Electronic Supplementary Information (ESI)

for

Inorganic clusters with a [Fe₂MoOS₃] core —a functional model for acetylene reduction by nitrogenases

Koji Yoshimoto, Takeshi Yatabe, Takahiro Matsumoto, Viet-Ha Tran, Andrew Robertson, Hidetaka Nakai, Koichiro Asazawa, Hirohisa Tanaka and Seiji Ogo*

> *To whom correspondence should be addressed. E-mail: ogo.seiji.872@m.kyushu-u.ac.jp

A table of contents

Table S1	page 1
Fig. S1	page 2
Fig. S2	page 3
Fig. S3	page 4
Fig. S4	page 5
Fig. S5	page 6
Fig. S6	page 7
Fig. S7	page 8
Fig. S8	page 9

en- try	BX ₄ ⁻ (8 eq.)	substrate (10 eq.)	X ₂ O (9 eq.)	ratio of H ₂ :HD:D ₂	yield of dihydrogen (%) [†]			ratio of RC ₂ H ₃ : RC ₂ H ₂ D: RC ₂ HD ₂ :	yield of styrene or ethylene (%) [‡]		
					based on 1	based on BX ₄ ⁻	based on sub- strate	RC ₂ D ₃	based on 1	based on BX ₄ ⁻	based on sub- strate
1	BD_4^{-}	_	_	0:12:88	21	2.6	2.1	_	_	_	_
2	$\mathrm{BH_4}^-$	_	_	100:0:0	25	3.1	2.5	_	_	_	_
3	BD_4^{-}	_	$\rm H_2O$	1:89:10	78	9.8	7.8	_	_	_	-
4	$\mathrm{BH_4}^-$	_	D_2O	16:83:1	56	7.0	5.6	_	_	_	-
5	BD_4^{-}	PhC = CH	-	0:14:86	18	2.3	1.8	10:30:60:0	16	2.0	1.6
6	$\mathrm{BH_4}^-$	PhC = CH	-	100:0:0	19	2.4	1.9	100:0:0:0	25	3.1	2.5
7	BD_4^{-}	PhC = CH	H_2O	0:88:12	58	7.3	5.8	4:85:11:0	70	8.8	7
8	$\mathrm{BH_4}^-$	PhC≡CH	D_2O	24:76:0	35	4.4	3.5	25:74:1:0	77	9.6	7.7
9	BD_4^{-}	PhC≡CD	_	0:6:94	10	1.3	1	0:6:44:50	19	2.4	1.9
10	$\mathrm{BH_4}^-$	PhC = CD	-	100:0:0	11	1.4	1.1	0:98:2:0	15	1.9	1.5
11	BD_4^{-}	PhC = CD	H_2O	0:89:11	63	7.9	6.3	0:1:84:15	72	9.0	7.2
12	$\mathrm{BH_4}^-$	PhC = CD	D_2O	25:75:0	26	3.3	2.6	0:26:73:1	60	7.5	6
13	BD_4^{-}	HC≡CH	-	5:25:70	29	3.6	2.9	23:27:50:0	8	1.0	0.8
14	$\mathrm{BH_4}^-$	HC≡CH	-	100:0:0	19	2.4	1.9	100:0:0:0	9	1.1	0.9
15	BD_4^{-}	HC≡CH	H_2O	4:85:11	79	9.9	7.9	33:59:8:0	20	2.5	2
16	$\mathrm{BH_4}^-$	HC≡CH	D_2O	34:66:0	56	7.0	5.6	51:47:2:0	18	2.3	1.8

Table S1 Reaction of **1** with BX_4^- and/or substrates in the presence or absence of X_2O (X = H or D). R = H or Ph. The yields were calculated based on **1**, BX_4^- and substrate.

[†] The yields of dihydrogen based on 1: {(mol of dihydrogen)/(mol of 1)} \times 100.

The yields of dihydrogen based on BX_4^- : {(mol of dihydrogen)/(mol of BX_4^-)} × 100.

The yields of dihydrogen based on substrate: {(mol of dihydrogen)/(mol of substrate)} × 100.

^{\ddagger} The yields of styrene or ethylene based on 1: {(mol of product)/(mol of 1)} × 100.

The yields of styrene or ethylene based on BX_4^- : {(mol of product)/(mol of BX_4^-)} × 100.

The yields of styrene or ethylene based on substrate: {(mol of product)/(mol of substrate)} × 100.

Fig. S1 An ESR spectrum of **1** in acetonitrile at –150 °C (microwave frequency: 9.20 GHz, microwave power: 1.64 mW).

Fig. S2 (a) A UV-vis spectral change from 2 (0.27 mM) to 4 in the reaction of 1 with 2 equivalents of PPh₄BH₄ in acetonitrile under an N₂ atmosphere at -10 °C (2400 sec interval). Time course of the absorbance changes at (b) 400 nm, (c) 450 nm, (d) 550 nm and (e) 600 nm and the first-order kinetic plots (1200 sec interval). The solid lines indicate the first-order kinetic fittings.

Fig. S3 (a) A UV-vis spectral change from 2 (0.27 mM) to 3 in the reaction of 1 with 2 equivalents of PPh₄BH₄ in HC=CH-saturated acetonitrile under an HC=CH atmosphere at -10 °C (1200 sec interval). Time course of the absorbance changes at (b) 450 nm, (c) 500 nm, (d) 550 nm and (e) 600 nm and the pseudo-first-order kinetic plots (600 sec interval). The solid lines indicate the pseudo-first-order kinetic fittings.

Fig. S4 Gas chromatograms of authentic (a) H_2 , (b) HD and (c) D_2 gases. Gas chromatograms obtained from the reaction of **1** with (d) BD_4^- (entry 1), (e) BH_4^- (entry 2), (f) BD_4^- with H_2O (entry 3), (g) BH_4^- with D_2O (entry 4), (h) BD_4^- with PhC=CH (entry 5), (i) BH_4^- with PhC=CH (entry 6), (j) BD_4^- with PhC=CH and H_2O (entry 7) and (k) BH_4^- with PhC=CH and D_2O (entry 8). The ratios of H_2 : HD : D_2 were determined based on those peak areas. The detection sensitivities of H_2 : HD : D_2 are 1 : 3.4 : 4.9, which were determined by using authentic H_2 , HD and D_2 gases.

(a) entry 9 in Table 1 and Table S1 (b) entry 10 in Table 1 and Table S1 (c) entry 11 in Table 1 and Table S1 HD D_2 D_2 Н, HD 2 6 0 4 8 0 2 4 6 8 0 2 4 6 8

(d) entry 12 in Table 1 and Table S1 (e) entry 13 in Table 1 and Table S1 (f) entry 14 in Table 1 and Table S1

retention time / min

retention time / min

(g) entry 15 in Table 1 and Table S1 (h) entry 16 in Table 1 and Table S1

retention time / min

Fig. S5 Gas chromatograms obtained from the reaction of **1** with (a) BD_4^- with PhC=CD (entry 9), (b) BH_4^- with PhC=CD (entry 10), (c) BD_4^- with PhC=CD and H₂O (entry 11), (d) BH_4^- with PhC=CD and D₂O (entry 12), (e) BD_4^- with HC=CH (entry 13), (f) BH_4^- with HC=CH (entry 14), (g) BD_4^- with HC=CH and H₂O (entry 15) and (h) BH_4^- with HC=CH and D₂O (entry 16). The ratios of H₂ : HD : D₂ were determined based on those peak areas. The detection sensitivities of H₂ : HD : D₂ are 1 : 3.4 : 4.9, which were determined by using authentic H₂, HD and D₂ gases.

Fig. S6 (a) A GC mass spectrum of authentic PhCH=CH₂. GC mass spectra obtained from the reduction of PhC=CH by **1** with (b) BD_4^- (entry 5), (d) BH_4^- (entry 6), (f) BD_4^- with H₂O (entry 7) and (h) BH_4^- with D₂O (entry 8). Calculated distributions obtained from combination of PhC₂H₃, PhC₂H₂D and PhC₂HD₂ as (c) 10 : 30 : 60, (e) 100 : 0 : 0, (g) 4 : 85 : 11 and (i) 25 : 74 : 1. The ratios of PhC₂H₃ : PhC₂H₂D : PhC₂HD₂ were determined based on those peak areas as the same sensitivities of PhC₂H₃, PhC₂H₂D and PhC₂HD₂.

Fig. S7 GC mass spectra obtained from the reduction of PhC=CD by **1** with (a) BD_4^- (entry 9), (c) BH_4^- (entry 10), (e) BD_4^- with H_2O (entry 11) and (g) BH_4^- with D_2O (entry 12). Calculated distributions obtained from combination of PhC₂H₂D, PhC₂HD₂ and PhC₂D₃ as (b) 6 : 44 : 50, (d) 98 : 2 : 0, (f) 1 : 84 : 15 and (h) 26 : 73 : 1. The ratios of PhC₂H₂D : PhC₂HD₂ : PhC₂D₃ were determined based on those peak areas as the same sensitivities of PhC₂H₂D, PhC₂HD₂ and PhC₂D₃.

Fig. S8 (a) A GC mass spectrum of authentic $CH_2=CH_2$ gas. GC mass spectra obtained from the reduction of HC=CH by and 1 with (b) BD_4^- (entry 13), (d) BH_4^- (entry 14), (f) BD_4^- with H₂O (entry 15) and (h) BH_4^- with D₂O (entry 16). Calculated distributions obtained from combination of C_2H_4 , C_2H_3D and $C_2H_2D_2$ as (c) 23 : 27 : 50, (e) 100 : 0 : 0, (g) 33 : 59 : 8 and (i) 51 : 47 : 2. The ratios of C_2H_4 : C_2H_3D : $C_2H_2D_2$ were determined based on those peak areas as the same sensitivities of C_2H_4 , C_2H_3D and $C_2H_2D_2$.