	-0.09531371
С	3.59733176	4.94972359	-0.21932973
S	0.56918375	2.34955802	-0.03096280
Pd	0.68085197	0.05317971	-0.00177959
С	2.34290743	-2.79682619	0.09581703
Н	3.72153513	6.03254414	-0.28363069
С	2.59447018	-4.19430178	0.12997035
С	2.33314218	4.39934376	-0.17667795
S	0.72170203	-2.25396483	-0.15031385
Н	1.75149247	-4.87238282	0.00575994
Н	1.43792586	5.01976048	-0.20257573
С	-3.22182089	3.64159223	0.91352962
С	-2.59428029	2.39682350	0.96433095
Η	-4.51505219	-0.04997781	1.04314053
Н	-3.17969972	4.30212423	1.78121514
С	-2.53412208	-0.83901025	1.44598382
Н	-2.06574583	2.09404346	1.86931063
С	-3.90440592	-0.65881637	1.71194179
Cl	4.09893013	0.30877882	1.92486772
Н	-0.68876378	-1.72189327	2.14241683
С	-1.75333263	-1.58831505	2.34000177
С	-4.48331319	-1.23542849	2.84439045
Н	-5.54640890	-1.08704065	3.04226268
С	-2.33618018	-2.16049959	3.47485796
С	-3.69991022	-1.98753467	3.72796656
Н	-1.71668007	-2.73594357	4.16530543
Н	-4.15209964	-2.43015997	4.61797209

Fig. SI17 NLMOs of the E–TM bonds in **2**, **5**, **6**, **11** and **13** (plotted at an isosurface value of 0.03 e).

·

Fig. SI18 NLMOs of the E–TM bonds in 7, 8, 9, 10 and $[Cl_2Sn(\mu-bztzS)_2NiPPh_3]$ (plotted at an isosurface value of 0.03 e). For clarity, only two of the four equivalent NLMOs of compound 10 are shown.

Table SI6 Atomic coordinates of SnCl₄ after full optimisation.

Sn	-0.000035	0.000760	-0.000053
Cl	0.095376	1.865674	-1.376428
Cl	0.752514	-1.860393	-1.165775
Cl	-2.190293	-0.351026	0.681144
Cl	1.342428	0.344985	1.861103

Table SI7 Atomic coordinates of SnCl₅⁻ after full optimisation.

Cl	-0.153435	1.790039	-1.610294
Cl	1.583451	-1.158604	-1.465750
Cl	-1.517980	-1.857508	-0.130717
Cl	-1.562373	1.196727	1.450853
Cl	1.648622	0.025569	1.756456
Sn	0.001704	0.003777	-0.000559

Table SI8 Atomic coordinates of $SnCl_6^{2-}$ after full optimisation.

Sn	0.000000	0.000000	0.000000
Cl	-1.780986	1.780986	0.000000
Cl	-1.780986	-1.780986	0.000000
Cl	0.000000	0.000000	2.512960
Cl	0.000000	0.000000	-2.512960
Cl	0.000000	0.000000	-2.512960
Cl	1.780986	1.780986	0.000000
Cl	1.780986	-1.780986	0.000000

Table SI9 Atomic coordinates of SnCl₃⁻ after full optimisation.

Sn	-0.000035	0.000760	-0.000053
Cl	0.095376	1.865674	-1.376428
Cl	0.752514	-1.860393	-1.165775
Cl	-2.190293	-0.351026	0.681144
Cl	1.342428	0.344985	1.861103

Table SI10 Atomic coordinates of $SnCl_4^{2-}$ after partial optimisation (axial Cl-Sn-Cl angle constrained).

Cl	0.000000	2.028952	0.920525
Cl	2.805881	0.000000	-0.600003
Cl	-2.805881	0.000000	-0.600003
Cl	0.000000	-2.028952	0.920525
Sn	0.000000	0.000000	-0.688356

References:

- 1 L. Ballester, A. Gutierrez, M. F. Perpiñan, T. Rico, *Polyhedron*, 1994, 13, 2277–2283.
- a) ADF2012.01: J. Autschbach, D. Bashford, A. Brces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodrguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Sol, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, E. J. Baerends, T. Ziegler. Adf2012, scm, theoretical chemistry, Vrije Universiteit, Amsterdam, the Netherlands, http://www.scm.com. ADF2012, SCM;
 - b) J. Autschbach, D. Bashford, A. Brces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodrguez, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Sol, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wol, T.K. Woo, A.L. Yakovlev, E.J. Baerends, T. Ziegler. ADF2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. c) ADF2010.01: C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391-403; G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem., 2001, 22, 931–967; http://scm.com.
- 3 E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys., 1993, **99**, 4597–4610.
- 4 E. van Lenthe, E. J. Baerends, J. Comput. Chem, 2003, 24, 1142–1156.
- 5 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, A. F. Weinhold. NBO version 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013, http://nbo6.chem.wisc.edu/.
- 6 C. Adamo, V. Barone, J. Chem. Phys. 1999, **110(13)**, 6158–6170.
- 7 H. Reuter, R. Pawlak, Z. Anorg. Allg. Chem. 2000, 626, 925–929.
- Anion from crystal structure CCDC-626261 reported in: A. J. Boyall, K. B. Dillon, J. A. K. Howard, P. K. Monks, A. L. Thompson, *Dalton Trans.* 2007, 1374–1376.
- Anion from crystal structure CCDC-265895 reported in: S. Rabe, W. Bubenheim, U. Mueller, Z. Kristallogr. 2004, 219, 101–105.

Anion from crystal structure CCDC-1111797 reported in: U. Mueller, N. Mronga, C. Schumacher, K. Denicke, Z. Naturforsch. 1982, 37B, 1122–1126.