## **Electronic Supporting Information**

## Syntheses, Characterization, Electrochemical and Spectroscopic Properties of Ruthenium-Iron Complexes of 2,3,5,6-Tetrakis(2-pyridyl)pyrazine and Ferrocene-Acetylide Ligands

Hui-Min Wen, Jin-Yun Wang,\* Li-Yi Zhang, Lin-Xi Shi, and Zhong-Ning Chen\*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

| Parameters  | B3LYP             | PBE1PBE     | X-ray<br>Crystallography <sup>a</sup> |  |  |  |  |
|-------------|-------------------|-------------|---------------------------------------|--|--|--|--|
|             | bond distance (Å) |             |                                       |  |  |  |  |
| Ru1-N1      | 2.1205            | 2.0890      | 2.087(3)                              |  |  |  |  |
| Ru1-N2      | 2.0200            | 1.9964      | 1.983(3)                              |  |  |  |  |
| Ru1-N3      | 2.1178            | 2.0871      | 2.092(4)                              |  |  |  |  |
| Ru1-P1      | 2.5446            | 2.4750      | 2.4026(12)                            |  |  |  |  |
| Ru1-P2      | 2.5346            | 2.4676      | 2.4009(12)                            |  |  |  |  |
| Ru1-C61     | 2.0469            | 2.0276      | 2.071(3)                              |  |  |  |  |
| C61-C62     | 1.2342            | 1.2343      | 1.198(4)                              |  |  |  |  |
| C62-C63     | 1.4244            | 1.4218      | 1.425(5)                              |  |  |  |  |
|             |                   |             |                                       |  |  |  |  |
|             | bond              | l angle (°) |                                       |  |  |  |  |
| P1-Ru1-P2   | 175.397           | 175.884     | 173.52(4)                             |  |  |  |  |
| P1-Ru1-N1   | 91.338            | 91.760      | 92.07(10)                             |  |  |  |  |
| P2-Ru1-N1   | 89.006            | 88.393      | 88.82(14)                             |  |  |  |  |
| P1-Ru1-N2   | 92.148            | 92.008      | 93.47(10                              |  |  |  |  |
| P1-Ru1-N3   | 89.247            | 88.611      | 88.87(10)                             |  |  |  |  |
| P2-Ru1-N2   | 92.417            | 92.055      | 91.44(10)                             |  |  |  |  |
| P2-Ru1-N3   | 92.249            | 92.817      | 87.91(10)                             |  |  |  |  |
| N2-Ru1-N1   | 78.306            | 78.738      | 78.43(13)                             |  |  |  |  |
| N2-Ru1-N3   | 78.432            | 78.841      | 78.95(14)                             |  |  |  |  |
| N1-Ru1-N3   | 156.736           | 157.575     | 157.37(14)                            |  |  |  |  |
| Ru1-C61-C62 | 177.779           | 177.783     | 170.0(4)                              |  |  |  |  |
| C61-C62-C63 | 175.697           | 175.912     | 174.3(6)                              |  |  |  |  |

**Table S1**. Selected bond lengths (Å) and bond angles (°) of complex  $[1]^+$  in ground state by DFT method at the PBE1PBE and B3LYP levels, compared with the experimentally measured data.

<sup>*a*</sup> The experimental values from X-ray crystal structural analysis.

| center number | atomic type | coordinates (Angstroms) |           |           |  |
|---------------|-------------|-------------------------|-----------|-----------|--|
|               |             | Х                       | Y         | Ζ         |  |
| 1             | Ru          | -0.008295               | 0.198995  | 0.011991  |  |
| 2             | Fe          | 6.278894                | 0.031177  | -0.035873 |  |
| 3             | Р           | 0.513812                | -2.159430 | 0.516000  |  |
| 4             | Р           | -0.360980               | 2.602221  | -0.463014 |  |
| 5             | Ν           | -0.312085               | -0.194141 | -2.015061 |  |
| 6             | Ν           | -1.970513               | -0.167474 | -0.020674 |  |
| 7             | Ν           | -0.505225               | 0.457754  | 2.024468  |  |
| 8             | Ν           | -4.614236               | -0.680625 | -0.064414 |  |
| 9             | Ν           | -3.877675               | -2.695376 | -2.803441 |  |
| 10            | Ν           | -4.771357               | 1.449151  | 2.678657  |  |
| 11            | С           | 0.593214                | -0.095631 | -2.996754 |  |
| 12            | Н           | 1.609433                | 0.085091  | -2.669166 |  |
| 13            | С           | 0.258808                | -0.193863 | -4.338955 |  |
| 14            | Н           | 1.032123                | -0.101011 | -5.093425 |  |
| 15            | С           | -1.074571               | -0.385781 | -4.680753 |  |
| 16            | Н           | -1.380734               | -0.437230 | -5.720714 |  |
| 17            | С           | -2.016543               | -0.511385 | -3.670187 |  |
| 18            | Н           | -3.060180               | -0.655320 | -3.911111 |  |
| 19            | С           | -1.615730               | -0.442475 | -2.335913 |  |
| 20            | С           | -2.535107               | -0.538075 | -1.188487 |  |
| 21            | С           | -3.881283               | -0.953022 | -1.142392 |  |
| 22            | С           | -4.071224               | -0.162643 | 1.034999  |  |
| 23            | С           | -2.669296               | -0.044869 | 1.126227  |  |
| 24            | С           | -1.817967               | 0.203730  | 2.302267  |  |
| 25            | С           | -2.260100               | 0.123908  | 3.622750  |  |
| 26            | Н           | -3.288472               | -0.134901 | 3.830692  |  |
| 27            | С           | -1.376063               | 0.370854  | 4.662912  |  |
| 28            | Н           | -1.714822               | 0.309691  | 5.692190  |  |
| 29            | С           | -0.059711               | 0.700402  | 4.363901  |  |
| 30            | Н           | 0.663688                | 0.919154  | 5.141443  |  |
| 31            | С           | 0.333188                | 0.723174  | 3.034127  |  |
| 32            | Н           | 1.350685                | 0.946663  | 2.741616  |  |
| 33            | С           | -4.584154               | -1.738808 | -2.186975 |  |

**Table S2**. Geometry coordinates of optimized complex  $[1]^+$  by DFT method at the PBE1PBE level.

| 34 | С | -5.940857 | -1.513240 | -2.431960 |
|----|---|-----------|-----------|-----------|
| 35 | Н | -6.460291 | -0.732121 | -1.888500 |
| 36 | С | -6.584552 | -2.309869 | -3.371386 |
| 37 | Н | -7.636176 | -2.156991 | -3.594854 |
| 38 | С | -5.858775 | -3.305284 | -4.016784 |
| 39 | Н | -6.320965 | -3.953442 | -4.754082 |
| 40 | С | -4.511778 | -3.457818 | -3.692680 |
| 41 | Н | -3.913723 | -4.231003 | -4.170749 |
| 42 | С | -5.049268 | 0.298630  | 2.051788  |
| 43 | С | -6.229285 | -0.419012 | 2.260860  |
| 44 | Н | -6.402459 | -1.337178 | 1.711043  |
| 45 | С | -7.152313 | 0.077778  | 3.173629  |
| 46 | Н | -8.076397 | -0.458184 | 3.368705  |
| 47 | С | -6.872274 | 1.271940  | 3.828860  |
| 48 | Н | -7.565707 | 1.699035  | 4.545858  |
| 49 | С | -5.671058 | 1.918038  | 3.541756  |
| 50 | Н | -5.420361 | 2.858284  | 4.028710  |
| 51 | С | 1.287736  | -3.139168 | -0.881366 |
| 52 | С | 0.929447  | -4.455722 | -1.175277 |
| 53 | Н | 0.134526  | -4.946903 | -0.623062 |
| 54 | С | 1.598623  | -5.152262 | -2.179239 |
| 55 | Н | 1.313460  | -6.176139 | -2.402926 |
| 56 | С | 2.633228  | -4.544911 | -2.884375 |
| 57 | Н | 3.154907  | -5.091856 | -3.664225 |
| 58 | С | 3.005928  | -3.239234 | -2.575884 |
| 59 | Н | 3.823143  | -2.765292 | -3.112498 |
| 60 | С | 2.339402  | -2.535682 | -1.576272 |
| 61 | Н | 2.647343  | -1.526404 | -1.311854 |
| 62 | С | 1.671883  | -2.601320 | 1.927826  |
| 63 | С | 2.590732  | -1.675580 | 2.420309  |
| 64 | Н | 2.652663  | -0.690425 | 1.969485  |
| 65 | С | 3.464887  | -2.040180 | 3.444293  |
| 66 | Н | 4.174258  | -1.310706 | 3.825407  |
| 67 | С | 3.438826  | -3.328430 | 3.967295  |
| 68 | Н | 4.122207  | -3.609442 | 4.763273  |
| 69 | С | 2.542939  | -4.264285 | 3.453798  |
| 70 | Н | 2.529240  | -5.278204 | 3.842568  |
| 71 | С | 1.665926  | -3.904971 | 2.436447  |
|    |   |           |           |           |

| 72  | Н | 0.973318  | -4.642838 | 2.041973  |
|-----|---|-----------|-----------|-----------|
| 73  | С | -1.049837 | -3.080350 | 0.975280  |
| 74  | С | -1.933418 | -3.520685 | -0.015890 |
| 75  | Н | -1.696172 | -3.395855 | -1.068626 |
| 76  | С | -3.138102 | -4.125140 | 0.335470  |
| 77  | Н | -3.805927 | -4.469172 | -0.448379 |
| 78  | С | -3.482247 | -4.281033 | 1.675478  |
| 79  | Н | -4.418340 | -4.760638 | 1.946509  |
| 80  | С | -2.619020 | -3.821074 | 2.666071  |
| 81  | Н | -2.878760 | -3.936275 | 3.714571  |
| 82  | С | -1.411071 | -3.220998 | 2.319330  |
| 83  | Н | -0.741011 | -2.875534 | 3.100865  |
| 84  | С | -2.140967 | 2.895644  | -0.958790 |
| 85  | С | -3.154747 | 2.969061  | 0.002390  |
| 86  | Н | -2.923416 | 2.922989  | 1.062624  |
| 87  | С | -4.485893 | 3.095204  | -0.388468 |
| 88  | Н | -5.256636 | 3.160501  | 0.373374  |
| 89  | С | -4.822360 | 3.130937  | -1.738670 |
| 90  | Н | -5.860313 | 3.237714  | -2.040309 |
| 91  | С | -3.820677 | 3.029655  | -2.700313 |
| 92  | Н | -4.072442 | 3.053596  | -3.756801 |
| 93  | С | -2.488352 | 2.910043  | -2.314208 |
| 94  | Н | -1.714632 | 2.843430  | -3.073163 |
| 95  | С | 0.584536  | 3.490413  | -1.823102 |
| 96  | С | 1.807219  | 3.005044  | -2.283009 |
| 97  | Н | 2.212205  | 2.091640  | -1.860783 |
| 98  | С | 2.530302  | 3.725480  | -3.232861 |
| 99  | Н | 3.488834  | 3.345764  | -3.575176 |
| 100 | С | 2.040303  | 4.930590  | -3.723479 |
| 101 | Н | 2.606201  | 5.490752  | -4.462109 |
| 102 | С | 0.827726  | 5.427770  | -3.249507 |
| 103 | Н | 0.446505  | 6.377225  | -3.613916 |
| 104 | С | 0.105718  | 4.716441  | -2.297857 |
| 105 | Н | -0.831248 | 5.120427  | -1.925345 |
| 106 | С | -0.010696 | 3.754726  | 0.972388  |
| 107 | С | -0.845490 | 4.814188  | 1.329613  |
| 108 | Н | -1.782736 | 4.979653  | 0.807956  |
| 109 | С | -0.470505 | 5.679516  | 2.355559  |
|     |   |           |           |           |

| 110 | Н | -1.126038 | 6.501120  | 2.629479  |
|-----|---|-----------|-----------|-----------|
| 111 | С | 0.742136  | 5.503319  | 3.014758  |
| 112 | Н | 1.034041  | 6.184646  | 3.808556  |
| 113 | С | 1.587157  | 4.461289  | 2.640689  |
| 114 | Н | 2.546028  | 4.332674  | 3.134969  |
| 115 | С | 1.214956  | 3.587695  | 1.623591  |
| 116 | Н | 1.882804  | 2.787269  | 1.311959  |
| 117 | С | 1.986057  | 0.564710  | 0.015261  |
| 118 | С | 3.195479  | 0.807643  | -0.025735 |
| 119 | С | 4.565194  | 1.180045  | -0.107153 |
| 120 | С | 5.416419  | 1.583368  | 0.977284  |
| 121 | Н | 5.141103  | 1.568260  | 2.023036  |
| 122 | С | 6.674024  | 1.975045  | 0.443507  |
| 123 | Н | 7.533170  | 2.297743  | 1.015968  |
| 124 | С | 6.625440  | 1.810485  | -0.970057 |
| 125 | Н | 7.441327  | 1.986383  | -1.658092 |
| 126 | С | 5.337895  | 1.315248  | -1.311607 |
| 127 | Н | 4.993082  | 1.056261  | -2.303680 |
| 128 | С | 6.605383  | -1.485008 | 1.295834  |
| 129 | Н | 6.350986  | -1.450808 | 2.346068  |
| 130 | С | 7.835053  | -1.057067 | 0.718270  |
| 131 | Н | 8.674565  | -0.630790 | 1.250698  |
| 132 | С | 7.742404  | -1.233572 | -0.691644 |
| 133 | Н | 8.500117  | -0.966509 | -1.415952 |
| 134 | С | 6.455441  | -1.771218 | -0.983128 |
| 135 | Н | 6.069573  | -1.989718 | -1.969451 |
| 136 | С | 5.753035  | -1.928526 | 0.245293  |
| 137 | Н | 4.737202  | -2.281274 | 0.358919  |

\_

| center number | atomic type | coordinates (Angstroms) |           |           |  |
|---------------|-------------|-------------------------|-----------|-----------|--|
|               |             | Х                       | Y         | Ζ         |  |
| 1             | Ru          | 0.000174                | 0.353749  | 0.017111  |  |
| 2             | Fe          | -6.253043               | 0.080994  | -0.037604 |  |
| 3             | Р           | -0.733405               | -1.963648 | -0.488946 |  |
| 4             | Р           | 0.688398                | 2.675555  | 0.547578  |  |
| 5             | Ν           | 0.319106                | -0.100887 | 2.044511  |  |
| 6             | Ν           | 1.923655                | -0.255979 | -0.003517 |  |
| 7             | Ν           | 0.514897                | 0.635700  | -2.003178 |  |
| 8             | Ν           | 4.462823                | -1.124383 | -0.035825 |  |
| 9             | Ν           | 3.441560                | -3.114823 | 2.631223  |  |
| 10            | Ν           | 4.830385                | 1.102443  | -2.680033 |  |
| 11            | С           | -0.515969               | 0.123607  | 3.066410  |  |
| 12            | Н           | -1.509762               | 0.450025  | 2.790387  |  |
| 13            | С           | -0.143752               | -0.023113 | 4.394396  |  |
| 14            | Н           | -0.862140               | 0.180771  | 5.180610  |  |
| 15            | С           | 1.160160                | -0.407119 | 4.680759  |  |
| 16            | Н           | 1.499413                | -0.506008 | 5.706833  |  |
| 17            | С           | 2.030054                | -0.660210 | 3.630132  |  |
| 18            | Н           | 3.053547                | -0.948122 | 3.825464  |  |
| 19            | С           | 1.587405                | -0.525903 | 2.314932  |  |
| 20            | С           | 2.449985                | -0.729482 | 1.138064  |  |
| 21            | С           | 3.722269                | -1.337135 | 1.047793  |  |
| 22            | С           | 3.982961                | -0.495053 | -1.104471 |  |
| 23            | С           | 2.601706                | -0.198422 | -1.161619 |  |
| 24            | С           | 1.772993                | 0.204869  | -2.311591 |  |
| 25            | С           | 2.191673                | 0.123545  | -3.638928 |  |
| 26            | Н           | 3.166542                | -0.281188 | -3.871127 |  |
| 27            | С           | 1.356345                | 0.565707  | -4.654725 |  |
| 28            | Н           | 1.677155                | 0.507334  | -5.689779 |  |
| 29            | С           | 0.117597                | 1.097733  | -4.320486 |  |
| 30            | Н           | -0.555377               | 1.490179  | -5.074741 |  |
| 31            | С           | -0.263685               | 1.102161  | -2.986838 |  |
| 32            | Н           | -1.225547               | 1.488793  | -2.674604 |  |
| 33            | С           | 4.300770                | -2.271606 | 2.042413  |  |

**Table S3**. Geometry coordinates of optimized complex  $[1a]^{2+}$  by DFT method at the PBE1PBE level.

| 34 | С | 5.678133  | -2.296688 | 2.268566  |
|----|---|-----------|-----------|-----------|
| 35 | Н | 6.322606  | -1.595570 | 1.750286  |
| 36 | С | 6.181684  | -3.236055 | 3.162154  |
| 37 | Н | 7.245900  | -3.280661 | 3.372538  |
| 38 | С | 5.298843  | -4.116750 | 3.777071  |
| 39 | Н | 5.648552  | -4.868754 | 4.476626  |
| 40 | С | 3.941326  | -4.017362 | 3.473546  |
| 41 | Н | 3.223583  | -4.696159 | 3.928986  |
| 42 | С | 4.996292  | -0.099989 | -2.112602 |
| 43 | С | 6.094608  | -0.923414 | -2.366676 |
| 44 | Н | 6.178473  | -1.880768 | -1.864851 |
| 45 | С | 7.058482  | -0.477497 | -3.264744 |
| 46 | Н | 7.922694  | -1.092961 | -3.495347 |
| 47 | С | 6.896792  | 0.769871  | -3.857167 |
| 48 | Н | 7.626735  | 1.159620  | -4.558928 |
| 49 | С | 5.768525  | 1.520602  | -3.527887 |
| 50 | Н | 5.613875  | 2.504398  | -3.965685 |
| 51 | С | -1.466318 | -2.889055 | 0.967669  |
| 52 | С | -1.182404 | -4.228588 | 1.239031  |
| 53 | Н | -0.470491 | -4.774845 | 0.628554  |
| 54 | С | -1.814249 | -4.876416 | 2.299268  |
| 55 | Н | -1.586919 | -5.918607 | 2.502363  |
| 56 | С | -2.732007 | -4.194805 | 3.092068  |
| 57 | Н | -3.217484 | -4.700976 | 3.920998  |
| 58 | С | -3.024373 | -2.860539 | 2.816570  |
| 59 | Н | -3.733330 | -2.321814 | 3.440660  |
| 60 | С | -2.399045 | -2.209441 | 1.756533  |
| 61 | Н | -2.635112 | -1.172809 | 1.529730  |
| 62 | С | -2.048918 | -2.280654 | -1.793785 |
| 63 | С | -2.647111 | -1.243527 | -2.505773 |
| 64 | Н | -2.397866 | -0.219268 | -2.263253 |
| 65 | С | -3.583911 | -1.524427 | -3.501818 |
| 66 | Н | -4.029187 | -0.710084 | -4.067393 |
| 67 | С | -3.938305 | -2.841163 | -3.779053 |
| 68 | Н | -4.657455 | -3.061776 | -4.562648 |
| 69 | С | -3.360735 | -3.881250 | -3.050397 |
| 70 | Н | -3.636209 | -4.911000 | -3.257099 |
| 71 | С | -2.419331 | -3.603562 | -2.065032 |

| 72  | Н | -1.966842 | -4.421637 | -1.511980 |
|-----|---|-----------|-----------|-----------|
| 73  | С | 0.666201  | -3.032980 | -1.119056 |
| 74  | С | 1.613689  | -3.567243 | -0.238759 |
| 75  | Н | 1.532011  | -3.422404 | 0.835508  |
| 76  | С | 2.685195  | -4.307359 | -0.733012 |
| 77  | Н | 3.404454  | -4.728740 | -0.037024 |
| 78  | С | 2.829810  | -4.508902 | -2.103224 |
| 79  | Н | 3.661113  | -5.094828 | -2.483849 |
| 80  | С | 1.898704  | -3.963342 | -2.982849 |
| 81  | Н | 2.000971  | -4.119784 | -4.052682 |
| 82  | С | 0.821228  | -3.228408 | -2.495068 |
| 83  | Н | 0.093869  | -2.821052 | -3.190807 |
| 84  | С | 2.480801  | 2.711532  | 1.074884  |
| 85  | С | 3.505596  | 2.633393  | 0.125063  |
| 86  | Н | 3.286636  | 2.605059  | -0.938833 |
| 87  | С | 4.836665  | 2.591959  | 0.532710  |
| 88  | Н | 5.618946  | 2.546473  | -0.218740 |
| 89  | С | 5.158614  | 2.611132  | 1.887169  |
| 90  | Н | 6.197812  | 2.590639  | 2.201714  |
| 91  | С | 4.141753  | 2.663575  | 2.836513  |
| 92  | Н | 4.383324  | 2.681445  | 3.895290  |
| 93  | С | 2.809149  | 2.711206  | 2.434751  |
| 94  | Н | 2.026396  | 2.766788  | 3.185161  |
| 95  | С | -0.176212 | 3.641182  | 1.904728  |
| 96  | С | -1.453024 | 3.289851  | 2.338107  |
| 97  | Н | -1.946848 | 2.427230  | 1.905451  |
| 98  | С | -2.109419 | 4.073004  | 3.286455  |
| 99  | Н | -3.106455 | 3.796221  | 3.617914  |
| 100 | С | -1.497748 | 5.210666  | 3.801220  |
| 101 | Н | -2.009509 | 5.819670  | 4.540287  |
| 102 | С | -0.229926 | 5.576618  | 3.353175  |
| 103 | Н | 0.246920  | 6.473323  | 3.737124  |
| 104 | С | 0.426721  | 4.800964  | 2.404257  |
| 105 | Н | 1.408965  | 5.103015  | 2.052852  |
| 106 | С | 0.515267  | 3.894170  | -0.864317 |
| 107 | С | 1.515357  | 4.794361  | -1.230670 |
| 108 | Н | 2.479421  | 4.782119  | -0.733373 |
| 109 | С | 1.272646  | 5.733317  | -2.231912 |

| 110 | Н | 2.055647  | 6.431722  | -2.511719 |
|-----|---|-----------|-----------|-----------|
| 111 | С | 0.031488  | 5.788859  | -2.857693 |
| 112 | Н | -0.155435 | 6.527385  | -3.631374 |
| 113 | С | -0.976051 | 4.906015  | -2.475102 |
| 114 | Н | -1.954210 | 4.961405  | -2.944502 |
| 115 | С | -0.736510 | 3.961070  | -1.482722 |
| 116 | Н | -1.527596 | 3.285210  | -1.165995 |
| 117 | С | -1.921832 | 0.859741  | 0.026063  |
| 118 | С | -3.139652 | 1.113037  | 0.040173  |
| 119 | С | -4.495111 | 1.440970  | 0.085421  |
| 120 | С | -5.367112 | 1.706822  | -1.029086 |
| 121 | Н | -5.058205 | 1.708215  | -2.065580 |
| 122 | С | -6.665433 | 2.021827  | -0.541175 |
| 123 | Н | -7.518519 | 2.307091  | -1.143035 |
| 124 | С | -6.650044 | 1.864120  | 0.875339  |
| 125 | Н | -7.488680 | 2.009374  | 1.543814  |
| 126 | С | -5.341601 | 1.450904  | 1.251898  |
| 127 | Н | -5.007544 | 1.229690  | 2.256684  |
| 128 | С | -6.736791 | -1.482461 | -1.412336 |
| 129 | Н | -6.632461 | -1.399776 | -2.485896 |
| 130 | С | -7.879741 | -1.111944 | -0.651856 |
| 131 | Н | -8.804272 | -0.711399 | -1.046931 |
| 132 | С | -7.574465 | -1.319404 | 0.724446  |
| 133 | Н | -8.235618 | -1.127846 | 1.559277  |
| 134 | С | -6.241208 | -1.827888 | 0.803027  |
| 135 | Н | -5.706313 | -2.089171 | 1.706010  |
| 136 | С | -5.733471 | -1.935438 | -0.519311 |
| 137 | Н | -4.732717 | -2.241862 | -0.796498 |
|     |   |           |           |           |

| orbital | energy | MO contribution (%) |       |       |                  |                 |       |
|---------|--------|---------------------|-------|-------|------------------|-----------------|-------|
| oronar  | (eV)   | Ru (s/p/d)          | tppz  | C≡C   | PPh <sub>3</sub> | Fe (s/p/d)      | Ср    |
| LUMO+4  | -1.20  | 0.69 (6/50/44)      | 88.99 | 0.07  | 9.98             | 0.15 (4/79/17)  | 0.12  |
| LUMO+1  | -2.48  | 8.87 (0/24/76)      | 83.01 | 0.62  | 6.94             | 0.25 (4/8/88)   | 0.31  |
| LUMO    | -2.71  | 1.90 (1/6/93)       | 96.00 | 0.12  | 1.92             | 0.00 (26/72/2)  | 0.06  |
| НОМО    | -5.36  | 19.74 (0/0/100)     | 4.61  | 25.56 | 7.93             | 25.23 (1/4/96)  | 16.93 |
| HOMO-4  | -6.31  | 67.54 (0/0/100)     | 21.31 | 0.04  | 11.10            | 0.00 (25/26/49) | 0.00  |
| HOMO-7  | -6.94  | 5.95 (0/1/99)       | 80.02 | 0.08  | 13.84            | 0.01 (32/49/20) | 0.09  |

**Table S4**. Partial molecular orbital contribution (%) of complex  $[1]^+$  in dichloromethane media calculated by TDDFT method at the PBE1PBE level.

**Table S5**. Absorption transition character for complex  $[1]^+$  in dichloromethane media calculated by TDDFT method at the PBE1PBE level along with the experimental data.

|                   | <i>E</i> , nm (eV) | O.S.   | contribution      | assignment    | exp. (nm) |
|-------------------|--------------------|--------|-------------------|---------------|-----------|
| $S_4$             | 561 (2.21)         | 0.0945 | HOMO→LUMO+1 (74%) | MLCT/LLCT     | 521       |
| $\mathbf{S}_{10}$ | 452 (2.74)         | 0.0861 | HOMO-4→LUMO (87%) | MLCT/IL       | 482       |
| $S_{25}$          | 351 (3.54)         | 0.177  | HOMO-7→LUMO (53%) | IL/LLCT       | 330       |
|                   |                    |        | HOMO→LUMO+4 (20%) | LLCT/<br>MLCT |           |

| orbital        | energy | MO contribution (%) |       |       |                  |                 |                 |
|----------------|--------|---------------------|-------|-------|------------------|-----------------|-----------------|
| orbitar        | (eV)   | Ru (s/p/d)          | tppz  | C≡C   | PPh <sub>3</sub> | Fe (s/p/d)      | Cp <sup>a</sup> |
| aLUMO+1        | -3.06  | 1.97 (1/9/89)       | 95.86 | 0.14  | 1.94             | 0.01 (3/31/67)  | 0.08            |
| αLUMO          | -3.19  | 1.84 (5/78/16)      | 17.23 | 5.10  | 4.99             | 35.14 (0/1/99)  | 35.69           |
| αНОМО          | -6.31  | 60.72 (0/1/99)      | 11.89 | 17.89 | 3.58             | 0.39 (2/16/82)  | 5.54            |
| αHOMO-1        | -6.43  | 38.08 (0/0/99)      | 5.81  | 21.58 | 10.22            | 8.44 (3/21/76)  | 15.87           |
| αНОМО-2        | -6.80  | 64.55 (0/0/100)     | 25.39 | 0.17  | 9.84             | 0.00 (1/22/77)  | 0.04            |
| αHOMO-4        | -7.27  | 11.12 (0/1/99)      | 76.49 | 0.07  | 12.25            | 0.01 (46/45/9)  | 0.06            |
| $\beta$ LUMO+2 | -2.85  | 7.38 (0/26/74)      | 80.11 | 0.72  | 5.61             | 4.50 (0/1/99)   | 1.67            |
| $\beta$ LUMO+1 | -3.34  | 1.97 (1/9/90)       | 95.89 | 0.13  | 1.94             | 0.01 (6/63/31)  | 0.07            |
| βLUMO          | -6.41  | 1.39 (3/48/49)      | 8.01  | 4.90  | 3.20             | 53.18 (0/0/100) | 29.32           |
| βΗΟΜΟ          | -6.80  | 60.58 (0/1/99)      | 11.84 | 17.86 | 3.61             | 0.45 (2/11/87)  | 5.65            |
| $\beta$ HOMO-1 | -8.45  | 38.54 (0/1/99)      | 5.93  | 22.04 | 10.44            | 6.72 (3/17/81)  | 16.33           |
| $\beta$ HOMO-2 | -3.34  | 64.55 (0/0/100)     | 25.40 | 0.17  | 9.83             | 0.00 (1/16/84)  | 0.04            |
| $\beta$ HOMO-4 | -6.41  | 11.12 (0/1/99)      | 76.47 | 0.08  | 12.26            | 0.01 (44/41/15) | 0.06            |
| βHOMO-21       | -6.80  | 0.62 (0/12/88)      | 0.83  | 1.39  | 0.92             | 90.26 (2/0/98)  | 5.99            |

**Table S6**. Partial molecular orbital contribution (%) of complex  $[1a]^{2+}$  in dichloromethane media calculated by TDDFT method at the PBE1PBE level.

**Table S7**. Absorption transition character for complex  $[1a]^{2+}$  in dichloromethane media calculated by TDDFT method at the PBE1PBE level, along with the experimental data.

| States                | <i>E</i> , nm (eV) | O.S.   | contribution                                    | assignment     | exp. (nm) |
|-----------------------|--------------------|--------|-------------------------------------------------|----------------|-----------|
| <b>S</b> <sub>2</sub> | 1358<br>(0.91)     | 0.0018 | $\beta$ HOMO-21 $\rightarrow\beta$ LUMO (91%)   | MLCT           | 1247      |
|                       |                    |        | $\beta$ HOMO-21 $\rightarrow\beta$ LUMO+2 (7%)  | MLCT/IVCT      |           |
| <b>S</b> <sub>8</sub> | 571<br>(2.17)      | 0.1690 | $\alpha$ HOMO-1 $\rightarrow \alpha$ LUMO (40%) | MLCT/LLCT      | 526       |
|                       |                    |        | βHOMO-1 $\rightarrow$ βLUMO (16%)               | IVCT/LLCT      |           |
| S <sub>27</sub>       | 426<br>(2.91)      | 0.1833 | αHOMO-2→αLUMO +1 (34%)                          | MLCT/ILCT      | 471       |
|                       |                    |        | $\beta$ HOMO-2 $\rightarrow\beta$ LUMO+1 (30%)  | MLCT/ILCT      |           |
| S <sub>51</sub>       | 352<br>(3.52)      | 0.2024 | βHOMO-4 $\rightarrow$ βLUMO+1 (37%)             | ILCT/MLCT/LLCT | 360       |
|                       |                    |        | αHOMO-4→αLUMO +1 (36%)                          | ILCT/MLCT/LLCT |           |



**Fig. S1**. Plots of Cyclic (top) and differential pulse (lower) voltammograms of FcC=CH in 0.1 M dichloromethane-TBAPF<sub>6</sub> solution. The scan rate is 100 mV s<sup>-1</sup> for CV and 20 mV s<sup>-1</sup> for DPV.



**Fig. S2**. Plots of cyclic (top) and differential pulse (bottom) voltammograms of (a)  $[(tppz)(PPh_3)_2RuCl](ClO_4)$  and (b) [4](ClO\_4) in 0.1 M dichloromethane-TBAPF<sub>6</sub> solution. The scan rate is 100 mV s<sup>-1</sup> for CV and 20 mV s<sup>-1</sup> for DPV.



**Fig. S3**. The binding energy of (a) Ru  $3d_{5/2}$  and (b) Fe  $2P_{1/2}$  and Fe  $2P_{3/2}$  of  $[1]^+$  (solid) and  $[1a]^{2+}$  (dash).



Fig. S4. Visible and near–IR electronic absorption spectra of mixed-valence complex  $[1a]^{2+}$  in different solvents.



**Fig. S5**. Optimized structures of complexes  $[1]^+$  (a) and  $[1a]^{2+}$  (b) in the ground state by DFT method at PBE1PBE level. Green, purple, yellow, blue, gray, and white spheres represent the ruthenium, iron, phosphorus, nitrogen, carbon, and hydrogen atoms, respectively.





**Fig. S6**. Plots of the molecular orbitals involved in the absorption transitions for complex  $[1]^+$  in dichloromethane media by TDDFT method at the PBE1PBE level.





αΗΟΜΟ



αНОМО-2





αHOMO-4



 $\beta$ LUMO+2



 $\beta$ LUMO+1







*β*HOMO-1



Fig. S7. Plots of the molecular orbital involved in the absorption transitions for complex  $[1a]^{2+}$  in dichloromethane media.