Supporting Information

Anionic Europium (III) Coordination Polymer for Highly Selective and Sensitive Detection of Fe³⁺ and 4-Nitrophenol

Raji Feyisa Bogale, Junwei Ye,* Yuan Sun, Tongxin Sun, Siqi Zhang, Abdul Rauf, Cheng Hang, Peng Tian, Guiling Ning*

State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Faculty of

Chemical, Environmental and Biological Science and Technology, Dalian University of

Technology, Linggong Road, Dalian 116024, P. R. China

E-mail: junweiye@dlut.edu.cn; ninggl@dlut.edu.cn; Fax: +86-041184986065; Tel: +86-0411-84986067

Figure Captions

Fig. S1 View of 2D packing network (a) and hydrogen bonds (b) in 1.

Fig. S2 The photoluminescence spectrum of 1 at solid state.

Fig. S3. Comparison of the luminescence intensity of **1** interacting with different metal ions under the same conditions.

Fig. S4. Comparison of the luminescence intensity of **1** interacting with different anions in aqueous solution under the same conditions.

Fig. S5. Photoluminescence intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (615 nm) of 1 treated with 1 mM different nitrocompounds under the same conditions.

Fig. S6 Comparison of the luminescence intensity exited at 290 nm of 1 (0.02 mg dispersed in 3ml of ethanol) interacting with phenol and 4-Bromophenol (1 mM in ethanol) under the same conditions.

Fig. S7 Comparison of the luminescence intensity exited at 290 nm (a) and UV-Vis absorption spectra (b) of 1 (0.02 mg dispersed in 3ml ethanol) interacting with 160 μ L Fe³⁺ (10 mM), 240 μ L 4-NP (1 mM), and both mixed Fe³⁺ + 4-NP (1:1) under the same conditions **Fig. S8** Photoluminescence emission spectra exited at 290 nm of **1** dispersed in the ethanol upon volume incremental addition of a) Zn²⁺ b) Mg²⁺ c) TNP d) 2,6-DNT

Fig. S9 Thermogravimetric analysis of 1 before and after immersion in Fe^{3+} containing aqueous solution

Fig. S10. Comparison of EDX measurements and SEM images of 1 (a, c) and Fe@1 (b, d).

Fig. S11 Absorption spectra of 1 dispersed in the ethanol and after 240 μ L Fe³⁺ aqueous solution was added to the dispersed solution.

Fig. S12 Fluorescence lifetime curves of **1** in the presence and absence of both Fe³⁺and 4-NP analytes respectively.

Fig. S13 UV-Vis absorption spectra of 1 dispersed in ethanol treated with different nitrocompounds.

Table Captions

Table S1. Crystal data and structure refinement for 1.

Table S2. Selected bond lengths and angles of 1.

Fig. S1 View of 2D packing network (a) and hydrogen bonds (b) in 1.

Fig. S2 The photoluminescence spectrum of 1 at solid state.

Fig. S3 Comparison of the luminescence intensity exited at 290 nm of 1 (0.02 mg in ethanol) after interacting with equal volume of 160 μ L different metal ions (10 mM in water) under the same conditions.

Fig. S4 Comparison of the luminescence intensity exited at 290 nm of **1** (0.02 mg dispersed in 3ml of ethanol) interacting with different anions (10 mM in water) under the same conditions.

Fig. S5 Photoluminescence intensity exited at 290 nm of the ${}^5D_0 \rightarrow {}^7F_2$ transition (615 nm) of 1 (0.02 mg in 3 mL ethanol) after treated with equal volume of 240 μ L different nitrocompounds solution (1 mM in water) under the same conditions.

Fig. S6 Comparison of the luminescence intensity exited at 290 nm of 1 (0.02 mg dispersed in 3ml of ethanol) interacting with 240 μ L of phenol and 4-bromophenol (1 mM in ethanol) under the same conditions.

Fig. S7 Comparison of the luminescence intensity exited at 290 nm of **1** (0.02 mg dispersed in 3mL ethanol) interacting with 160 μ L Fe³⁺ (10 mM), 240 μ L 4-NP (1 mM), and both mixed Fe³⁺ + 4-NP (1:1) under the same conditions.

Fig. S8 Photoluminescence emission spectra exited at 290 nm of 1 (0.02 mg dispersed in the ethanol) upon volume incremental addition of a) Zn^{2+} (10 mM in water) b) Mg^{2+} (10 mM in water) c) TNP (1 mM in ethanol) d) 2,6-DNT (1 mM in ethanol)

Fig. S9 Thermogravimetric analysis of 1 before and after immersion in Fe^{3+} containing aqueous solution

Fig. S10 Comparison of EDX measurements and SEM images of 1 (a, c) and Fe@1 (b, d).

Fig. S11 Absorption spectra of **1** dispersed in the ethanol and after 240 μ L Fe³⁺ aqueous solution (10 mM) was added to the dispersed solution of **1** (0.02 mg in ethanol)

Fig. S12 Fluorescence lifetime curves of 1 dispersed in ethanol (a), after treated with Fe^{3+} aqueous solution (160 µL) (b), and after treated with 4-NP (240 µL) (c).

Fig. S13 UV-Vis absorption spectra of 1 (0.96 mg dispersed in 3 mL ethanol) treated with different nitrocompounds having equal volumes (240 μ L) and concentration of 1 mM in ethanol for each

Empirical formula	$C_{15}H_{25}EuN_2O_{16}$	
Formula weight	641.33	
Crystal system	Monoclinic, C2/c	
<i>a</i> (Å)	13.0689(8)	
b (Å)	11.2535(6)	
<i>c</i> (Å)	15.4306(9)	
α(°)	90	
β (°)	105.9080(10)	
γ(°)	90	
Volume (Å ³)	2182.5(2)	
Ζ	4	
$D_{\text{Calc}} (\text{mg/m}^{-3})$	1.952	
μ (mm ⁻¹)	2.959	
$F_{(000)}$	1280	
$R_{\rm int}$	0.0248	
GOF on F ²	1.087	
$R_1 [I > 2\sigma(I)]^*$	0.0218	
$wR_2 [I > 2\sigma(I)]^*$	0.0522	
R_1 (all data) *	0.0233	
wR_2 (all data)*	0.0532	
$R_{I} = \Sigma F_{o} - F_{c} /\Sigma F_{o} ; wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})]^{2}\}^{1/2}$		

 Table S1 Crystal data and structure refinement for 1.

Table S2 Selected bond lengths [A] and angles [deg] for 1.				
Eu(1)-O(5)	2.4039(17)	Eu(1)-O(2) ^{#1}	2.4596(16)	
Eu(1)-O(5) ^{#1}	2.4039(17)	Eu(1)-O(7)	2.496(2)	
Eu(1)-O(6) ^{#1}	2.4282(19)	Eu(1)-O(1) ^{#1}	2.5550(16)	
Eu(1)-O(6)	2.4282(19)	Eu(1)-O(1)	2.5550(16)	
Eu(1)-O(2)	2.4596(16)			
O(5)-Eu(1)-O(5) ^{#1}	136.88(8)	O(6) ^{#1} -Eu(1)-O(7)	79.36(5)	
O(5)-Eu(1)-O(6) ^{#1}	93.48(7)	O(6)-Eu(1)-O(7)	79.36(5)	
O(5) ^{#1} -Eu(1)-O(6) ^{#1}	78.68(7)	O(2)-Eu(1)-O(7)	141.20(4)	
O(5)-Eu(1)-O(6)	78.68(7)	O(2) ^{#1} -Eu(1)-O(7)	141.20(4)	
O(5) ^{#1} -Eu(1)-O(6)	93.48(7)	O(5)-Eu(1)-O(1) ^{#1}	140.40(6)	
O(6) ^{#1} -Eu(1)-O(6)	158.72(9)	O(5) ^{#1} -Eu(1)-O(1) ^{#1}	69.65(6)	
O(5)-Eu(1)-O(2)	76.74(6)	O(6) ^{#1} -Eu(1)-O(1) ^{#1}	124.26(6)	
O(5) ^{#1} -Eu(1)-O(2)	143.34(6)	O(6)-Eu(1)-O(1) ^{#1}	69.48(6)	
O(6) ^{#1} -Eu(1)-O(2)	120.28(6)	O(2)-Eu(1)-O(1) ^{#1}	73.94(5)	
O(6)-Eu(1)-O(2)	77.50(6)	O(2) ^{#1} -Eu(1)-O(1) ^{#1}	51.69(5)	
O(5)-Eu(1)-O(2)#1	143.34(6)	O(7)-Eu(1)-O(1) ^{#1}	125.11(4)	
O(5) ^{#1} -Eu(1)-O(2) ^{#1}	76.74(6)	O(5)-Eu(1)-O(1)	69.65(6)	
O(6) ^{#1} -Eu(1)-O(2) ^{#1}	77.50(6)	O(5) ^{#1} -Eu(1)-O(1)	140.40(6)	
O(6)-Eu(1)-O(2)#1	120.28(6)	O(6) ^{#1} -Eu(1)-O(1)	69.48(6)	
O(2)-Eu(1)-O(2) ^{#1}	77.60(8)	O(6)-Eu(1)-O(1)	124.26(6)	
O(5)-Eu(1)-O(7)	68.44(4)	O(2)-Eu(1)-O(1)	51.69(5)	
O(5) ^{#1} -Eu(1)-O(7)	68.44(4)	O(2) ^{#1} -Eu(1)-O(1)	73.94(5)	
O(1) ^{#1} -Eu(1)-O(1)	109.78(7)	O(7)-Eu(1)-O(1)	125.11(4)	
Symmetry transformations used to generate equivalent atoms: #1 -x, y, -				
z+1/2				

 Table S2 Selected bond lengths [Å] and angles [deg] for 1.