Complexes *trans*-Pt(BODIPY)X(PEt₃)₂: Excitation Energy-Dependent Modulation of Fluorescence and Phosphorescence Emissions and Application to Oxygen Sensing and Photocatalysis

Peter Irmler and Rainer F. Winter*

Fachbereich Chemie der Universität Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany

Supporting Information

Table of Contents

NMR Spectra	4
Single Crystal X-ray Diffraction	14
DFT and TD-DFT calculations	
Photophysical properties	
Stern-Volmer quenching experiments	
Photoreaction	40

List of Figures

Figure S1: ¹ H NMR spectrum of Pt-Cl in CD ₂ Cl ₂	ł
Figure S2: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-Cl in CD ₂ Cl ₂ 4	ł
Figure S3: ${}^{13}C{}^{1}H$ NMR spectrum of Pt-Cl in CD ₂ Cl ₂	,
Figure S4: ¹⁹⁵ Pt{ ¹ H} NMR spectrum of Pt-Cl in CD_2Cl_2	5
Figure S5: ¹ H NMR spectrum of Pt-Cl in C_6D_6	5
Figure S6: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-Cl in C ₆ D ₆ 6	5
Figure S7: ${}^{13}C{}^{1}H$ NMR spectrum of Pt-Cl in C ₆ D ₆	5
Figure S8: ¹ H NMR spectrum of Pt-I in C_6D_6	7
Figure S9: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-I in C ₆ D ₆	7
Figure S10: ¹³ C{ ¹ H} NMR spectrum of Pt-I in C_6D_6	3
Figure S11: ¹⁹⁵ Pt{ ¹ H} NMR spectrum of Pt-I in C_6D_6	3
Figure S12: ¹ H NMR spectrum of Pt-NCS in C ₆ D ₆ .)

Figure S13: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-NCS in C ₆ D ₆	9
Figure S14: ${}^{13}C{}^{1}H$ NMR spectrum of Pt-NCS in C ₆ D ₆ 1	0
Figure S15: 195 Pt{ 1 H} NMR spectrum of Pt-NCS in C ₆ D ₆ 1	0
Figure S16: ¹ H NMR spectrum of Pt-NO ₂ in C_6D_6 1	1
Figure S17: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-NO ₂ in C ₆ D ₆ 1	1
Figure S18: ${}^{13}C{}^{1}H$ NMR spectrum of Pt-NO ₂ in C ₆ D ₆ 1	2
Figure S19: ${}^{195}Pt{}^{1}H$ NMR spectrum of Pt-NO ₂ in C ₆ D ₆ 1	2
Figure S20: ¹ H NMR spectrum of Pt-CH ₃ in C_6D_6	2
Figure S21: ³¹ P{ ¹ H} NMR spectrum of Pt-CH ₃ in C_6D_6 1	3
Figure S22: ${}^{13}C{}^{1}H$ NMR spectrum of Pt-CH ₃ in C ₆ D ₆ 1	3
Figure S23: 195 Pt{ 1 H} NMR spectrum of Pt-CH ₃ in C ₆ D ₆ 1	3
Figure S24: Packing of molecules of Pt-Cl along the crystallographic <i>a</i> (a), <i>b</i> (b), and <i>c</i> axis (c)1	6
Figure S25: Packing of molecules of Pt-I along the crystallographic <i>a</i> (a), <i>b</i> (b), and <i>c</i> axis (c)). 8
Figure S26: Packing of molecules of Pt-NCS along the crystallographic <i>a</i> (a), <i>b</i> (b), and <i>c</i> axi (c)2	s 0
Figure S27: Packing of molecules of Pt-NO₂ along the crystallographic <i>a</i> (a), <i>b</i> (b), and <i>c</i> axis (c)2	5 2
Figure S28: Packing of molecules of Pt-CH ₃ along the crystallographic <i>a</i> (a), <i>b</i> (b), and <i>c</i> axis (c)2	5 4
Figure S29: UV-Vis absorption (black), excitation (detection at 635 nm, red) and emission spectra (orange, excited at 450 nm) of Pt-Cl in a ca. 10 ⁻⁶ M CH ₂ Cl ₂ solution at r.t	6
Figure S30: UV-Vis absorption (black), excitation (detection at 635 nm, r.t., red) and emission spectra (orange, r.t., excited at 468 nm; violet, 77 K, excited at 450 nm) of Pt-Cl in a ca. 10 ⁻⁶ M toluene solution	n 6
Figure S31: UV-Vis absorption (black), excitation (detection at 640 nm, red) and emission spectra (orange, excited at 471 nm) of Pt-I in a ca. 10 ⁻⁶ M CH ₂ Cl ₂ solution at r.t	7
Figure S32: UV-Vis absorption (black), excitation (detection at 646 nm, red) and emission spectra (orange, excited at 450 nm) of Pt-NO₂ in a ca. 10 ⁻⁶ M CH ₂ Cl ₂ solution at r.t	7
Figure S33: UV-Vis absorption (black), excitation (detection at 638 nm, red) and emission spectra (orange, excited at 450 nm) of Pt-NCS in a ca. 10 ⁻⁶ M CH ₂ Cl ₂ solution at r.t	8
Figure S34: Electronical absorption spectra of Pt-CH ₃ in a ca. 10 ⁻⁶ M benzene solution before and after irradiating the sample into its lowest energy absorption band, and of Br-BODIPY in benzene solution, respectively) 8
Figure S35: Stacked luminescence spectra of Pt-Cl at different oxygen concentrations3	9

Figure S36: Stern-Volmer plot of Pt-Cl	9
Figure S37: Stacked luminescence spectra of Pt-NO₂ in CH ₂ Cl ₂ solution at different oxygen concentration levels	0
Figure S38: Spectral change in the absorption spectra of the reaction mixture containing DHN and Pt-I	[0
Figure S39: Spectral change in the absorption spectra of the reaction mixture containing DHN and the reference sensitizer MB	[1
Figure S40: Sample of the reaction mixture of DHN and Pt-Cl kept in the dark for 180 min; UV-Vis spectra were taken before and after that time period	1
Figure S41: Sample of the reaction mixture of DHN and Pt-I kept in the dark for 180 min; UV-Vis spectra were taken before and after that time period	2

List of Tables

Table S1: Crystal and refinement data for Pt-Cl, Pt-I, Pt-NCS, Pt-NO2 and Pt-CH31	14
Table S2: Bond lengths [Å] and angles [°] for Pt-Cl.	15
Table S3: Bond lengths [Å] and angles [°] for Pt-I.	17
Table S4: Bond lengths [Å] and angles [°] for Pt-NCS.	19
Table S5: Bond lengths [Å] and angles [°] for Pt-NO2	21
Table S6: Bond lengths [Å] and angles [°] for Pt-CH3	23
Table S7: Atomic coordinates of Pt-Cl in the optimized ground state geometry. 2	25
Table S8: Atomic coordinates of Pt-Cl in the optimized geometry of the first excited triplet state.	26
Table S9: Atomic coordinates of Pt-I in the optimized ground state geometry	27
Table S10: Atomic coordinates of Pt-I in the optimized geometry of the first excited triplet state.	28
Table S11: Atomic coordinates of Pt-NCS in the optimized ground state geometry. 2	29
Table S12: Atomic coordinates of Pt-NCS in the optimized geometry of the first excited triplet state.	30
Table S13: Atomic coordinates of Pt-NO2 in the optimized ground state geometry	31
Table S14: Atomic coordinates of Pt-NO2 in the optimized geometry of the first excited triple state.	et 33
Table S15: Selected bond lengths and bond angles of the calculated structures of Pt-Cl, Pt-I, Pt-NCS, and Pt-NO ₂ in comparison with the structure data from X-ray crystal structure	25
anary 515.	55

NMR Spectra

Figure S2: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-Cl in CD₂Cl₂.

-4100 -4104 -4108 -4112 -4116 -4120 -4124 -4128 -4132 -4136 -4140 -4144 -4148 -4152 -4156 -4160 -4164 f1 (ppm)

Figure S4: ¹⁹⁵Pt{¹H} NMR spectrum of Pt-Cl in CD₂Cl₂.

Figure S6: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-Cl in C₆D₆.

Pt-Cl: ¹H NMR (600 MHz, C₆D₆): δ 7.86 (br s, 2H, H5, H9), 7.52 (d, 2H, ³*J*_{HH} = 3.56 Hz, H3, H7), 6.24 (dd, 2H, ³*J*_{HH} = 3.56 Hz, ³*J*_{HH} = 1.56 Hz, H3, H8), 1.48 (m, 12H, P-C*H*₂-), 0.76 (m, 18H, P-CH₂-C*H*₃). ³¹P NMR (161.9 MHz, C₆D₆): δ 11.50 ppm (s, with satellites *J*_{PtP} = 2508 Hz). ¹³C NMR (150.9 MHz, C₆D₆): δ 143.77 (s, C2, C6), 137.76 (s, C5, C9), 132.85 (s, C3, C7), 116.26 (s, C3, C7), 14.04 (t, *J*_{PC} = 17.1 Hz, P-CH₂-), 7.84 (br s, P-CH₂-CH₃), C1 was not detected due to a low signal to noise ratio.

Figure S9: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-I in C₆D₆.

Figure S11: $^{195}Pt{^{1}H}$ NMR spectrum of Pt-I in C₆D₆.

Figure S13: ³¹P{¹H} NMR spectrum of Pt-NCS in C₆D₆.

Figure S15: 195 Pt{ 1 H} NMR spectrum of Pt-NCS in C₆D₆.

Figure S17: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-NO₂ in C₆D₆.

Figure S19: ¹⁹⁵Pt{¹H} NMR spectrum of Pt-NO₂ in C_6D_6 .

Figure S20: ¹H NMR spectrum of Pt-CH₃ in C₆D₆.

Figure S21: ${}^{31}P{}^{1}H$ NMR spectrum of Pt-CH₃ in C₆D₆.

Figure S23: 195 Pt{ 1 H} NMR spectrum of Pt-CH₃ in C₆D₆.

Single Crystal X-ray Diffraction

	Pt-Cl	Pt-I	Pt-NCS
Emp. formula / f. wt. / g mol ⁻¹	C ₂₁ H ₃₆ BClF ₂ N ₂ P ₂ Pt / 657.81	C ₂₁ H ₃₆ F ₂ IN ₂ P ₂ Pt / 749.26	C ₂₂ H ₃₆ BF ₂ N ₃ P ₂ PtS / 680.44
Temperature / K	100(2)	100(2)	100(2)
Crystal system	monoclinic	orthorhombic	monoclinic
Space group	$P 2_1/c$	$C m c 2_1$	$P 2_1/n$
a, b, c / Å	17.4058(6), 17.0196(5),	13.4838(7), 14.5951(10),	9.3599(4), 18.0669(7),
	17.2625(6)	13.7759(7)	16.1360(7)
$\alpha, \beta, \gamma / \text{deg}$	90, 94.973(3), 90	90, 90, 90	90, 104.104(3), 90
$V/Å^3$	5094.6(3)	2711.1(3)	2646.41(19)
Z	8	4	4
D_{calcd} / g cm ⁻³	1.715	1.836	1.708
Absorption coefficient / mm ⁻¹	5.765	6.457	5.531
θ range for data collection / deg	1.677 to 28.061	2.056 to 26.795	1.722 to 27.343
Limiting Indices	-22≤h≤22, -22≤k≤22, -22≤l≤22	-17≤h≤17, -18≤k≤18, -17≤l≤17	-12≤h≤12, -23≤k≤23, -20≤l≤20
Reflections collected / unique (> $2\sigma(I)$)	83167 / 12219	18705 / 2982	41294 / 5964
1 ()//	[R(int) = 0.0818]	[R(int) = 0.0936]	[R(int) = 0.0666]
Data / Restraints / Parameter	12219/0/553	2982 / 1 / 160	5964 / 0 / 319
$R(I \ge 2\sigma(I))$	$R_1 = 0.0484$, $wR_2 = 0.0747$	$R_1 = 0.0255$, $wR_2 = 0.0632$	$R_1 = 0.0311$, $wR_2 = 0.0757$
R _w (all data)	$R_1 = 0.0620$, $wR_2 = 0.0755$	$R_1 = 0.0282, WR_2 = 0.0640$	$R_1 = 0.0346$, $wR_2 = 0.0773$
GooF (all Data)	2.128	1.120	1.040
Max, and min, res. dens. / eÅ -3	2.559 and -2.016	1.607 and -1.633	2.892 and -1.740
	Pt-NO ₂	Pt-CH ₃	
Emp. formula / f. wt. / g mol ⁻¹	Pt-NO ₂ C ₂₁ H ₃₆ BF ₂ N ₃ O ₂ P ₂ Pt / 668.37	Pt-CH₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K	Pt-NO ₂ C ₂₁ H ₃₆ BF ₂ N ₃ O ₂ P ₂ Pt / 668.37 100(2)	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2)	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system	Pt-NO ₂ C ₂₁ H ₃₆ BF ₂ N ₃ O ₂ P ₂ Pt / 668.37 100(2) monoclinic	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group	Pt-NO ₂ C ₂₁ H ₃₆ BF ₂ N ₃ O ₂ P ₂ Pt / 668.37 100(2) monoclinic P 2 ₁ /c	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å	Pt-NO ₂ C ₂₁ H ₃₆ BF ₂ N ₃ O ₂ P ₂ Pt / 668.37 100(2) monoclinic P 2 ₁ /c 9.6174(6), 16.8233(8),	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁ 11.0980(4), 13.1409(6),	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group <i>a</i> , <i>b</i> , <i>c</i> / Å	Pt-NO ₂ C ₂₁ H ₃₆ BF ₂ N ₃ O ₂ P ₂ Pt / 668.37 100(2) monoclinic P 2 ₁ /c 9.6174(6), 16.8233(8), 16.3882(10)	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁ 11.0980(4), 13.1409(6), 18.4244(6)	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$	$\label{eq:pt-NO2} \hline $P_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37$ \\ 100(2)$ \\ monoclinic$ $P_{21/c}$ \\ 9.6174(6), 16.8233(8),$ \\ 16.3882(10)$ \\ 90, 103.184(5), 90$ \\ \hline \end{tabular}$	Pt-CH3 C22H39BF2N2P2Pt / 637.39 100(2) monoclinic P 21 11.0980(4), 13.1409(6), 18.4244(6) 90, 106.287(3), 90	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³	$\begin{array}{c} \mbox{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \end{array}$	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁ 11.0980(4), 13.1409(6), 18.4244(6) 90, 106.287(3), 90 2579.14(18)	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z	$\begin{array}{c} \mbox{Pt-NO_2} \\ C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \end{array}$	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁ 11.0980(4), 13.1409(6), 18.4244(6) 90, 106.287(3), 90 2579.14(18) 4	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{calcd} / g cm ⁻³	$\begin{array}{c} \mbox{Pt-NO}_2 \\ C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \end{array}$	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁ 11.0980(4), 13.1409(6), 18.4244(6) 90, 106.287(3), 90 2579.14(18) 4 1.641	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{caled} / g cm ⁻³ Absorption coefficient / mm ⁻¹	$\begin{array}{c} \textbf{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \end{array}$	Pt-CH ₃ C ₂₂ H ₃₉ BF ₂ N ₂ P ₂ Pt / 637.39 100(2) monoclinic P 2 ₁ 11.0980(4), 13.1409(6), 18.4244(6) 90, 106.287(3), 90 2579.14(18) 4 1.641 5.590	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{caled} / g cm ⁻³ Absorption coefficient / mm ⁻¹ θ range for data collection / deg	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \text{ to } 25.981 \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{calcd} / g cm ⁻³ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices	$\begin{array}{c} \textbf{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \\ 1.759 \text{ to } 26.067 \\ -11 \leq h \leq 11, -20 \leq k \leq 20, -20 \leq l \leq 19 \end{array}$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \ to \ 25.981 \\ -13 \leq h \leq 13, -16 \leq k \leq 16, -22 \leq l \leq 22 \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ $V / Å^3$ Z D _{calcd} / g cm ⁻³ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices Reflections collected / unique (> 2 σ (I))	$\begin{array}{c} \textbf{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \\ 1.759 \ to \ 26.067 \\ -11 \leq h \leq 11, \ -20 \leq k \leq 20, \ -20 \leq l \leq 19 \\ 33380 / 5044 \end{array}$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \ to \ 25.981 \\ -13 \leq h \leq 13, -16 \leq k \leq 16, -22 \leq l \leq 22 \\ 33984 / 10000 \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{caled} / g cm ⁻³ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices Reflections collected / unique (> 2 σ (I))	$\begin{array}{c} \textbf{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \\ 1.759 \ to \ 26.067 \\ -11 \leq h \leq 11, \ -20 \leq k \leq 20, \ -20 \leq l \leq 19 \\ 33380 / 5044 \\ [R(int) = 0.1517] \end{array}$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \text{ to } 25.981 \\ -13 \leq h \leq 13, -16 \leq k \leq 16, -22 \leq l \leq 22 \\ 33984 / 10000 \\ [R(int) = 0.0379] \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{caled} / g cm ⁻³ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices Reflections collected / unique (> 2 σ (I)) Data / Restraints / Parameter	$\label{eq:pt-NO_2} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \text{ to } 25.981 \\ -13 \leq h \leq 13, -16 \leq k \leq 16, -22 \leq l \leq 22 \\ 33984 / 10000 \\ [R(int) = 0.0379] \\ 10000 / 1 / 555 \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ $V / Å^3$ Z $D_{calcd} / g cm^{-3}$ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices Reflections collected / unique (> 2 σ (I)) Data / Restraints / Parameter R (I> 2 σ (I))	$\begin{array}{c} \mbox{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P \ 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \\ 1.759 \ to \ 26.067 \\ -11 \leq h \leq 11, \ -20 \leq k \leq 20, \ -20 \leq l \leq 19 \\ 33380 / \ 5044 \\ [R(int) = 0.1517] \\ 5044 / 0 / \ 295 \\ R_1 = 0.0544, \ wR_2 = 0.0560 \end{array}$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \ to 25.981 \\ -13 {\leq} h {\leq} 13, {-}16 {\leq} k {\leq} 16, {-}22 {\leq} l {\leq} 22 \\ 33984 / 10000 \\ [R(int) = 0.0379] \\ 10000 / l / 555 \\ R_1 = 0.0344, wR_2 = 0.0747 \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ V / Å ³ Z D _{caled} / g cm ⁻³ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices Reflections collected / unique (> 2 σ (I)) Data / Restraints / Parameter R (I> 2 σ (I)) R _w (all data)	$\begin{array}{l} \label{eq:pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \\ 1.759 to 26.067 \\ -11 \leq h \leq 11, -20 \leq k \leq 20, -20 \leq l \leq 19 \\ 33380 / 5044 \\ [R(int) = 0.1517] \\ 5044 / 0 / 295 \\ R_1 = 0.0544, wR_2 = 0.0560 \\ R_1 = 0.0985, wR_2 = 0.0620 \end{array}$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P 2_1 \\ 11.0980(4), 13.1409(6), \\ 18.4244(6) \\ 90, 106.287(3), 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \ to 25.981 \\ -13 \leq h \leq 13, -16 \leq k \leq 16, -22 \leq l \leq 22 \\ 33984 / 10000 \\ [R(int) = 0.0379] \\ 10000 / l / 555 \\ R_1 = 0.0344, wR_2 = 0.0747 \\ R_1 = 0.0370, wR_2 = 0.0756 \end{array}$	
Emp. formula / f. wt. / g mol ⁻¹ Temperature / K Crystal system Space group a, b, c / Å $\alpha, \beta, \gamma / deg$ $V / Å^3$ Z $D_{calcd} / g cm^{-3}$ Absorption coefficient / mm ⁻¹ θ range for data collection / deg Limiting Indices Reflections collected / unique (> 2 σ (I)) Data / Restraints / Parameter R (I> 2 σ (I)) R _w (all data) GooF (all Data)	$\begin{array}{c} \mbox{Pt-NO_2} \\ \hline C_{21}H_{36}BF_2N_3O_2P_2Pt / 668.37 \\ 100(2) \\ monoclinic \\ P 2_1/c \\ 9.6174(6), 16.8233(8), \\ 16.3882(10) \\ 90, 103.184(5), 90 \\ 2581.7(3) \\ 4 \\ 1.720 \\ 5.596 \\ 1.759 to 26.067 \\ -11 \leq h \leq 11, -20 \leq k \leq 20, -20 \leq l \leq 19 \\ 33380 / 5044 \\ [R(int) = 0.1517] \\ 5044 / 0 / 295 \\ R_1 = 0.0544, wR_2 = 0.0620 \\ 0.995 \end{array}$	$\begin{array}{c} \textbf{Pt-CH_3} \\ \hline C_{22}H_{39}BF_2N_2P_2Pt / 637.39 \\ 100(2) \\ monoclinic \\ P \ 2_1 \\ 11.0980(4), \ 13.1409(6), \\ 18.4244(6) \\ 90, \ 106.287(3), \ 90 \\ 2579.14(18) \\ 4 \\ 1.641 \\ 5.590 \\ 1.912 \ to \ 25.981 \\ -13 \leq h \leq 13, \ -16 \leq k \leq 16, \ -22 \leq l \leq 22 \\ 33984 / \ 10000 \\ [R(int) = 0.0379] \\ 10000 / \ 1 / \ 555 \\ R_1 = 0.0344, \ wR_2 = 0.0747 \\ R_1 = 0.0370, \ wR_2 = 0.0756 \\ 1.049 \\ \end{array}$	

Table S1: Crystal and refinement data for Pt-Cl, Pt-I, Pt-NCS, Pt-NO₂ and Pt-CH₃.

Table S2: Bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for Pt-Cl.

C(1)-C(2)	1.411(9)	B(2)-N(4)	1.549(9)	F(4)-B(2)-N(3)	110.4(6)
C(1)-C(6)	1.427(8)	Cl(1)-Pt(1)	2.3742(16)	F(3)-B(2)-N(4)	109.7(6)
C(1)-Pt(1)	1.980(6)	Cl(2)-Pt(2)	2.3842(16)	F(4)-B(2)-N(4)	109.6(6)
C(2)-C(3)	1.386(8)	P(1)-Pt(1)	2.3173(17)	N(3)-B(2)-N(4)	106.6(5)
C(2)-N(1)	1.393(8)	P(2)-Pt(1)	2.3097(16)	C(5)-N(1)-C(2)	108.4(5)
C(3)-C(4)	1.388(9)	P(3)-Pt(2)	2.3158(18)	C(5)-N(1)-B(1)	126.0(6)
C(4)-C(5)	1.403(9)	P(4)-Pt(2)	2.3120(18)	C(2)-N(1)-B(1)	125.3(6)
C(5)-N(1)	1.339(8)	C(2)-C(1)-C(6)	117.5(6)	C(9)-N(2)-C(6)	107.3(6)
C(6)-N(2)	1.394(8)	C(2)-C(1)-Pt(1)	120.6(4)	C(9)-N(2)-B(1)	125.2(5)
C(6)-C(7)	1.402(9)	C(6)-C(1)-Pt(1)	121.8(5)	C(6)-N(2)-B(1)	127.2(5)
C(7)-C(8)	1.378(9)	C(3)-C(2)-N(1)	107.3(6)	C(26)-N(3)-C(23)	107.4(5)
C(8)-C(9)	1.383(10)	C(3)-C(2)-C(1)	129.6(6)	C(26)-N(3)-B(2)	127.0(6)
C(9)-N(2)	1.360(8)	N(1)-C(2)-C(1)	122.7(6)	C(23)-N(3)-B(2)	125.5(5)
C(10)-C(11)	1.535(9)	C(4)-C(3)-C(2)	108.5(6)	C(30)-N(4)-C(27)	108.4(6)
C(10)-P(1)	1.820(7)	C(3)-C(4)-C(5)	106.1(6)	C(30)-N(4)-B(2)	126.8(6)
C(12)-C(13)	1.526(10)	N(1)-C(5)-C(4)	109.7(6)	C(27)-N(4)-B(2)	124.5(5)
C(12)-P(1)	1.799(8)	N(2)-C(6)-C(7)	107.8(5)	C(12)-P(1)-C(10)	107.4(3)
C(14)-C(15)	1.526(11)	N(2)-C(6)-C(1)	121.2(6)	C(12)-P(1)-C(14)	101.5(4)
C(14)-P(1)	1.838(7)	C(7)-C(6)-C(1)	131.0(6)	C(10)-P(1)-C(14)	106.9(3)
C(16)-C(17)	1.544(9)	C(8)-C(7)-C(6)	107.5(6)	C(12)-P(1)-Pt(1)	111.9(2)
C(16)-P(2)	1.823(7)	C(7)-C(8)-C(9)	107.6(6)	C(10)-P(1)-Pt(1)	114.6(2)
C(18)-C(19)	1.514(9)	N(2)-C(9)-C(8)	109.8(6)	C(14)-P(1)-Pt(1)	113.6(2)
C(18)-P(2)	1.823(7)	C(11)-C(10)-P(1)	116.3(6)	C(20)-P(2)-C(18)	102.3(3)
C(20)-C(21)	1.533(10)	C(13)-C(12)-P(1)	112.8(6)	C(20)-P(2)-C(16)	106.3(3)
C(20)-P(2)	1.817(6)	C(15)-C(14)-P(1)	114.0(5)	C(18)-P(2)-C(16)	107.3(3)
C(22)-C(23)	1.406(8)	C(17)-C(16)-P(2)	117.3(5)	C(20)-P(2)-Pt(1)	112.8(2)
C(22)-C(27)	1.414(8)	C(19)-C(18)-P(2)	114.8(4)	C(18)-P(2)-Pt(1)	112.5(2)
C(22)-Pt(2)	1.969(6)	C(21)-C(20)-P(2)	114.3(5)	C(16)-P(2)-Pt(1)	114.7(2)
C(23)-N(3)	1.391(8)	C(23)-C(22)-C(27)	117.1(6)	C(37)-P(3)-C(39)	106.4(4)
C(23)-C(24)	1.413(8)	C(23)-C(22)-Pt(2)	121.7(5)	C(37)-P(3)-C(41)	106.5(4)
C(24)-C(25)	1.409(9)	C(27)-C(22)-Pt(2)	121.2(5)	C(39)-P(3)-C(41)	102.7(3)
C(25)-C(26)	1.363(10)	C(22)-C(23)-N(3)	122.8(6)	C(37)-P(3)-Pt(2)	115.0(2)
C(26)-N(3)	1.370(9)	C(22)-C(23)-C(24)	129.3(6)	C(39)-P(3)-Pt(2)	111.8(2)
C(27)-C(28)	1.396(9)	N(3)-C(23)-C(24)	107.9(5)	C(41)-P(3)-Pt(2)	113.4(3)
C(27)-N(4)	1.397(8)	C(25)-C(24)-C(23)	106.7(6)	C(33)-P(4)-C(35)	105.5(3)
C(28)-C(29)	1.385(9)	C(26)-C(25)-C(24)	107.5(6)	C(33)-P(4)-C(31)	106.2(3)
C(29)-C(30)	1.397(10)	N(3)-C(26)-C(25)	110.5(6)	C(35)-P(4)-C(31)	103.4(3)
C(30)-N(4)	1.336(8)	C(28)-C(27)-N(4)	107.0(6)	C(33)-P(4)-Pt(2)	110.8(2)
C(31)-C(32)	1.526(9)	C(28)-C(27)-C(22)	130.4(6)	C(35)-P(4)-Pt(2)	109.7(2)
C(31)-P(4)	1.844(6)	N(4)-C(27)-C(22)	122.5(6)	C(31)-P(4)-Pt(2)	120.1(3)
C(33)-C(34)	1.537(9)	C(29)-C(28)-C(27)	108.3(6)	C(1)-Pt(1)-P(2)	93.91(17)
C(33)-P(4)	1.824(7)	C(28)-C(29)-C(30)	106.4(6)	C(1)-Pt(1)-P(1)	91.33(17)

C(35)-C(36)	1.556(10)	N(4)-C(30)-C(29)	109.9(6)	P(2)-Pt(1)-P(1)	174.76(6)
C(35)-P(4)	1.839(7)	C(32)-C(31)-P(4)	114.6(5)	C(1)-Pt(1)-Cl(1)	178.39(18)
C(37)-C(38)	1.533(10)	C(34)-C(33)-P(4)	114.5(5)	P(2)-Pt(1)-Cl(1)	87.59(6)
C(37)-P(3)	1.822(8)	C(36)-C(35)-P(4)	115.9(5)	P(1)-Pt(1)-Cl(1)	87.17(6)
C(39)-C(40)	1.525(9)	C(38)-C(37)-P(3)	116.7(5)	C(22)-Pt(2)-P(4)	92.85(18)
C(39)-P(3)	1.825(7)	C(40)-C(39)-P(3)	114.1(4)	C(22)-Pt(2)-P(3)	91.69(18)
C(41)-C(42)	1.508(9)	C(42)-C(41)-P(3)	114.3(5)	P(4)-Pt(2)-P(3)	175.07(6)
C(41)-P(3)	1.825(7)	F(1)-B(1)-F(2)	109.0(6)	C(22)-Pt(2)-Cl(2)	179.19(19)
B(1)-F(1)	1.388(8)	F(1)-B(1)-N(2)	110.1(6)	P(4)-Pt(2)-Cl(2)	87.82(6)
B(1)-F(2)	1.379(9)	F(2)-B(1)-N(2)	112.5(6)	P(3)-Pt(2)-Cl(2)	87.66(6)
B(1)-N(2)	1.528(10)	F(1)-B(1)-N(1)	108.9(5)		
B(1)-N(1)	1.561(9)	F(2)-B(1)-N(1)	110.5(6)		
B(2)-F(3)	1.389(9)	N(2)-B(1)-N(1)	105.6(5)		
B(2)-F(4)	1.404(8)	F(3)-B(2)-F(4)	108.9(6)		
B(2)-N(3)	1.527(10)	F(3)-B(2)-N(3)	111.6(6)		

Figure S24: Packing of molecules of Pt-Cl along the crystallographic *a* (a), *b* (b), and *c* axis (c).

Table S3: Bond lengths [Å] and angles [°] for Pt-I.

Pt(1)-C(1)	1.994(10)	C(1)-Pt(1)-P(1)	91.37(7)	N(1)-C(5)-C(4)	108.9(9)
Pt(1)-P(1)	2.3206(15)	C(1)-Pt(1)-P(1)#1	91.37(7)	C(1)-C(6)-N(2)	121.1(9)
Pt(1)-P(1)#1	2.3207(15)	P(1)-Pt(1)-P(1)#1	176.03(8)	C(1)-C(6)-C(7)	132.0(9)
Pt(1)-I(1)	2.6689(8)	C(1)-Pt(1)-I(1)	176.8(3)	N(2)-C(6)-C(7)	106.9(8)
N(1)-C(5)	1.361(12)	P(1)-Pt(1)-I(1)	88.71(7)	C(8)-C(7)-C(6)	109.0(10)
N(1)-C(2)	1.402(13)	P(1)#1-Pt(1)-I(1)	88.71(7)	C(7)-C(8)-C(9)	106.3(10)
N(1)-B(1)	1.538(15)	C(5)-N(1)-C(2)	108.6(9)	N(2)-C(9)-C(8)	110.0(10)
N(2)-C(9)	1.351(14)	C(5)-N(1)-B(1)	124.1(10)	C(12)-P(1)-C(14)	102.3(4)
N(2)-C(6)	1.408(13)	C(2)-N(1)-B(1)	127.3(9)	C(12)-P(1)-C(10)	105.5(4)
N(2)-B(1)	1.556(13)	C(9)-N(2)-C(6)	107.8(9)	C(14)-P(1)-C(10)	105.7(4)
B(1)-F(1)	1.382(8)	C(9)-N(2)-B(1)	125.1(10)	C(12)-P(1)-Pt(1)	115.0(3)
B(1)-F(1)#1	1.382(8)	C(6)-N(2)-B(1)	127.0(9)	C(14)-P(1)-Pt(1)	113.1(2)
C(1)-C(6)	1.403(13)	F(1)-B(1)-F(1)#1	109.7(9)	C(10)-P(1)-Pt(1)	114.1(3)
C(1)-C(2)	1.412(13)	F(1)-B(1)-N(1)	111.6(6)	C(11)-C(10)-P(1)	116.2(6)
C(2)-C(3)	1.407(14)	F(1)#1-B(1)-N(1)	111.6(6)	C(13)-C(12)-P(1)	113.8(6)
C(3)-C(4)	1.393(14)	F(1)-B(1)-N(2)	109.7(6)	C(15)-C(14)-P(1)	113.9(6)
C(4)-C(5)	1.392(17)	F(1)#1-B(1)-N(2)	109.7(6)		
C(6)-C(7)	1.410(15)	N(1)-B(1)-N(2)	104.6(9)		
C(7)-C(8)	1.374(17)	C(6)-C(1)-C(2)	118.6(9)		
C(8)-C(9)	1.416(18)	C(6)-C(1)-Pt(1)	122.3(7)		
P(1)-C(12)	1.818(10)	C(2)-C(1)-Pt(1)	119.1(7)		
P(1)-C(14)	1.827(6)	N(1)-C(2)-C(3)	107.0(9)		
P(1)-C(10)	1.832(9)	N(1)-C(2)-C(1)	121.4(9)		
C(10)-C(11)	1.539(11)	C(3)-C(2)-C(1)	131.5(10)		
C(12)-C(13)	1.540(13)	C(4)-C(3)-C(2)	107.6(10)		
C(15)-C(14)	1.536(14)	C(5)-C(4)-C(3)	107.8(9)		

Figure S25: Packing of molecules of Pt-I along the crystallographic *a* (a), *b* (b), and *c* axis (c).

C(1)-C(2)	1.404(6)	B(1)-N(1)	1.546(6)	F(2)-B(1)-N(1)	110.6(4)
C(1)-C(6)	1.413(6)	N(3)-Pt(1)	2.048(4)	N(2)-B(1)-N(1)	106.4(3)
C(1)-Pt(1)	1.984(4)	P(1)-Pt(1)	2.3135(13)	C(5)-N(1)-C(2)	108.4(4)
C(2)-N(1)	1.395(5)	P(2)-Pt(1)	2.3249(11)	C(5)-N(1)-B(1)	125.9(4)
C(2)-C(3)	1.412(6)	C(2)-C(1)-C(6)	117.9(4)	C(2)-N(1)-B(1)	125.6(3)
C(3)-C(4)	1.374(6)	C(2)-C(1)-Pt(1)	122.1(3)	C(9)-N(2)-C(6)	108.0(4)
C(4)-C(5)	1.395(6)	C(6)-C(1)-Pt(1)	119.9(3)	C(9)-N(2)-B(1)	126.3(4)
C(5)-N(1)	1.340(6)	N(1)-C(2)-C(1)	122.2(4)	C(6)-N(2)-B(1)	125.6(4)
C(6)-N(2)	1.396(5)	N(1)-C(2)-C(3)	106.8(3)	C(22)-N(3)-Pt(1)	162.2(4)
C(6)-C(7)	1.410(6)	C(1)-C(2)-C(3)	131.1(4)	C(14)-P(1)-C(10)	113.4(3)
C(7)-C(8)	1.391(6)	C(4)-C(3)-C(2)	108.0(4)	C(14)-P(1)-C(12)	103.2(3)
C(8)-C(9)	1.392(6)	C(3)-C(4)-C(5)	107.0(4)	C(10)-P(1)-C(12)	100.0(2)
C(9)-N(2)	1.348(6)	N(1)-C(5)-C(4)	109.8(4)	C(14)-P(1)-Pt(1)	113.0(2)
C(10)-C(11)	1.504(8)	N(2)-C(6)-C(7)	107.4(4)	C(10)-P(1)-Pt(1)	120.87(16)
C(10)-P(1)	1.815(5)	N(2)-C(6)-C(1)	122.2(4)	C(12)-P(1)-Pt(1)	103.07(19)
C(12)-C(13)	1.435(9)	C(7)-C(6)-C(1)	130.4(4)	C(18)-P(2)-C(16)	103.2(2)
C(12)-P(1)	2.038(8)	C(8)-C(7)-C(6)	107.6(4)	C(18)-P(2)-C(20)	105.5(2)
C(14)-C(15)	1.477(9)	C(7)-C(8)-C(9)	106.8(4)	C(16)-P(2)-C(20)	105.5(2)
C(14)-P(1)	1.765(6)	N(2)-C(9)-C(8)	110.3(4)	C(18)-P(2)-Pt(1)	111.63(16)
C(16)-C(17)	1.525(7)	C(11)-C(10)-P(1)	114.7(5)	C(16)-P(2)-Pt(1)	115.92(16)
C(16)-P(2)	1.823(4)	C(13)-C(12)-P(1)	112.4(5)	C(20)-P(2)-Pt(1)	113.93(16)
C(18)-C(19)	1.520(7)	C(15)-C(14)-P(1)	117.4(6)	C(1)-Pt(1)-N(3)	175.77(17)
C(18)-P(2)	1.822(4)	C(17)-C(16)-P(2)	113.9(3)	C(1)-Pt(1)-P(1)	91.44(12)
C(20)-C(21)	1.528(7)	C(19)-C(18)-P(2)	113.2(3)	N(3)-Pt(1)-P(1)	87.28(12)
C(20)-P(2)	1.826(4)	C(21)-C(20)-P(2)	115.1(3)	C(1)-Pt(1)-P(2)	90.79(12)
C(22)-N(3)	1.162(6)	N(3)-C(22)-S(1)	179.7(4)	N(3)-Pt(1)-P(2)	90.62(11)
C(22)-S(1)	1.625(4)	F(1)-B(1)-F(2)	108.7(3)	P(1)-Pt(1)-P(2)	177.17(5)
B(1)-F(1)	1.389(5)	F(1)-B(1)-N(2)	110.8(4)		
B(1)-F(2)	1.394(5)	F(2)-B(1)-N(2)	110.1(4)		
B(1)-N(2)	1.540(6)	F(1)-B(1)-N(1)	110.3(4)		

Table S4: Bond lengths [Å] and angles $[^{\circ}]$ for Pt-NCS.

Figure S26: Packing of molecules of Pt-NCS along the crystallographic *a* (a), *b* (b), and *c* axis (c).

Table S5: Bond le	engths [Å] and	angles [°] fo	r Pt-NO ₂ .
-------------------	----------------	---------------	------------------------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Pt(1)-N(3) 2.019(8) C(16)-C(17) 1.546(11) C(18)-P(2)-C(16) 105.9(4) Pt(1)-P(1) 2.329(2) C(18)-C(19) 1.527(11) C(18)-P(2)-C(20) 104.2(4) Pt(1)-P(2) 2.334(2) C(20)-C(21) 1.521(11) C(16)-P(2)-C(20) 105.4(4) B(1)-F(2) 1.389(9) C(1)-Pt(1)-N(3) 178.2(4) C(18)-P(2)-Pt(1) 113.1(3) B(1)-F(1) 1.398(10) C(1)-Pt(1)-P(1) 92.3(3) C(16)-P(2)-Pt(1) 112.8(3) B(1)-N(1) 1.534(11) C(1)-Pt(1)-P(2) 89.3(3) C(6)-C(1)-Pt(1) 122.1(6) N(1)-C(5) 1.342(10) N(3)-Pt(1)-P(2) 90.0(2) C(6)-C(1)-Pt(1) 122.1(6) N(1)-C(2) 1.419(9) P(1)-Pt(1)-P(2) 173.83(8) C(2)-C(1)-Pt(1) 122.4(6) N(2)-C(6) 1.430(9) F(2)-B(1)-N(1) 111.1(6) C(3)-C(2)-N(1) 123.0(7) N(3)-O(1) 1.232(10) F(1)-B(1)-N(2) 100.0(7) C(4)-C(3)-C(2) 108.4(7) P(1)-C(14) 1.823(8) F(1)-B(1)-N(2) 110.1(6) C(3)-C(4)-C(5)	Pt(1)-C(1)	1.956(9)	C(14)-C(15)	1.515(12)	C(10)-P(1)-Pt(1)	115.0(3)
Pr(1)-P(1) 2.329(2) C(18)-C(19) 1.527(11) C(18)-P(2)-C(20) 104.2(4) Pr(1)-P(2) 2.334(2) C(20)-C(21) 1.521(11) C(16)-P(2)-C(20) 105.4(4) B(1)-F(2) 1.389(9) C(1)-Pr(1)-N(3) 178.2(4) C(18)-P(2)-P(1) 114.7(3) B(1)-F(1) 1.398(10) C(1)-Pr(1)-P(1) 92.3(3) C(16)-P(2)-P(1) 113.1(3) B(1)-N(1) 1.534(10) N(3)-Pr(1)-P(2) 89.3(3) C(6)-C(1)-P(1) 122.8(3) B(1)-N(2) 1.548(11) C(1)-Pr(1)-P(2) 89.3(3) C(6)-C(1)-P(1) 122.1(6) N(1)-C(2) 1.419(9) P(1)-P(1)-P(2) 90.02) C(6)-C(1)-P(1) 122.4(6) N(1)-C(2) 1.352(10) F(2)-B(1)-F(1) 108.4(6) C(3)-C(2)-C(1) 103.9(7) N(3)-O(1) 1.232(10) F(1)-B(1)-N(1) 110.3(7) N(1)-C(2)-C(1) 122.4(6) N(3)-O(2) 1.232(10) F(1)-B(1)-N(1) 110.3(7) N(1)-C(2)-C(1) 123.7(7) N(3)-O(1) 1.232(10) F(1)-B(1)-N(2) 110.1(6) C(3)-C(4)-C(5)	Pt(1)-N(3)	2.019(8)	C(16)-C(17)	1.546(11)	C(18)-P(2)-C(16)	105.9(4)
P(1)-P(2) $2.334(2)$ $C(20)-C(21)$ $1.521(11)$ $C(16)-P(2)-C(20)$ $105.4(4)$ $B(1)-F(2)$ $1.389(9)$ $C(1)-P(1)-N(3)$ $178.2(4)$ $C(18)-P(2)-P(1)$ $114.7(3)$ $B(1)-F(1)$ $1.398(10)$ $C(1)-P(1)-P(1)$ $92.3(3)$ $C(16)-P(2)-P(1)$ $113.1(3)$ $B(1)-N(1)$ $1.534(10)$ $N(3)-P(1)-P(1)$ $88.6(2)$ $C(20)-P(2)-P(1)$ $112.8(3)$ $B(1)-N(2)$ $1.548(11)$ $C(1)-P(1)-P(2)$ $89.3(3)$ $C(6)-C(1)-C(2)$ $115.5(8)$ $N(1)-C(5)$ $1.342(10)$ $N(3)-P(1)-P(2)$ $90.0(2)$ $C(6)-C(1)-P(1)$ $122.1(6)$ $N(1)-C(2)$ $1.419(9)$ $P(1)-P(1)-P(2)$ $173.83(8)$ $C(2)-C(1)-P(1)$ $122.4(6)$ $N(2)-C(9)$ $1.352(10)$ $F(2)-B(1)-F(1)$ $108.4(6)$ $C(3)-C(2)-N(1)$ $100.6(7)$ $N(2)-C(6)$ $1.409(9)$ $F(2)-B(1)-N(1)$ $111.1(6)$ $C(3)-C(2)-C(1)$ $103.9(7)$ $N(3)-O(1)$ $1.232(10)$ $F(1)-B(1)-N(2)$ $110.0(7)$ $C(4)-C(3)-C(2)$ $108.4(7)$ $P(1)-C(14)$ $1.823(8)$ $F(1)-B(1)-N(2)$ $110.0(7)$ $C(4)-C(3)-C(4)$ $105.7(7)$ $P(1)-C(14)$ $1.820(8)$ $N(1)-B(1)-N(2)$ $107.0(6)$ $N(1)-C(2)-C(1)$ $124.9(7)$ $P(1)-C(16)$ $1.814(9)$ $C(5)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-F(7)$ $128.9(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $127.4(6)$ $C(9)-C(8)-C(7)$ $106.6(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(2)-E(1)$ $127.4(6)$ $C(1)-C(6)-F(2)$ 108.3	Pt(1)-P(1)	2.329(2)	C(18)-C(19)	1.527(11)	C(18)-P(2)-C(20)	104.2(4)
B(1)-F(2)1.389(9)C(1)-Pt(1)-N(3)178.2(4)C(18)-P(2)-Pt(1)114.7(3)B(1)-F(1)1.398(10)C(1)-Pt(1)-Pt(1)92.3(3)C(16)-P(2)-Pt(1)113.1(3)B(1)-N(1)1.534(10)N(3)-Pt(1)-Pt(1)88.6(2)C(20)-P(2)-Pt(1)112.8(3)B(1)-N(2)1.548(11)C(1)-Pt(1)-Pt(2)89.3(3)C(6)-C(1)-C(2)115.5(8)N(1)-C(5)1.342(10)N(3)-Pt(1)-P(2)90.0(2)C(6)-C(1)-Pt(1)122.1(6)N(1)-C(2)1.419(9)P(1)-Pt(1)-Pt(2)173.83(8)C(2)-C(1)-Pt(1)122.4(6)N(2)-C(6)1.409(9)F(2)-B(1)-F(1)108.4(6)C(3)-C(2)-N(1)106.6(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)111.1(6)C(3)-C(2)-C(1)130.9(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)110.3(7)N(1)-C(2)-C(1)122.5(7)N(3)-O(2)1.293(10)F(2)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)108.4(7)P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.1(6)C(3)-C(4)-C(5)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.6(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-N(2)124.9(7)P(2)-C(18)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.830(8)C(2)-N(1)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(1)-C(2)1.440(11)C(6)-N(2)-B(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3) <td< td=""><td>Pt(1)-P(2)</td><td>2.334(2)</td><td>C(20)-C(21)</td><td>1.521(11)</td><td>C(16)-P(2)-C(20)</td><td>105.4(4)</td></td<>	Pt(1)-P(2)	2.334(2)	C(20)-C(21)	1.521(11)	C(16)-P(2)-C(20)	105.4(4)
B(1)-F(1)1.398(10)C(1)-P(1)-P(1)92.3(3)C(16)-P(2)-P(1)113.1(3)B(1)-N(1)1.534(10)N(3)-P(1)-P(1)88.6(2)C(20)-P(2)-P(1)112.8(3)B(1)-N(2)1.548(11)C(1)-P(1)-P(2)89.3(3)C(6)-C(1)-C(2)115.5(8)N(1)-C(5)1.342(10)N(3)-P(1)-P(2)90.0(2)C(6)-C(1)-P(1)122.1(6)N(1)-C(2)1.419(9)P(1)-P(1)-P(2)173.83(8)C(2)-C(1)-P(1)122.4(6)N(2)-C(9)1.352(10)F(2)-B(1)-F(1)108.4(6)C(3)-C(2)-N(1)106.6(7)N(2)-C(6)1.409(9)F(2)-B(1)-N(1)111.1(6)C(3)-C(2)-C(1)122.5(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)110.3(7)N(1)-C(2)-C(1)122.5(7)N(3)-O(2)1.293(10)F(2)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)108.4(7)P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.1(6)C(3)-C(4)-C(5)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.0(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-C(2)107.2(6)C(1)-C(6)-N(2)124.9(7)P(2)-C(16)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.830(8)C(2)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.830(8)C(2)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.830(8)C(2)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.830(8)	B(1)-F(2)	1.389(9)	C(1)-Pt(1)-N(3)	178.2(4)	C(18)-P(2)-Pt(1)	114.7(3)
B(1)-N(1)1.534(10)N(3)-Pt(1)-P(1)88.6(2)C(20)-P(2)-Pt(1)112.8(3)B(1)-N(2)1.548(11)C(1)-Pt(1)-P(2)89.3(3)C(6)-C(1)-C(2)115.5(8)N(1)-C(5)1.342(10)N(3)-Pt(1)-P(2)90.0(2)C(6)-C(1)-Pt(1)122.1(6)N(1)-C(2)1.419(9)P(1)-Pt(1)-P(2)173.83(8)C(2)-C(1)-Pt(1)122.4(6)N(2)-C(9)1.352(10)F(2)-B(1)-F(1)108.4(6)C(3)-C(2)-N(1)106.6(7)N(2)-C(6)1.409(9)F(2)-B(1)-N(1)111.1(6)C(3)-C(2)-C(1)130.9(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)110.3(7)N(1)-C(2)-C(1)122.5(7)N(3)-O(2)1.293(10)F(2)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)108.4(7)P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.1(6)C(3)-C(4)-C(5)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.0(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-C(2)107.2(6)C(1)-C(6)-N(2)124.9(7)P(2)-C(16)1.816(8)C(2)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.816(8)C(2)-N(1)-B(1)127.4(6)C(9)-C(8)-C(7)106.2(7)P(2)-C(20)1.830(8)C(9)-N(2)-E(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(1)-C(2)1.440(11)C(6)-N(2)-B(1)127.4(6)C(1)-C(1)-P(1)114.1(6)C(3)-C(4)1.368(11)O(1)-N(3)-P(2)115.7(8)C(11)-C(1)-P(1)115.6(6)C(4)-C(5)1.384(B(1)-F(1)	1.398(10)	C(1)-Pt(1)-P(1)	92.3(3)	C(16)-P(2)-Pt(1)	113.1(3)
B(1)-N(2)1.548(11)C(1)-Pt(1)-P(2)89.3(3)C(6)-C(1)-C(2)115.5(8)N(1)-C(5)1.342(10)N(3)-Pt(1)-P(2)90.0(2)C(6)-C(1)-Pt(1)122.1(6)N(1)-C(2)1.419(9)P(1)-Pt(1)-P(2)173.83(8)C(2)-C(1)-Pt(1)122.4(6)N(2)-C(9)1.352(10)F(2)-B(1)-F(1)108.4(6)C(3)-C(2)-N(1)106.6(7)N(2)-C(6)1.409(9)F(2)-B(1)-N(1)111.1(6)C(3)-C(2)-C(1)130.9(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)110.3(7)N(1)-C(2)-C(1)122.5(7)N(3)-O(2)1.293(10)F(2)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)108.4(7)P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.1(6)C(3)-C(4)-C(5)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.0(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-C(2)107.2(6)C(1)-C(6)-N(2)124.9(7)P(2)-C(18)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.816(8)C(2)-N(1)-B(1)125.7(7)N(2)-C(6)-C(7)106.2(7)P(2)-C(16)1.830(8)C(9)-N(2)-E(6)108.2(7)C(8)-C(7)-C(6)108.3(8)C(1)-C(6)1.830(8)C(9)-N(2)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(2)-C(3)1.401(1)O(1)-N(3)-O(2)115.7(8)C(11)-C(10)-P(1)114.1(6)C(3)-C(4)1.384(11)O(1)-N(3)-Pt(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.384(11	B(1)-N(1)	1.534(10)	N(3)-Pt(1)-P(1)	88.6(2)	C(20)-P(2)-Pt(1)	112.8(3)
N(1)-C(5)1.342(10)N(3)-Pt(1)-P(2)90.0(2)C(6)-C(1)-Pt(1)122.1(6)N(1)-C(2)1.419(9)P(1)-Pt(1)-P(2)173.83(8)C(2)-C(1)-Pt(1)122.4(6)N(2)-C(9)1.352(10)F(2)-B(1)-F(1)108.4(6)C(3)-C(2)-N(1)106.6(7)N(2)-C(6)1.409(9)F(2)-B(1)-N(1)111.1(6)C(3)-C(2)-C(1)130.9(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)110.3(7)N(1)-C(2)-C(1)122.5(7)N(3)-O(2)1.293(10)F(2)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)108.4(7)P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.0(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-C(2)107.2(6)C(1)-C(6)-N(2)124.9(7)P(2)-C(18)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.816(8)C(2)-N(1)-B(1)125.7(7)N(2)-C(6)-C(7)106.2(7)P(2)-C(16)1.830(8)C(9)-N(2)-C(6)108.2(7)C(8)-C(7)-C(6)108.3(8)C(1)-C(10)1.830(8)C(9)-N(2)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(1)-C(2)1.440(11)C(6)-N(2)-B(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.401(11)O(1)-N(3)-Pt(1)124.0(6)C(13)-C(12)-Pt(1)113.0(5)C(4)-C(5)1.384(11)O(1)-N(3)-Pt(1)124.0(6)C(13)-C(13)-Pt(1)114.1(6)C(3)-C(4)1	B(1)-N(2)	1.548(11)	C(1)-Pt(1)-P(2)	89.3(3)	C(6)-C(1)-C(2)	115.5(8)
N(1)-C(2) $1.419(9)$ $P(1)-P(1)-P(2)$ $173.83(8)$ $C(2)-C(1)-Pt(1)$ $122.4(6)$ $N(2)-C(9)$ $1.352(10)$ $F(2)-B(1)-F(1)$ $108.4(6)$ $C(3)-C(2)-N(1)$ $106.6(7)$ $N(2)-C(6)$ $1.409(9)$ $F(2)-B(1)-N(1)$ $111.1(6)$ $C(3)-C(2)-C(1)$ $130.9(7)$ $N(3)-O(1)$ $1.232(10)$ $F(1)-B(1)-N(1)$ $110.3(7)$ $N(1)-C(2)-C(1)$ $122.5(7)$ $N(3)-O(2)$ $1.293(10)$ $F(2)-B(1)-N(2)$ $110.0(7)$ $C(4)-C(3)-C(2)$ $108.4(7)$ $P(1)-C(14)$ $1.823(8)$ $F(1)-B(1)-N(2)$ $110.1(6)$ $C(3)-C(4)-C(5)$ $107.3(7)$ $P(1)-C(12)$ $1.826(8)$ $N(1)-B(1)-N(2)$ $107.0(6)$ $N(1)-C(5)-C(4)$ $110.5(7)$ $P(1)-C(10)$ $1.830(9)$ $C(5)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-N(2)$ $124.9(7)$ $P(2)-C(16)$ $1.814(9)$ $C(5)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $128.9(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $106.2(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $106.2(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $108.3(8)$ $C(1)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $106.2(7)$ $P(2)-C(20)$ $1.830(8)$ $C(2)-N(2)-E(6)$ $108.2(7)$ $C(8)-C(7)-C(6)$ $108.3(8)$ $C(1)-C(16)$ $1.816(8)$ $C(2)-N(2)-E(1)$ $127.4(6)$ $C(9)-C(8)-C(7)$ 1	N(1)-C(5)	1.342(10)	N(3)-Pt(1)-P(2)	90.0(2)	C(6)-C(1)-Pt(1)	122.1(6)
N(2)-C(9) $1.352(10)$ F(2)-B(1)-F(1) $108.4(6)$ C(3)-C(2)-N(1) $106.6(7)$ N(2)-C(6) $1.409(9)$ F(2)-B(1)-N(1) $111.1(6)$ C(3)-C(2)-C(1) $130.9(7)$ N(3)-O(1) $1.232(10)$ F(1)-B(1)-N(1) $110.3(7)$ N(1)-C(2)-C(1) $122.5(7)$ N(3)-O(2) $1.293(10)$ F(2)-B(1)-N(2) $110.0(7)$ C(4)-C(3)-C(2) $108.4(7)$ P(1)-C(14) $1.823(8)$ F(1)-B(1)-N(2) $110.1(6)$ C(3)-C(4)-C(5) $107.3(7)$ P(1)-C(12) $1.826(8)$ N(1)-B(1)-N(2) $107.0(6)$ N(1)-C(5)-C(4) $110.5(7)$ P(1)-C(10) $1.830(9)$ C(5)-N(1)-C(2) $107.2(6)$ C(1)-C(6)-N(2) $124.9(7)$ P(2)-C(18) $1.814(9)$ C(5)-N(1)-B(1) $127.1(7)$ C(1)-C(6)-C(7) $128.9(7)$ P(2)-C(16) $1.816(8)$ C(2)-N(1)-B(1) $127.1(7)$ C(8)-C(7) $106.2(7)$ P(2)-C(16) $1.816(8)$ C(2)-N(1)-B(1) $127.1(7)$ C(8)-C(7) $106.2(7)$ P(2)-C(16) $1.816(8)$ C(2)-N(1)-B(1) $127.1(7)$ C(8)-C(7) $106.2(7)$ P(2)-C(16) $1.816(8)$ C(2)-N(1)-B(1) $127.4(6)$ C(9)-C(8)-C(7) $106.6(7)$ C(1)-C(6) $1.406(11)$ C(9)-N(2)-B(1) $127.4(6)$ C(9)-C(8)-C(7) $106.6(7)$ C(1)-C(2) $1.440(11)$ C(6)-N(2)-B(1) $124.2(6)$ N(2)-C(9)-C(8) $110.7(7)$ C(2)-C(3) $1.401(11)$ O(1)-N(3)-P(1) $124.2(6)$ N(2)-C(19)-P(1) $113.0(5)$ C(4)-C(5) $1.384(11)$ O(2)-N(3)-P(1) $124.0(6)$ <td< td=""><td>N(1)-C(2)</td><td>1.419(9)</td><td>P(1)-Pt(1)-P(2)</td><td>173.83(8)</td><td>C(2)-C(1)-Pt(1)</td><td>122.4(6)</td></td<>	N(1)-C(2)	1.419(9)	P(1)-Pt(1)-P(2)	173.83(8)	C(2)-C(1)-Pt(1)	122.4(6)
N(2)-C(6)1.409(9)F(2)-B(1)-N(1)111.1(6)C(3)-C(2)-C(1)130.9(7)N(3)-O(1)1.232(10)F(1)-B(1)-N(1)110.3(7)N(1)-C(2)-C(1)122.5(7)N(3)-O(2)1.293(10)F(2)-B(1)-N(2)110.0(7)C(4)-C(3)-C(2)108.4(7)P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.1(6)C(3)-C(4)-C(5)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.0(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-C(2)107.2(6)C(1)-C(6)-N(2)124.9(7)P(2)-C(18)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.816(8)C(2)-N(1)-B(1)125.7(7)N(2)-C(6)-C(7)106.2(7)P(2)-C(20)1.830(8)C(9)-N(2)-C(6)108.2(7)C(8)-C(7)-C(6)108.3(8)C(1)-C(6)1.406(11)C(9)-N(2)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(1)-C(2)1.440(11)C(6)-N(2)-B(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.401(11)O(1)-N(3)-P(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.401(1)O(1)-N(3)-P(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.401(1)O(1)-N(3)-P(1)124.0(6)C(13)-C(12)-P(1)113.0(5)C(4)-C(5)1.384(11)O(2)-N(3)-P(1)120.2(6)C(15)-C(14)-P(1)115.6(6)C(3)-C(4)1.392(11)C(14)-P(1)-C(10)105.6(4)C(17)-C(16)-P(2)113.8(6)C(4)-C(5)1.389(N(2)-C(9)	1.352(10)	F(2)-B(1)-F(1)	108.4(6)	C(3)-C(2)-N(1)	106.6(7)
N(3)-O(1) $1.232(10)$ $F(1)-B(1)-N(1)$ $110.3(7)$ $N(1)-C(2)-C(1)$ $122.5(7)$ $N(3)-O(2)$ $1.293(10)$ $F(2)-B(1)-N(2)$ $110.0(7)$ $C(4)-C(3)-C(2)$ $108.4(7)$ $P(1)-C(14)$ $1.823(8)$ $F(1)-B(1)-N(2)$ $110.1(6)$ $C(3)-C(4)-C(5)$ $107.3(7)$ $P(1)-C(12)$ $1.826(8)$ $N(1)-B(1)-N(2)$ $107.0(6)$ $N(1)-C(5)-C(4)$ $110.5(7)$ $P(1)-C(10)$ $1.830(9)$ $C(5)-N(1)-C(2)$ $107.2(6)$ $C(1)-C(6)-N(2)$ $124.9(7)$ $P(2)-C(18)$ $1.814(9)$ $C(5)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $128.9(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $125.7(7)$ $N(2)-C(6)-C(7)$ $106.2(7)$ $P(2)-C(16)$ $1.830(8)$ $C(9)-N(2)-C(6)$ $108.2(7)$ $C(8)-C(7)-C(6)$ $108.3(8)$ $C(1)-C(6)$ $1.430(11)$ $C(9)-N(2)-B(1)$ $127.4(6)$ $C(9)-C(8)-C(7)$ $106.6(7)$ $C(1)-C(2)$ $1.440(11)$ $C(6)-N(2)-B(1)$ $127.4(6)$ $C(9)-C(8)-C(7)$ $106.6(7)$ $C(1)-C(2)$ $1.440(11)$ $C(6)-N(2)-B(1)$ $124.2(6)$ $N(2)-C(9)-C(8)$ $110.7(7)$ $C(2)-C(3)$ $1.401(11)$ $O(1)-N(3)-O(2)$ $115.7(8)$ $C(11)-C(10)-P(1)$ $114.1(6)$ $C(3)-C(4)$ $1.368(11)$ $O(1)-N(3)-P(1)$ $122.6(6)$ $C(13)-C(14)-P(1)$ $115.6(6)$ $C(4)-C(5)$ $1.384(11)$ $O(2)-N(3)-P(1)$ $120.2(6)$ $C(13)-C(14)-P(1)$ $115.6(5)$ $C(7)-C(8)$ $1.392(11)$ $C(14)-P(1)-C(12)$ $104.3(4)$ $C(17)-C(16)-P(2)$ <	N(2)-C(6)	1.409(9)	F(2)-B(1)-N(1)	111.1(6)	C(3)-C(2)-C(1)	130.9(7)
N(3)-O(2) $1.293(10)$ $F(2)-B(1)-N(2)$ $110.0(7)$ $C(4)-C(3)-C(2)$ $108.4(7)$ $P(1)-C(14)$ $1.823(8)$ $F(1)-B(1)-N(2)$ $110.1(6)$ $C(3)-C(4)-C(5)$ $107.3(7)$ $P(1)-C(12)$ $1.826(8)$ $N(1)-B(1)-N(2)$ $107.0(6)$ $N(1)-C(5)-C(4)$ $110.5(7)$ $P(1)-C(10)$ $1.830(9)$ $C(5)-N(1)-C(2)$ $107.2(6)$ $C(1)-C(6)-N(2)$ $124.9(7)$ $P(2)-C(18)$ $1.814(9)$ $C(5)-N(1)-B(1)$ $127.1(7)$ $C(1)-C(6)-C(7)$ $128.9(7)$ $P(2)-C(16)$ $1.816(8)$ $C(2)-N(1)-B(1)$ $125.7(7)$ $N(2)-C(6)-C(7)$ $106.2(7)$ $P(2)-C(20)$ $1.830(8)$ $C(9)-N(2)-C(6)$ $108.2(7)$ $C(8)-C(7)-C(6)$ $108.3(8)$ $C(1)-C(6)$ $1.406(11)$ $C(9)-N(2)-B(1)$ $127.4(6)$ $C(9)-C(8)-C(7)$ $106.6(7)$ $C(1)-C(2)$ $1.440(11)$ $C(6)-N(2)-B(1)$ $124.2(6)$ $N(2)-C(9)-C(8)$ $110.7(7)$ $C(2)-C(3)$ $1.401(11)$ $O(1)-N(3)-O(2)$ $115.7(8)$ $C(11)-C(10)-P(1)$ $114.1(6)$ $C(3)-C(4)$ $1.368(11)$ $O(1)-N(3)-Pt(1)$ $124.2(6)$ $N(2)-C(9)-C(8)$ $110.7(7)$ $C(2)-C(3)$ $1.401(11)$ $O(1)-N(3)-Pt(1)$ $124.2(6)$ $C(13)-C(12)-P(1)$ $113.0(5)$ $C(4)-C(5)$ $1.384(11)$ $O(2)-N(3)-Pt(1)$ $122.0(6)$ $C(13)-C(14)-P(1)$ $115.6(6)$ $C(6)-C(7)$ $1.423(11)$ $C(14)-P(1)-C(12)$ $104.3(4)$ $C(17)-C(16)-P(2)$ $115.6(5)$ $C(7)-C(8)$ $1.389(12)$ $C(12)-P(1)-C(10)$ $105.6(4)$ $C(19)-C(18)$	N(3)-O(1)	1.232(10)	F(1)-B(1)-N(1)	110.3(7)	N(1)-C(2)-C(1)	122.5(7)
P(1)-C(14)1.823(8)F(1)-B(1)-N(2)110.1(6)C(3)-C(4)-C(5)107.3(7)P(1)-C(12)1.826(8)N(1)-B(1)-N(2)107.0(6)N(1)-C(5)-C(4)110.5(7)P(1)-C(10)1.830(9)C(5)-N(1)-C(2)107.2(6)C(1)-C(6)-N(2)124.9(7)P(2)-C(18)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7)P(2)-C(16)1.816(8)C(2)-N(1)-B(1)125.7(7)N(2)-C(6)-C(7)106.2(7)P(2)-C(20)1.830(8)C(9)-N(2)-C(6)108.2(7)C(8)-C(7)-C(6)108.3(8)C(1)-C(6)1.406(11)C(9)-N(2)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(1)-C(2)1.440(11)C(6)-N(2)-B(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.401(11)O(1)-N(3)-O(2)115.7(8)C(11)-C(10)-P(1)114.1(6)C(3)-C(4)1.368(11)O(1)-N(3)-Pt(1)124.0(6)C(13)-C(12)-P(1)113.0(5)C(4)-C(5)1.384(11)O(2)-N(3)-Pt(1)120.2(6)C(15)-C(14)-P(1)115.6(6)C(6)-C(7)1.423(11)C(14)-P(1)-C(12)104.3(4)C(17)-C(16)-P(2)115.6(5)C(7)-C(8)1.392(11)C(14)-P(1)-C(10)105.6(4)C(19)-C(18)-P(2)113.8(6)C(8)-C(9)1.389(12)C(12)-P(1)-Pt(1)115.6(3)LLC(10)-C(11)1.554(11)C(14)-P(1)-Pt(1)115.6(3)LLC(12)-C(13)1.511(11)C(12)-P(1)-Pt(1)109.6(3)LL	N(3)-O(2)	1.293(10)	F(2)-B(1)-N(2)	110.0(7)	C(4)-C(3)-C(2)	108.4(7)
P(1)-C(12) $1.826(8)$ N(1)-B(1)-N(2) $107.0(6)$ N(1)-C(5)-C(4) $110.5(7)$ P(1)-C(10) $1.830(9)$ C(5)-N(1)-C(2) $107.2(6)$ C(1)-C(6)-N(2) $124.9(7)$ P(2)-C(18) $1.814(9)$ C(5)-N(1)-B(1) $127.1(7)$ C(1)-C(6)-C(7) $128.9(7)$ P(2)-C(16) $1.816(8)$ C(2)-N(1)-B(1) $125.7(7)$ N(2)-C(6)-C(7) $106.2(7)$ P(2)-C(20) $1.830(8)$ C(9)-N(2)-C(6) $108.2(7)$ C(8)-C(7)-C(6) $108.3(8)$ C(1)-C(6) $1.406(11)$ C(9)-N(2)-B(1) $127.4(6)$ C(9)-C(8)-C(7) $106.6(7)$ C(1)-C(2) $1.440(11)$ C(6)-N(2)-B(1) $124.2(6)$ N(2)-C(9)-C(8) $110.7(7)$ C(2)-C(3) $1.401(11)$ O(1)-N(3)-O(2) $115.7(8)$ C(11)-C(10)-P(1) $114.1(6)$ C(3)-C(4) $1.368(11)$ O(1)-N(3)-Pt(1) $124.0(6)$ C(13)-C(12)-P(1) $113.0(5)$ C(4)-C(5) $1.384(11)$ O(2)-N(3)-Pt(1) $120.2(6)$ C(13)-C(14)-P(1) $115.6(6)$ C(7)-C(8) $1.392(11)$ C(14)-P(1)-C(10) $105.6(4)$ C(17)-C(16)-P(2) $113.8(6)$ C(8)-C(9) $1.389(12)$ C(12)-P(1)-C(10) $105.9(4)$ C(21)-C(20)-P(2) $114.9(6)$ C(10)-C(11) $1.554(11)$ C(14)-P(1)-Pt(1) $115.6(3)$ $C(12)-C(13)$ $1.511(11)$ $C(12)-P(1)-Pt(1)$ $109.6(3)$	P(1)-C(14)	1.823(8)	F(1)-B(1)-N(2)	110.1(6)	C(3)-C(4)-C(5)	107.3(7)
P(1)-C(10) $1.830(9)$ C(5)-N(1)-C(2) $107.2(6)$ C(1)-C(6)-N(2) $124.9(7)$ P(2)-C(18) $1.814(9)$ C(5)-N(1)-B(1) $127.1(7)$ C(1)-C(6)-C(7) $128.9(7)$ P(2)-C(16) $1.816(8)$ C(2)-N(1)-B(1) $125.7(7)$ N(2)-C(6)-C(7) $106.2(7)$ P(2)-C(20) $1.830(8)$ C(9)-N(2)-C(6) $108.2(7)$ C(8)-C(7)-C(6) $108.3(8)$ C(1)-C(6) $1.406(11)$ C(9)-N(2)-B(1) $127.4(6)$ C(9)-C(8)-C(7) $106.6(7)$ C(1)-C(2) $1.440(11)$ C(6)-N(2)-B(1) $124.2(6)$ N(2)-C(9)-C(8) $110.7(7)$ C(2)-C(3) $1.401(11)$ O(1)-N(3)-O(2) $115.7(8)$ C(11)-C(10)-P(1) $114.1(6)$ C(3)-C(4) $1.368(11)$ O(1)-N(3)-Pt(1) $124.0(6)$ C(13)-C(12)-P(1) $113.0(5)$ C(4)-C(5) $1.384(11)$ O(2)-N(3)-Pt(1) $120.2(6)$ C(15)-C(14)-P(1) $115.6(6)$ C(6)-C(7) $1.423(11)$ C(14)-P(1)-C(12) $104.3(4)$ C(17)-C(16)-P(2) $113.8(6)$ C(7)-C(8) $1.392(11)$ C(14)-P(1)-C(10) $105.6(4)$ C(19)-C(18)-P(2) $113.8(6)$ C(8)-C(9) $1.389(12)$ C(12)-P(1)-P(1) $105.6(3)$ C(21)-C(20)-P(2) $114.9(6)$ C(10)-C(11) $1.554(11)$ C(14)-P(1)-Pt(1) $115.6(3)$ C(12)-P(1)-Pt(1) $109.6(3)$	P(1)-C(12)	1.826(8)	N(1)-B(1)-N(2)	107.0(6)	N(1)-C(5)-C(4)	110.5(7)
P(2)-C(18)1.814(9)C(5)-N(1)-B(1)127.1(7)C(1)-C(6)-C(7)128.9(7) $P(2)$ -C(16)1.816(8)C(2)-N(1)-B(1)125.7(7)N(2)-C(6)-C(7)106.2(7) $P(2)$ -C(20)1.830(8)C(9)-N(2)-C(6)108.2(7)C(8)-C(7)-C(6)108.3(8) $C(1)$ -C(6)1.406(11)C(9)-N(2)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7) $C(1)$ -C(2)1.440(11)C(6)-N(2)-B(1)124.2(6)N(2)-C(9)-C(8)110.7(7) $C(2)$ -C(3)1.401(11)O(1)-N(3)-O(2)115.7(8)C(11)-C(10)-P(1)114.1(6) $C(3)$ -C(4)1.368(11)O(1)-N(3)-Pt(1)124.0(6)C(13)-C(12)-P(1)113.0(5) $C(4)$ -C(5)1.384(11)O(2)-N(3)-Pt(1)120.2(6)C(15)-C(14)-P(1)115.6(6) $C(6)$ -C(7)1.423(11)C(14)-P(1)-C(12)104.3(4)C(17)-C(16)-P(2)115.6(5) $C(7)$ -C(8)1.392(11)C(14)-P(1)-C(10)105.6(4)C(19)-C(18)-P(2)113.8(6) $C(8)$ -C(9)1.389(12)C(12)-P(1)-C(10)105.9(4)C(21)-C(20)-P(2)114.9(6) $C(10)$ -C(11)1.554(11)C(14)-P(1)-Pt(1)115.6(3)LL $C(12)$ -C(13)1.511(11)C(12)-P(1)-Pt(1)109.6(3)LL	P(1)-C(10)	1.830(9)	C(5)-N(1)-C(2)	107.2(6)	C(1)-C(6)-N(2)	124.9(7)
P(2)-C(16)1.816(8)C(2)-N(1)-B(1)125.7(7)N(2)-C(6)-C(7)106.2(7)P(2)-C(20)1.830(8)C(9)-N(2)-C(6)108.2(7)C(8)-C(7)-C(6)108.3(8)C(1)-C(6)1.406(11)C(9)-N(2)-B(1)127.4(6)C(9)-C(8)-C(7)106.6(7)C(1)-C(2)1.440(11)C(6)-N(2)-B(1)124.2(6)N(2)-C(9)-C(8)110.7(7)C(2)-C(3)1.401(11)O(1)-N(3)-O(2)115.7(8)C(11)-C(10)-P(1)114.1(6)C(3)-C(4)1.368(11)O(1)-N(3)-Pt(1)124.0(6)C(13)-C(12)-P(1)113.0(5)C(4)-C(5)1.384(11)O(2)-N(3)-Pt(1)120.2(6)C(15)-C(14)-P(1)115.6(6)C(6)-C(7)1.423(11)C(14)-P(1)-C(12)104.3(4)C(17)-C(16)-P(2)115.6(5)C(7)-C(8)1.392(11)C(14)-P(1)-C(10)105.6(4)C(19)-C(18)-P(2)113.8(6)C(8)-C(9)1.389(12)C(12)-P(1)-Pt(1)105.6(3)C(21)-C(20)-P(2)114.9(6)C(10)-C(11)1.554(11)C(14)-P(1)-Pt(1)115.6(3)C(11)-C(12)-P(1)-Pt(1)109.6(3)	P(2)-C(18)	1.814(9)	C(5)-N(1)-B(1)	127.1(7)	C(1)-C(6)-C(7)	128.9(7)
P(2)-C(20)1.830(8) $C(9)-N(2)-C(6)$ 108.2(7) $C(8)-C(7)-C(6)$ 108.3(8) $C(1)-C(6)$ 1.406(11) $C(9)-N(2)-B(1)$ 127.4(6) $C(9)-C(8)-C(7)$ 106.6(7) $C(1)-C(2)$ 1.440(11) $C(6)-N(2)-B(1)$ 124.2(6) $N(2)-C(9)-C(8)$ 110.7(7) $C(2)-C(3)$ 1.401(11) $O(1)-N(3)-O(2)$ 115.7(8) $C(11)-C(10)-P(1)$ 114.1(6) $C(3)-C(4)$ 1.368(11) $O(1)-N(3)-Pt(1)$ 124.0(6) $C(13)-C(12)-P(1)$ 113.0(5) $C(4)-C(5)$ 1.384(11) $O(2)-N(3)-Pt(1)$ 120.2(6) $C(15)-C(14)-P(1)$ 115.6(6) $C(6)-C(7)$ 1.423(11) $C(14)-P(1)-C(12)$ 104.3(4) $C(17)-C(16)-P(2)$ 115.6(5) $C(7)-C(8)$ 1.392(11) $C(14)-P(1)-C(10)$ 105.6(4) $C(19)-C(18)-P(2)$ 113.8(6) $C(8)-C(9)$ 1.389(12) $C(12)-P(1)-C(10)$ 105.9(4) $C(21)-C(20)-P(2)$ 114.9(6) $C(10)-C(11)$ 1.554(11) $C(14)-P(1)-Pt(1)$ 115.6(3) $C(12)-P(1)-Pt(1)$ 109.6(3)	P(2)-C(16)	1.816(8)	C(2)-N(1)-B(1)	125.7(7)	N(2)-C(6)-C(7)	106.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)-C(20)	1.830(8)	C(9)-N(2)-C(6)	108.2(7)	C(8)-C(7)-C(6)	108.3(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)-C(6)	1.406(11)	C(9)-N(2)-B(1)	127.4(6)	C(9)-C(8)-C(7)	106.6(7)
$\begin{array}{cccccccc} C(2)-C(3) & 1.401(11) & O(1)-N(3)-O(2) & 115.7(8) & C(11)-C(10)-P(1) & 114.1(6) \\ C(3)-C(4) & 1.368(11) & O(1)-N(3)-Pt(1) & 124.0(6) & C(13)-C(12)-P(1) & 113.0(5) \\ C(4)-C(5) & 1.384(11) & O(2)-N(3)-Pt(1) & 120.2(6) & C(15)-C(14)-P(1) & 115.6(6) \\ C(6)-C(7) & 1.423(11) & C(14)-P(1)-C(12) & 104.3(4) & C(17)-C(16)-P(2) & 115.6(5) \\ C(7)-C(8) & 1.392(11) & C(14)-P(1)-C(10) & 105.6(4) & C(19)-C(18)-P(2) & 113.8(6) \\ C(8)-C(9) & 1.389(12) & C(12)-P(1)-C(10) & 105.9(4) & C(21)-C(20)-P(2) & 114.9(6) \\ C(10)-C(11) & 1.554(11) & C(14)-P(1)-Pt(1) & 115.6(3) \\ C(12)-C(13) & 1.511(11) & C(12)-P(1)-Pt(1) & 109.6(3) \\ \end{array}$	C(1)-C(2)	1.440(11)	C(6)-N(2)-B(1)	124.2(6)	N(2)-C(9)-C(8)	110.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)-C(3)	1.401(11)	O(1)-N(3)-O(2)	115.7(8)	C(11)-C(10)-P(1)	114.1(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-C(4)	1.368(11)	O(1)-N(3)-Pt(1)	124.0(6)	C(13)-C(12)-P(1)	113.0(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)-C(5)	1.384(11)	O(2)-N(3)-Pt(1)	120.2(6)	C(15)-C(14)-P(1)	115.6(6)
C(7)-C(8)1.392(11)C(14)-P(1)-C(10)105.6(4)C(19)-C(18)-P(2)113.8(6)C(8)-C(9)1.389(12)C(12)-P(1)-C(10)105.9(4)C(21)-C(20)-P(2)114.9(6)C(10)-C(11)1.554(11)C(14)-P(1)-Pt(1)115.6(3)C(12)-C(13)1.511(11)C(12)-P(1)-Pt(1)109.6(3)	C(6)-C(7)	1.423(11)	C(14)-P(1)-C(12)	104.3(4)	C(17)-C(16)-P(2)	115.6(5)
C(8)-C(9)1.389(12)C(12)-P(1)-C(10)105.9(4)C(21)-C(20)-P(2)114.9(6)C(10)-C(11)1.554(11)C(14)-P(1)-Pt(1)115.6(3)(12)-P(1)-Pt(1)109.6(3)C(12)-C(13)1.511(11)C(12)-P(1)-Pt(1)109.6(3)(12)-P(1)-Pt(1)109.6(3)	C(7)-C(8)	1.392(11)	C(14)-P(1)-C(10)	105.6(4)	C(19)-C(18)-P(2)	113.8(6)
C(10)-C(11) $1.554(11)$ $C(14)-P(1)-Pt(1)$ $115.6(3)$ $C(12)-C(13)$ $1.511(11)$ $C(12)-P(1)-Pt(1)$ $109.6(3)$	C(8)-C(9)	1.389(12)	C(12)-P(1)-C(10)	105.9(4)	C(21)-C(20)-P(2)	114.9(6)
C(12)-C(13) 1.511(11) $C(12)-P(1)-Pt(1)$ 109.6(3)	C(10)-C(11)	1.554(11)	C(14)-P(1)-Pt(1)	115.6(3)		
	C(12)-C(13)	1.511(11)	C(12)-P(1)-Pt(1)	109.6(3)		

Figure S27: Packing of molecules of Pt-NO₂ along the crystallographic a (a), b (b), and c axis (c).

Table S6: Bond lengths [Å] and angles [°] for Pt-CH₃.

Pt(1)-C(1)	2.039(11)	C(28)-C(29)	1.39(2)	C(16)-P(2)-Pt(1)	114.4(4)
Pt(1)-C(22)	2.127(12)	C(29)-C(30)	1.40(2)	C(20)-P(2)-Pt(1)	116.2(5)
Pt(1)-P(2)	2.290(3)	C(30)-C(31)	1.38(2)	C(36)-P(3)-C(34)	102.8(6)
Pt(1)-P(1)	2.299(3)	C(32)-C(33)	1.529(16)	C(36)-P(3)-C(32)	105.2(6)
Pt(2)-C(23)	2.053(12)	C(34)-C(35)	1.510(17)	C(34)-P(3)-C(32)	104.4(7)
Pt(2)-C(44)	2.137(11)	C(36)-C(37)	1.52(2)	C(36)-P(3)-Pt(2)	114.4(4)
Pt(2)-P(4)	2.285(3)	C(38)-C(39)	1.56(2)	C(34)-P(3)-Pt(2)	113.9(4)
Pt(2)-P(3)	2.304(3)	C(40)-C(41)	1.40(3)	C(32)-P(3)-Pt(2)	114.8(4)
B(1)-F(1)	1.382(15)	C(42)-C(43)	1.55(3)	C(38)-P(4)-C(42)	108.8(10)
B(1)-F(2)	1.411(17)	C(1)-Pt(1)-C(22)	177.6(4)	C(38)-P(4)-C(40)	100.0(13)
B(1)-N(2)	1.53(2)	C(1)-Pt(1)-P(2)	91.9(3)	C(42)-P(4)-C(40)	104.0(11)
B(1)-N(1)	1.55(2)	C(22)-Pt(1)-P(2)	90.5(3)	C(38)-P(4)-Pt(2)	115.2(5)
B(2)-F(3)	1.395(16)	C(1)-Pt(1)-P(1)	91.3(3)	C(42)-P(4)-Pt(2)	116.9(6)
B(2)-F(4)	1.403(15)	C(22)-Pt(1)-P(1)	86.3(3)	C(40)-P(4)-Pt(2)	110.1(7)
B(2)-N(3)	1.525(19)	P(2)-Pt(1)-P(1)	176.05(12)	C(6)-C(1)-C(2)	117.5(11)
B(2)-N(4)	1.54(2)	C(23)-Pt(2)-C(44)	177.2(5)	C(6)-C(1)-Pt(1)	121.8(8)
N(1)-C(5)	1.329(19)	C(23)-Pt(2)-P(4)	92.7(3)	C(2)-C(1)-Pt(1)	120.2(9)
N(1)-C(2)	1.398(15)	C(44)-Pt(2)-P(4)	89.9(3)	C(3)-C(2)-N(1)	107.5(12)
N(2)-C(9)	1.33(2)	C(23)-Pt(2)-P(3)	90.7(3)	C(3)-C(2)-C(1)	129.9(12)
N(2)-C(6)	1.419(16)	C(44)-Pt(2)-P(3)	86.7(3)	N(1)-C(2)-C(1)	122.2(12)
N(3)-C(27)	1.347(18)	P(4)-Pt(2)-P(3)	176.57(12)	C(2)-C(3)-C(4)	107.9(15)
N(3)-C(24)	1.402(14)	F(1)-B(1)-F(2)	108.3(11)	C(5)-C(4)-C(3)	105.8(15)
N(4)-C(31)	1.342(18)	F(1)-B(1)-N(2)	111.4(13)	N(1)-C(5)-C(4)	110.8(13)
N(4)-C(28)	1.405(16)	F(2)-B(1)-N(2)	109.5(12)	C(7)-C(6)-C(1)	130.8(11)
P(1)-C(10)	1.830(12)	F(1)-B(1)-N(1)	111.6(13)	C(7)-C(6)-N(2)	107.0(12)
P(1)-C(14)	1.832(13)	F(2)-B(1)-N(1)	108.9(12)	C(1)-C(6)-N(2)	122.0(12)
P(1)-C(12)	1.842(13)	N(2)-B(1)-N(1)	107.1(11)	C(8)-C(7)-C(6)	108.1(13)
P(2)-C(18)	1.830(14)	F(3)-B(2)-F(4)	108.5(10)	C(9)-C(8)-C(7)	106.3(14)
P(2)-C(16)	1.831(13)	F(3)-B(2)-N(3)	109.6(13)	N(2)-C(9)-C(8)	111.5(13)
P(2)-C(20)	1.831(15)	F(4)-B(2)-N(3)	109.9(10)	C(11)-C(10)-P(1)	116.4(9)
P(3)-C(36)	1.816(14)	F(3)-B(2)-N(4)	111.2(10)	C(13)-C(12)-P(1)	115.2(9)
P(3)-C(34)	1.818(12)	F(4)-B(2)-N(4)	110.9(13)	C(15)-C(14)-P(1)	112.5(10)
P(3)-C(32)	1.833(11)	N(3)-B(2)-N(4)	106.6(10)	C(17)-C(16)-P(2)	116.8(9)
P(4)-C(38)	1.744(17)	C(5)-N(1)-C(2)	108.0(13)	C(19)-C(18)-P(2)	114.6(9)
P(4)-C(42)	1.824(16)	C(5)-N(1)-B(1)	127.5(12)	C(21)-C(20)-P(2)	113.6(9)
P(4)-C(40)	1.88(2)	C(2)-N(1)-B(1)	124.3(11)	C(24)-C(23)-C(28)	116.8(11)
C(1)-C(6)	1.412(18)	C(9)-N(2)-C(6)	107.1(13)	C(24)-C(23)-Pt(2)	122.4(9)
C(1)-C(2)	1.425(16)	C(9)-N(2)-B(1)	128.0(13)	C(28)-C(23)-Pt(2)	120.5(9)
C(2)-C(3)	1.385(19)	C(6)-N(2)-B(1)	124.9(12)	N(3)-C(24)-C(23)	123.3(12)
C(3)-C(4)	1.40(2)	C(27)-N(3)-C(24)	107.9(11)	N(3)-C(24)-C(25)	106.8(11)
C(4)-C(5)	1.39(3)	C(27)-N(3)-B(2)	127.5(10)	C(23)-C(24)-C(25)	129.9(11)

C(6)-C(7)	1.398(19)	C(24)-N(3)-B(2)	124.0(11)	C(26)-C(25)-C(24)	108.4(11)
C(7)-C(8)	1.391(18)	C(31)-N(4)-C(28)	107.9(12)	C(25)-C(26)-C(27)	106.5(12)
C(8)-C(9)	1.38(2)	C(31)-N(4)-B(2)	127.0(11)	N(3)-C(27)-C(26)	110.4(11)
C(10)-C(11)	1.536(15)	C(28)-N(4)-B(2)	124.3(11)	C(29)-C(28)-N(4)	107.0(12)
C(12)-C(13)	1.508(19)	C(10)-P(1)-C(14)	105.7(6)	C(29)-C(28)-C(23)	130.5(12)
C(14)-C(15)	1.53(2)	C(10)-P(1)-C(12)	105.9(7)	N(4)-C(28)-C(23)	122.4(12)
C(16)-C(17)	1.520(16)	C(14)-P(1)-C(12)	102.4(7)	C(28)-C(29)-C(30)	108.1(14)
C(18)-C(19)	1.517(17)	C(10)-P(1)-Pt(1)	114.3(4)	C(31)-C(30)-C(29)	106.4(15)
C(20)-C(21)	1.51(2)	C(14)-P(1)-Pt(1)	112.3(4)	N(4)-C(31)-C(30)	110.6(13)
C(23)-C(24)	1.404(17)	C(12)-P(1)-Pt(1)	115.1(4)	C(33)-C(32)-P(3)	116.7(9)
C(23)-C(28)	1.409(17)	C(18)-P(2)-C(16)	103.4(7)	C(35)-C(34)-P(3)	114.8(9)
C(24)-C(25)	1.405(17)	C(18)-P(2)-C(20)	104.2(6)	C(37)-C(36)-P(3)	114.1(12)
C(25)-C(26)	1.384(17)	C(16)-P(2)-C(20)	104.2(7)	C(39)-C(38)-P(4)	117.6(12)
C(26)-C(27)	1.39(2)	C(18)-P(2)-Pt(1)	113.0(4)	C(41)-C(40)-P(4)	115.3(17)
				C(43)-C(42)-P(4)	110.9(13)

S24

Figure S28: Packing of molecules of $Pt-CH_3$ along the crystallographic *a* (a), *b* (b), and *c* axis (c).

DFT and TD-DFT calculations

	V	V	7
Atom	X	Y	L
Pt	5.92902	9.33451	3.12565
В	10.63911	10.54426	1.72252
F	11.5403	10.26961	2.75179
F	11.35508	11.04624	0.62428
Ν	9 91030	9 26302	1 32638
N	9 55581	11 54428	2 17879
D	6 02251	0 00500	5 15580
D	1 82202	0.77157	1 17429
ſ	7.74125	0.00061	2 22000
C	1.74123	9.00004	2.33088
C	8.39339	8.9594/	1./0483
C	8.359/6	/.62961	1.3193
Н	7.55369	7.14602	1.45724
С	9.49963	7.14208	0.7074
Н	9.61975	6.27609	0.33425
С	10.43536	8.16838	0.741
Н	11.3203	8.10793	0.40145
С	8.23908	11.18685	2.51481
С	7.63372	12.31828	3.05597
Н	6.73691	12.38004	3.36015
С	8 58068	13 35115	3 07012
н	8 44994	14 23685	3 38845
C	9 73828	12 82552	2 53426
н	10 55220	12.02002	2.33420
C II	9 60677	0 22661	5 25052
	0.17007	9.55001	3.23932
п	9.1/89/	8.8309/	4.539/4
H	8.//988	10.30509	5.0/383
C	9.40342	9.04357	6.58236
H	10.3453	9.30901	6.51516
Н	9.34769	8.08428	6.7769
Н	8.97116	9.54818	7.30214
С	6.87140	7.13157	5.63091
Н	7.33958	7.02644	6.49747
Н	5.92661	6.87006	5.76885
С	7.49184	6.18542	4.6317
Н	7.47855	5.27476	4.99248
Н	8.41752	6.45481	4.45662
Н	6.98047	6.21302	3.7952
C	6.13927	9.70981	6.57175
Н	5 24628	9 30770	6 71853
Н	6 68332	9 53635	7 37995
C	5 97698	11 2105	6 40551
н	5 61360	11 50/22	7 2314
П Ц	5 26276	11.39422	5 66274
11	6 9 4 0 0 0	11.59105	5.00274
П	5.02206	11.01393	0.212/4
C	5.82206	9.80311	-0.25466
H	6.53146	10.4/855	-0.11495
H	6.268/4	8.92136	-0.33248
C	5.12685	10.10535	-1.61287
Н	5.73467	9.88327	-2.34857
Н	4.90005	11.0607	-1.65709
Н	4.30895	9.57446	-1.68892
С	4.19702	11.54691	1.17075
Н	4.97333	12.15533	1.11946
Н	3.65170	11.6862	0.35547
С	3.42306	11.9096	2.28137
Н	3.04933	12.80449	2.13989

Table S7: Atomic coordinates of Pt-Cl in the optimized ground state geometry.

Н	3.98693	11.91354	3.0825
Н	2.69422	11.26569	2.39809
С	3.33292	8.77681	0.8312
Н	2.68522	8.88588	1.57043
Н	2.90597	9.10139	-0.00177
С	3.69357	7.27612	0.67557
Н	4.04707	6.93708	1.52445
Н	4.36986	7.17362	-0.02476
Н	2.89036	6.77151	0.43151
Cl	4.07992	8.78863	4.0481

Table S8: Atomic coordinates of Pt-Cl in the optimized geometry of the first excited triplet state.

Atom	Х	Y	Ζ
Pt	0.95950	0.24470	0.02348
В	-3.93644	-0.82976	0.01013
F	-4.69757	0.33577	0.07523
F	-4.76201	-1.94281	-0.03828
Ν	-3.0084	-0.78449	-1.22772
Ν	-2.98719	-0.90666	1.23087
Р	0.39809	2.52047	-0.02308
P	1 62197	-2.00746	0.06879
C	-0 94813	-0 30095	0.01021
Č	-1 66007	-0 44774	-1 20037
Č	-1 21264	-0 37971	-2 53764
н	-0.19617	-0 15600	-2.83458
C	-2 2959	-0.67873	-3 35823
н	-2 3119	-0.73154	-1 13851
C	-3 38391	-0.91743	-7.50724
ч	-5.56571	1 17288	2.30724
II C	1 6387	0.56881	-2.756
C	-1.0387	0.62552	2 54555
п	-1.1/108	-0.02333	2.34333
п	-0.13238	-0.42461	2.0490/
U U	-2.24329	-0.99893	3.33123
П	-2.24357	-1.14903	4.42238
C	-3.343/2	-1.15/52	2.49833
Н	-4.3619/	-1.43483	2./395/
C	-1.39745	2.90296	-0.15218
Н	-1.75164	2.42/33	-1.07383
Н	-1.89056	2.36456	0.66604
С	-1.77069	4.38169	-0.12808
Н	-2.85745	4.48890	-0.21065
Н	-1.32277	4.93169	-0.96203
Н	-1.46238	4.86750	0.80352
С	1.20545	3.42729	-1.40459
Н	0.92789	4.48522	-1.31988
Н	2.28133	3.35528	-1.21078
С	0.88000	2.88413	-2.79073
Н	1.37285	3.49083	-3.55781
Н	-0.1956	2.89626	-2.9976
Н	1.23478	1.85395	-2.89714
С	0.99674	3.42985	1.45931
Н	2.07727	3.25088	1.49353
Н	0.84931	4.50255	1.28162
С	0.33956	2.99753	2.76486
Ĥ	0.76592	3.55640	3.6045
Н	0 49991	1 93121	2 95233
Н	-0 74064	3 17876	2,75982
C	0 38250	-3 1894	-0.61114
й	-0 51488	-3 08011	0.00988
н	0.103/1	-2.00011	-1 60377
п	0.10341	-2.01010	-1.003//

С	0.81391 -4.65102 -0.68303
Н	-0.00557 -5.25657 -1.08458
Н	1.06757 -5.05539 0.30205
Н	1.67786 -4.79108 -1.3409
С	1.95312 -2.63971 1.76614
Н	0.98502 -2.65366 2.28197
Н	2.28378 -3.6818 1.67764
С	2.96868 -1.82083 2.5559
Н	3.07115 -2.2275 3.56764
Н	2.66102 -0.77325 2.63194
Н	3.95708 -1.83993 2.08605
С	3.16557 -2.33512 -0.87171
Н	3.93885 -1.70298 -0.42469
Н	3.45187 -3.38056 -0.70335
С	3.03345 -2.02831 -2.35975
Н	2.74042 -0.98438 -2.51505
Н	2.28954 -2.6687 -2.84636
Н	3.99123 -2.18934 -2.86556
Cl	3.28199 0.97402 0.07211

Table S9: Atomic coordinates of Pt-I in the optimized ground state geometry.

Atom	X	Y	Z
Pt	1.06754	0.27428	0.0463
В	-3.92647	-0.84735	-0.02201
F	-4.76401	0.26602	0.0524
F	-4.68793	-2.00788	-0.09856
Ν	-2.99214	-0.72936	-1.2476
Ν	-2.99147	-0.89104	1.20866
Р	0.59145	2.54162	0.01073
Р	1.70935	-1.96283	0.05867
С	-0.9255	-0.26361	0.01567
С	-1.64331	-0.3908	-1.19661
С	-1.18745	-0.2869	-2.52817
Н	-0.16839	-0.05073	-2.80748
С	-2.26311	-0.56543	-3.36853
Н	-2.27058	-0.58717	-4.45025
С	-3.35677	-0.82975	-2.53441
Н	-4.37493	-1.08318	-2.80172
С	-1.6423	-0.54857	1.20228
С	-1.18911	-0.61125	2.53767
Н	-0.17241	-0.40585	2.84849
С	-2.26633	-0.99175	3.33502
Н	-2.27623	-1.14601	4.40585
С	-3.35814	-1.15029	2.47252
Н	-4.37678	-1.43469	2.70461
С	-1.18965	2.98266	-0.16228
Н	-1.54618	2.47591	-1.06629
Н	-1.70511	2.48756	0.66942
С	-1.52821	4.46878	-0.20315
Н	-2.61138	4.60018	-0.30006
Н	-1.06001	4.97218	-1.05553
Н	-1.21581	4.98747	0.70939
С	1.44011	3.45200	-1.34833
Н	1.21693	4.52014	-1.23735
Н	2.51546	3.33133	-1.17588
С	1.07489	2.96128	-2.74472
Н	1.61665	3.53646	-3.50328
Н	0.00403	3.06751	-2.94938
Н	1.33834	1.90565	-2.86713
С	1.15217	3.46067	1.508
Н	2.23285	3.29650	1.58595

Η	1.00651	4.53292	1.32696
С	0.45921	3.02758	2.79513
Η	0.86535	3.57987	3.6493
Η	0.60647	1.95874	2.98049
Η	-0.61923	3.21591	2.76154
С	0.47902	-3.12528	-0.67555
Η	-0.43274	-3.0113	-0.07666
Η	0.22894	-2.73184	-1.66751
С	0.88845	-4.59206	-0.7627
Η	0.07304	-5.17843	-1.2001
Η	1.10596	-5.01859	0.22183
Η	1.77038	-4.73514	-1.39593
С	1.98051	-2.65265	1.74831
Η	0.99041	-2.69248	2.21945
Η	2.32776	-3.68783	1.64403
С	2.94331	-1.85051	2.61661
Η	3.01349	-2.29799	3.61396
Η	2.60357	-0.81552	2.72584
Η	3.95291	-1.82889	2.19242
С	3.27063	-2.32873	-0.84685
Η	4.05350	-1.70797	-0.3999
Η	3.54396	-3.37462	-0.66177
С	3.16613	-2.04679	-2.34258
Н	2.84413	-1.01559	-2.52395
Н	2.44932	-2.71453	-2.83272
Н	4.13751	-2.18981	-2.82785
Ι	3.12137	0.82342	0.06675

Table S10: Atomic coordinates of Pt-I in the optimized geometry of the first excited triplet state.

Atom	Х	Y	Ζ
Pt	0.63375	0.02754	-0.00791
В	-4.39671	-0.09788	0.01699
F	-4.99919	1.15626	0.07064
F	-5.36201	-1.09322	-0.01834
Ν	-3.47515	-0.18918	-1.22405
Ν	-3.46381	-0.28785	1.23867
Р	0.51701	2.37608	-0.04291
Р	0.73844	-2.32765	0.08287
С	-1.35595	-0.10193	0.00213
С	-2.08733	-0.10831	-1.20348
С	-1.64162	-0.10742	-2.54321
Н	-0.60269	-0.06273	-2.84322
С	-2.76511	-0.19103	-3.35891
Н	-2.79687	-0.22311	-4.43962
С	-3.87422	-0.23704	-2.50218
Н	-4.9264	-0.29912	-2.74922
С	-2.07547	-0.20878	1.21214
С	-1.61994	-0.30847	2.54493
Н	-0.5799	-0.28378	2.84266
С	-2.73721	-0.45017	3.3616
Н	-2.75978	-0.5612	4.43729
С	-3.8527	-0.42996	2.51321
Н	-4.90301	-0.5083	2.76344
С	-1.19062	3.06892	-0.10576
Н	-1.63098	2.71537	-1.04548
Н	-1.76274	2.57917	0.69058
С	-1.31016	4.58561	0.00571
Н	-2.36263	4.87608	-0.08037
Н	-0.76249	5.10454	-0.78763
Н	-0.94634	4.95626	0.96932
С	1.39815	3.15596	-1.45949

Н	1.25759	4.24089	-1.3794
Н	2.46244	2.95428	-1.2958
С	0.97142	2.64736	-2.83087
Н	1.51199	3.18688	-3.6158
Н	-0.10014	2.78668	-3.00976
Н	1.19904	1.58163	-2.93743
С	1.31357	3.17907	1.40883
Н	2.37367	2.90699	1.35673
Н	1.25018	4.26452	1.26334
С	0.72577	2.76902	2.7534
Н	1.23340	3.30175	3.56444
Н	0.85484	1.69528	2.92279
Н	-0.3436	2.99611	2.82369
С	-0.73881	-3.17736	-0.62474
Н	-1.59662	-2.84192	-0.03047
Н	-0.89303	-2.76639	-1.62862
С	-0.68673	-4.70172	-0.67007
Н	-1.63327	-5.08702	-1.06408
Н	-0.54306	-5.14123	0.3221
Н	0.11203	-5.06704	-1.32331
С	0.80964	-2.96544	1.81069
Н	-0.1631	-2.73314	2.26127
Н	0.88511	-4.05836	1.75743
С	1.93994	-2.39532	2.66045
Н	1.90293	-2.82691	3.66646
Н	1.86199	-1.30707	2.74947
Н	2.92354	-2.61979	2.23541
С	2.16174	-3.12295	-0.76771
Н	3.07148	-2.73963	-0.29612
Н	2.11075	-4.19799	-0.55591
С	2.19338	-2.85732	-2.26863
Н	2.25547	-1.78291	-2.47132
Н	1.30475	-3.25168	-2.77367
Н	3.06996	-3.33592	-2.71776
Ι	3.39136	0.25810	0.00283

Table S11: Atomic coordinates of Pt-NCS in the optimized ground state geometry.

Atom	Х	Y	Ζ
С	4.26823	12.6649	9.25673
С	4.70155	12.0705	8.0611
С	4.37516	12.34873	6.71523
Н	3.77940	13.02262	6.41163
С	5.07285	11.47067	5.92024
Н	5.05374	11.43093	4.97187
С	5.81218	10.64863	6.77001
Н	6.38504	9.94402	6.48675
С	4.76673	12.14638	10.4727
С	4.48827	12.51494	11.80448
Н	3.90028	13.2051	12.08461
С	5.23138	11.68025	12.63547
Н	5.24542	11.6929	13.5854
С	5.94935	10.82388	11.80448
Н	6.54737	10.14998	12.10651
С	1.47628	10.93047	8.74968
Н	0.63337	10.49687	8.35688
Н	2.21596	10.93047	7.98129
С	1.81045	10.1554	9.99382
Н	2.12717	9.26109	9.74656
Н	1.01020	10.07591	10.55251
Н	2.51189	10.62334	10.49148
С	0.43959	13.21594	7.19098

H 0.27302 14.19155 7.1722 H 1.11104 13.00997 6.49301 C -0.78086 12.52578 6.88895 H -0.59546 11.57004 6.77314 H -1.16519 12.88712 6.06421 H -1.41628 12.64683 7.62604 C -0.14703 13.04069 10.11432 H -0.6026 13.86092 9.79664 H -0.79591 12.29633 10.04077 C 0.17818 13.22316 11.54313 H 0.69099 12.45171 11.86395 H -0.6517 13.30085 12.05957 H 0.70866 14.03979 11.65581 C 6.24660 15.27737 8.61353 H 6.40971 14.25478 8.87331 H 6.82847 15.8266 8.92026 C 6.17366 15.42552 7.09708 H 7.00868 15.10573 6.69802 H 6.04333 16.36861 6.86704 H 5.42339 14.89797 6.75279 C 5.22253 15.90791 11.20666 H 5.51363 15.04973 11.47114 H 6.02432 16.51315 11.18945 C 4.10917 16.39752 12.11747 H 4.43823 16.4463 13.03923 H 3.35307 15.77602 12.07209 H 3.81782 17.28822 11.82795 C 4.26			
H 1.11104 13.00997 6.49301 C -0.78086 12.52578 6.88895 H -0.59546 11.57004 6.77314 H -1.16519 12.88712 6.06421 H -1.41628 12.64683 7.62604 C -0.14703 13.04069 10.11432 H -0.6026 13.86092 9.79664 H -0.79591 12.29633 10.04077 C 0.17818 13.22316 11.54313 H 0.69099 12.45171 11.86395 H -0.6517 13.30085 12.05957 H 0.70866 14.03979 11.65581 C 6.24660 15.27737 8.61353 H 6.40971 14.25478 8.87331 H 6.82847 15.8266 8.92026 C 6.17366 15.42552 7.09708 H 7.00868 15.10573 6.69802 H 6.04333 16.36861 6.86704 H 5.42339 14.89797 6.75279 C 5.22253 15.90791 11.20666 H 5.51363 15.04973 11.47114 H 6.02432 16.51315 11.18945 C 4.10917 16.39752 12.1747 H 4.43823 16.4463 13.03923 H 3.35307 15.77602 12.07209 H 3.81782 17.28822 11.82795 C 4.26266 17.38216 8.89522 H 4.06	Н	0.27302	14.19155 7.1722
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	1.11104	13.00997 6.49301
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	-0.78086	12.52578 6.88895
H -1.16519 12.88712 6.06421 H -1.41628 12.64683 7.62604 C -0.14703 13.04069 10.11432 H -0.6026 13.86092 9.79664 H -0.79591 12.29633 10.04077 C 0.17818 13.22316 11.54313 H 0.69099 12.45171 11.86395 H -0.6517 13.30085 12.05957 H 0.70866 14.03979 11.65581 C 6.24660 15.27737 8.61353 H 6.40971 14.25478 8.87331 H 6.82847 15.8266 8.92026 C 6.17366 15.42552 7.09708 H 7.00868 15.10573 6.69802 H 6.04333 16.36861 6.86704 H 5.42339 14.89797 6.75279 C 5.22253 15.90791 11.20666 H 5.51363 15.04973 11.47114 H 6.02432 16.51315 11.18945 C 4.10917 16.39752 12.11747 H 4.43823 16.4463 13.03923 H 3.35307 15.77602 12.07209 H 3.81782 17.28822 11.82795 C 4.26266 17.38216 8.89522 H 4.06239 17.3370 7.92651 H 3.43625 17.66943 9.35688 C 5.33804 18.4445 9.11901 H 5.47382	Н	-0.59546	11.57004 6.77314
H-1.4162812.646837.62604C-0.1470313.0406910.11432H-0.602613.860929.79664H-0.7959112.2963310.04077C0.1781813.2231611.54313H0.6909912.4517111.86395H-0.651713.3008512.05957H0.7086614.0397911.65581C6.2466015.277378.61353H6.4097114.254788.87331H6.8284715.82668.92026C6.1736615.425527.09708H7.0086815.105736.69802H6.0433316.368616.86704H5.4233914.897976.75279C5.2225315.9079111.20666H5.5136315.0497311.47114H6.0243216.5131511.18945C4.1091716.3975212.11747H4.4382316.446313.03923H3.530715.7760212.07209H3.8178217.2882211.82795C4.2626617.382168.89522H4.0623917.33707.92651H3.4362517.669439.35688C5.3380418.44459.11901H5.4738218.5745810.0799H5.0531719.288228.71056H6.1780818.150018.70743C0.7617216.372229.8	Н	-1.16519	12.88712 6.06421
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-1.41628	12.64683 7.62604
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	-0.14703	13.04069 10.11432
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	-0.6026	13.86092 9.79664
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-0.79591	12.29633 10.04077
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	0.17818	13.22316 11.54313
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	0.69099	12.45171 11.86395
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-0.6517	13.30085 12.05957
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	0.70866	14.03979 11.65581
H 6.40971 14.25478 8.87331 H 6.82847 15.8266 8.92026 C 6.17366 15.42552 7.09708 H 7.00868 15.10573 6.69802 H 6.04333 16.36861 6.86704 H 5.42339 14.89797 6.75279 C 5.22253 15.90791 11.20666 H 5.51363 15.04973 11.47114 H 6.02432 16.51315 11.18945 C 4.10917 16.39752 12.11747 H 4.43823 16.4463 13.03923 H 3.35307 15.77602 12.07209 H 3.81782 17.28822 11.82795 C 4.26266 17.38216 8.89522 H 4.06239 17.3370 7.92651 H 3.43625 17.66943 9.35688 C 5.33804 18.4445 9.11901 H 5.47382 18.57458 10.0799 H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.9226 <td< td=""><td>С</td><td>6.24660</td><td>15.27737 8.61353</td></td<>	С	6.24660	15.27737 8.61353
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	6.40971	14.25478 8.87331
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	6.82847	15.8266 8.92026
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	6.17366	15.42552 7.09708
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	7.00868	15.10573 6.69802
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	6.04333	16.36861 6.86704
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	5.42339	14.89797 6.75279
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	5.22253	15.90791 11.20666
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	5.51363	15.04973 11.47114
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	6.02432	16.51315 11.18945
H 4.43823 16.4463 13.03923 H 3.35307 15.77602 12.07209 H 3.81782 17.28822 11.82795 C 4.26266 17.38216 8.89522 H 4.06239 17.3370 7.92651 H 3.43625 17.66943 9.35688 C 5.33804 18.4445 9.11901 H 5.47382 18.57458 10.0799 H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	С	4.10917	16.39752 12.11747
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	4.43823	16.4463 13.03923
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	3.35307	15.77602 12.07209
C 4.26266 17.38216 8.89522 H 4.06239 17.3370 7.92651 H 3.43625 17.66943 9.35688 C 5.33804 18.4445 9.11901 H 5.47382 18.57458 10.0799 H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Н	3.81782	17.28822 11.82795
H4.0623917.33707.92651H3.4362517.669439.35688C5.3380418.44459.11901H5.4738218.5745810.0799H5.0531719.288228.71056H6.1780818.150018.70743C0.7617216.372229.85767B6.1896010.303559.29116F5.774808.979079.34765F7.5834010.336079.25344S-0.3831717.3678910.43577N5.5946810.998958.04545N1.5821915.66409.43826P1.1922612.703029.01431	С	4.26266	17.38216 8.89522
H 3.43625 17.66943 9.35688 C 5.33804 18.4445 9.11901 H 5.47382 18.57458 10.0799 H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Н	4.06239	17.3370 7.92651
C 5.33804 18.4445 9.11901 H 5.47382 18.57458 10.0799 H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Н	3.43625	17.66943 9.35688
H 5.47382 18.57458 10.0799 H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	С	5.33804	18.4445 9.11901
H 5.05317 19.28822 8.71056 H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Н	5.47382	18.57458 10.0799
H 6.17808 18.15001 8.70743 C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Н	5.05317	19.28822 8.71056
C 0.76172 16.37222 9.85767 B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Н	6.17808	18.15001 8.70743
B 6.18960 10.30355 9.29116 F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	С	0.76172	16.37222 9.85767
F 5.77480 8.97907 9.34765 F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	В	6.18960	10.30355 9.29116
F 7.58340 10.33607 9.25344 S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	F	5.77480	8.97907 9.34765
S -0.38317 17.36789 10.43577 N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	F	7.58340	10.33607 9.25344
N 5.59468 10.99895 8.04545 N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	S	-0.38317	17.36789 10.43577
N 5.67604 11.08874 10.51182 N 1.58219 15.6640 9.43826 P 1.19226 12.70302 9.01431	Ν	5.59468	10.99895 8.04545
N1.5821915.66409.43826P1.1922612.703029.01431	Ν	5.67604	11.08874 10.51182
P 1.19226 12.70302 9.01431	Ν	1.58219	15.6640 9.43826
	Р	1.19226	12.70302 9.01431

Table S12: Atomic coordinates of Pt-NCS in the optimized geometry of the first excited triplet state.

Atom	v	v	7
Atom	A 1.0707(1	
С	1.2/3/6	-0.17925	-0.00132
С	2.01624	-0.43795	-1.17591
С	1.58514	-0.75642	-2.48293
Н	0.55022	-0.80128	-2.79793
С	2.7189	-1.00632	-3.24985
Н	2.76111	-1.293	-4.29194
С	3.81994	-0.82241	-2.40162
Н	4.8763	-0.90709	-2.62222
С	1.989	-0.06788	1.21229
С	1.52718	0.00243	2.54583
Н	0.48455	0.01753	2.83781
С	2.64327	-0.00575	3.37679
Н	2.66163	0.01817	4.45799
С	3.76399	-0.06936	2.53621
Н	4.81486	-0.08061	2.79566

	0.00070 0.46	221 0.0026
C	0.293/2 -3.43	0231 0.0926
H	-0.043// -4.42	2133 -0.29415
Н	1.0766 -3.09	0363 -0.58542
C	0.84153 -3.62	208 1.50623
Н	1.71313 -4.28	334 1.48449
Н	0.10162 -4.07	445 2.17345
Н	1.15757 -2.66	694 1.93802
С	-1.86831 -2.73	684 -1.70859
Н	-2.63117 -1.97	-1.91004
Н	-1.08371 -2.59	842 -2.46233
С	-2.46793 -4.13	697 -1.80918
Н	-1.72528 -4.92	-1.63269
Н	-2.87178 -4.28	8998 -2.81555
Н	-3.28943 -4.27	/885 -1.10021
С	-2.37449 -2.77	487 1.16575
Н	-3.34904 -2.51	817 0.73395
Н	-2.34412 -3.86	5747 1.26133
С	-2.22202 -2.09	766 2.52512
Н	-1.25627 -2.31	536 2.99057
Н	-3.00804 -2.44	483 3.20437
Н	-2.31373 -1.01	141 2.42565
C	1.0394 3.020	079 -0.97483
Н	1 92294 2 48	569 -0 60704
Н	1 16554 4 072	204 -0.68742
C	0.9243 2.88	527 -2 48958
н	1 83913 3 25	182 -2.96644
н	0.08666 3.46	72 -2.90044
н	0.78058 1.840	722 = 2.00002
C	-0 16095 3 020	572 -2.7607 4 553 1.64635
н	0.75583 2.554	54 2 01071
и П	0.75565 2.55	165 1 56664
II C	1 22550 2 76	103 1.30004
с u	1 08464 2 129	22.39440
п u	$-1.06404 \ 5.120$ $1.54441 \ 1.600$	524 5.59750
п	-1.34441 1.090	J22 2.00957
п	-2.24015 5.200	$201 \ 2.20/5/$
	-1.80911 3.200	503 - 0.72824
н	-2.02462 2.890	J_{3} -1./4301
П	-2./3086 2.930	JUI -U.15241
	-1./05/4 4./8	772 -0./181/
H	-1.6543 5.184	+// 0.29684
Н	-2.6/856 5.223	351 -1.1401
Н	-0.92291 5.150	J8 -1.31662
C	-3.92425 0.31	156 -0.17255
В	4.27787 0.01	136 0.00266
F	5.42218 -0.75	6445 0.13538
F	4.59866 1.354	444 -0.20356
S	-5.54863 0.404	471 -0.21345
Ν	3.40476 -0.49	207 -1.17154
Ν	3.37724 -0.11	295 1.25479
Ν	-2.74828 0.249	965 -0.14301
Р	-1.11607 -2.28	3152 -0.08741

Table S13: Atomic coordinates of $Pt-NO_2$ in the optimized ground state geometry.

Atom	X Y	Z
Pt	-2.41755 3.469	964 10.11004
В	-5.7657 7.234	402 10.30933
F	-7.1456 7.195	532 10.53432
F	-5.39204 8.550	533 10.1019
Ν	-5.01526 6.630	006 11.50286
Ν	-5.40506 6.379	939 9.06953
Ν	-1.02448 2.017	711 9.94872

0	-0.19774	1.75467	10.82472
Ô	-0 97804	1 27352	8 89242
D	4 00420	1 91079	10 54182
r D	-4.00439	1.019/0	10.34162
P	-0./4985	5.08938	9.91362
С	-3.75578	4.8939	10.20721
С	-4.06897	5.57524	11.43744
С	-3.60533	5.37168	12.74266
Н	-2.96894	4 71893	13 01073
C	-4 22463	6 27004	13 5676
	4 0926	6 26762	14 50104
П	-4.0830	0.30702	14.30104
C	-5.09458	/.0102/	12.78574
Н	-5.6688	7.69329	13.11444
С	-4.43851	5.35486	9.06953
С	-4.34366	4.89894	7.72442
Н	-3.77798	4.20414	7.41168
С	-5 22301	5 64758	6 94576
н	-5 36522	5 56346	6.00912
C II	5 95204	6 52022	7 8042
C	-3.83304	0.33922	7.6042
H	-6.50845	/.1/345	1.53933
C	-5.65029	2.44274	11.04013
Н	-5.53888	3.06184	11.80443
Н	-6.03493	2.95922	10.28859
С	-6.65466	1.32736	11.44382
Н	-7.54992	1.71429	11.54594
н	-6 3736	0.92696	12 2927
и Ц	6 67530	0.52050	10 74813
II C	-0.07339	0.0370	11.01772
C	-5.45152	0.70340	11.91/72
H	-4.13331	0.09926	12.12675
Н	-2.62254	0.27254	11.63051
С	-3.10981	1.54942	13.16869
Н	-2.79939	0.93706	13.86758
Н	-3.91421	2.01711	13.47824
Н	-2.40793	2.20553	12.97243
С	-4 31331	0 64938	9 17963
Ĥ	-3 43903	0 34824	8 82221
и Ц	1 77377	0.14468	0.54822
С	-4.//3//	-0.14400	9.34622
C H	-5.1379	1.18//2	8.02759
Н	-5.27708	0.47946	7.36541
Н	-4.66489	1.93804	7.60954
Н	-6.00502	1.49559	8.36267
С	-1.29443	6.56613	9.0073
Н	-1.65703	6.27845	8.1329
Н	-2.03613	6.98503	9.51312
С	-0.20802	7.6361	8.75839
н	-0.607	8 4066	8 30204
и П	0.50214	7 75757	8 10827
п	0.30214	1.43131	0.17032
п	0.1/022	1.92311	9.01524
C	0.75996	4.52547	9.0807
Н	1.44243	5.24046	9.13974
Н	1.11176	3.73309	9.55779
С	0.55313	4.16377	7.61113
Н	1.41346	3.91646	7.21063
Н	0.18018	4.93427	7.13404
Н	-0.06629	3 40672	7 54571
C	-0.16402	5 7031	11 53/77
	-0.10403	J./UJI	11.334//
Н	0.3843	0.31398	11.38638
H	-0.95071	5.96891	12.0725
С	0.65587	4.70548	12.33737
<u>H</u>	0.85272	5.08064	13.22135

Table S14: Atomic coordinates of Pt-NO₂ in the optimized geometry of the first excited triplet state.

<u> </u>			_
Atom	Х	Y	Z
Pt	-0.93063	0.04278	-0.01087
В	4.12903	-0.24379	-0.00969
F	5.07467	0.77316	0.00665
F	4 76069	-1 48359	-0.03238
N	2 20421	0 14217	1 22800
IN N	5.20451	-0.14217	1.22899
Ν	3.19833	-0.10007	-1.23896
Ν	-3.02118	0.13693	-0.05396
0	-3.66739	0.09495	0.99615
0	-3.6016	0.24417	-1.13809
Р	-0 9472	2 39103	-0.03878
D	1.00741	2 30186	0.11043
r C	-1.00/41	-2.30180	0.11045
C	1.08094	-0.03997	0.002
C	1.81471	-0.08919	1.20579
С	1.36986	-0.0686	2.54629
Н	0.33156	-0.02283	2.84755
С	2.49423	-0.10672	3.36401
н	2 52694	-0.09993	4 44513
C	2.52071	0.15202	2 50910
C II	3.00332	-0.13203	2.30819
Н	4.65624	-0.19159	2.75769
С	1.80928	-0.04398	-1.20569
С	1.35514	0.00906	-2.54179
Н	0.31422	0.05828	-2.83345
С	2 47388	-0.01168	-3 36774
н	2 49936	0.02017	-4 44864
C II	2.47750	0.02017	2 52086
C	5.58899	-0.07992	-2.32080
Н	4.63992	-0.1154/	-2.//849
С	0.70285	3.20299	-0.03392
Н	1.24013	2.80919	0.83679
Н	1.24063	2.82239	-0.91004
С	0.69052	4.72787	-0.02211
Ĥ	1 71899	5 10371	-0.01606
ц	0.1808/	5 1271	0.01000
п	0.10564	5.12/1	0.00300
Н	0.19553	5.14086	-0.90684
C	-1.86/65	3.08996	1.39401
Н	-1.9505	4.17339	1.24286
Η	-2.88117	2.67746	1.32873
С	-1.26043	2.7731	2.75522
Н	-1 86262	3 22813	3 54842
н	-0.23927	3 15716	2 85162
11	1 22571	1 (0225	2.03102
П	-1.25371	1.09353	2.95031
C	-1.865/3	3.09956	-1.46/21
Н	-2.88994	2.71946	-1.38179
Η	-1.91037	4.18653	-1.32604
С	-1.29191	2.74724	-2.83396
Н	-1.87518	3.23656	-3.62094
Н	-1 33597	1 66804	-3 00689
и и	0.25072	2 06010	2.04212
II C	-0.23073	2 1 5 7 5 5	-2.94312
C	0.3/015	-3.13/33	-0./6194
Н	0.40671	-2.74984	-1.77858
Н	1.29212	-2.821	-0.27353
С	0.30142	-4.68156	-0.78803
Н	1.18113	-5.07828	-1.3056
н	-0 584	-5 04425	-1 3199
ц	0.20273	5 11053	0.21801
II C	0.27213	-3.11033	0.21071
U	-2.54/1/	-3.03321	-0.300/8
Н	-2.54329	-4.11559	-0.28612
Н	-3.38827	-2.59151	-0.03222
С	-2.70389	-2.87676	-2.06856
Н	-3.64438	-3.32881	-2.4004
Н	-1.89143	-3.3598	-2.62184

S33

Н	-2.72732 -1.81676 -2.33745
С	-0.89819 -2.9136 1.8421
Н	-0.91024 -4.00999 1.81151
Н	0.08986 -2.61253 2.21065
С	-1.99451 -2.38924 2.76372
Н	-1.82816 -2.75285 3.78319

		Pt	-Cl	Pt-I	Pt-NCS	Pt-NO ₂
		molecule 1	molecule 2	_		
			bond leng	ths / Å		
C1-Pt1	X-ray	1.976(7)	1.971(8)	1.994(10)	1.984(4)	1.956(9) ^c
	S_0	1.984	-	1.994	1.989	2.013
	T_1	2.013	-	2.021	2.017	2.038
X1-Pt1 ^a	X-ray	2.3750(19)	2.385(2)	2.6689(8)	2.048(4)	2.019(8)
	S_0	2.435	-	2.767	2.058	2.093
	T_1	2.443	-	2.773	2.060	2.087
P1-Pt1	X-ray	2.319(2)	2.316(2)	2.3206(15)	2.3135(13)	2.329(2)
	S_0	2.348	-	2.352	2.349	2.348
	T_1	2.339	-	2.350	2.342	2.342
P2-Pt1	X-ray	2.309(2)	2.310(2)	_b	2.3249(11)	2.334(2)
	\mathbf{S}_0	2.344	-	2.359	2.356	2.349
	T_1	2.336	-	2.345	2.347	2.345
			bond angle	es / deg		
C1-Pt1-P1	X-ray	91.2(2)	91.6(2)	91.37(7)	91.44(12)	92.3(3) ^c
	\mathbf{S}_0	90.4	-	88.8	94.1	92.8
	T_1	89.7	-	88.2	93.8	91.9
C1-Pt1-P2	X-ray	94.0(2)	93.0(2)	_b	90.79(12)	89.3(3) ^c
	\mathbf{S}_{0}	92.1	-	90.9	89.0	89.5
	T_1	91.4	-	90.1	88.1	88.1
P1-Pt1-X ^a	X-ray	87.13(7)	87.68(8)	88.71(7)	87.28(12)	88.6(2)
	\mathbf{S}_0	91.0	-	92.2	86.0	87.0
	T_1	91.8	-	92.9	86.5	87.8
P2-Pt1-X ^a	X-ray	87.61(7)	87.76(8)	_b	90.62(11)	90.0(2)
	\mathbf{S}_0	86.4	-	88.1	91.0	90.8
	T_1	87.1	-	88.7	91.7	92.4
P1-Pt1-P2	X-ray	174.74(8)	175.00(7)	176.8(3)	177.17(5)	173.83(8)
	\mathbf{S}_0	177.5	-	178.6	176.9	176.8
	T_1	178.6	-	178.4	178.0	175.0
C1-Pt1-X ^a	X-ray	178.3(2)	179.0(2)	176.03(8)	175.77(17)	178.2(4) ^c
	\mathbf{S}_0	178.3	-	178.8	179.7	179.2
	T_1	178.1	-	178.2	179.7	178.1

Table S15: Selected bond lengths and bond angles of the calculated structures of Pt-Cl, Pt-I, Pt-NCS, and Pt-NO₂ in comparison with the structure data from X-ray crystal structure analysis.

^{*a*}X represents here the atom of the anionic ligand in *trans*-position to the dye bond to the Pt ion. ^{*b*}The molecule has a mirror plane which is defined by the plane of the dye's inner heterocycle. ^{*c*}C1 remained isotropic and could not further be refined.

Figure S29: UV-Vis absorption (black), excitation (detection at 635 nm, red) and emission spectra (orange, excited at 450 nm) of **Pt-Cl** in a ca. 10⁻⁶ M CH₂Cl₂ solution at r.t.

Figure S30: UV-Vis absorption (black), excitation (detection at 635 nm, r.t., red) and emission spectra (orange, r.t., excited at 468 nm; violet, 77 K, excited at 450 nm) of **Pt-Cl** in a ca. 10⁻⁶ M toluene solution.

Figure S31: UV-Vis absorption (black), excitation (detection at 640 nm, red) and emission spectra (orange, excited at 471 nm) of Pt-I in a ca. 10^{-6} M CH₂Cl₂ solution at r.t.

Figure S32: UV-Vis absorption (black), excitation (detection at 646 nm, red) and emission spectra (orange, excited at 450 nm) of **Pt-NO₂** in a ca. 10^{-6} M CH₂Cl₂ solution at r.t.

Figure S33: UV-Vis absorption (black), excitation (detection at 638 nm, red) and emission spectra (orange, excited at 450 nm) of **Pt-NCS** in a ca. 10⁻⁶ M CH₂Cl₂ solution at r.t.

Figure S34: Electronical absorption spectra of **Pt-CH**₃ in a ca. 10⁻⁶ M benzene solution before and after irradiating the sample into its lowest energy absorption band, and of **Br-BODIPY** in benzene solution, respectively.

Stern-Volmer quenching experiments

Figure S35: Stacked luminescence spectra of Pt-Cl at different oxygen concentrations.

Figure S36: Stern-Volmer plot of Pt-Cl.

Figure S38: Spectral change in the absorption spectra of the reaction mixture containing DHN and Pt-I.

Figure S39: Spectral change in the absorption spectra of the reaction mixture containing DHN and the reference sensitizer MB.

Figure S41: Sample of the reaction mixture of DHN and Pt-I kept in the dark for 180 min; UV-Vis spectra were taken before and after that time period.