Supporting information

Catalytic transfer hydrogenation of azobenzene by low valent nickel complexes: a route to 1,2-disubstituted benzimidazoles and 2,4,5-trisubtituted Imidazolines

Daniel A. Zurita, Marcos Flores-Alamo and Juventino J. García*

Facultad de Quimica. Universidad Nacional Autonoma de Mexico. Mexico City 04510.

Mexico.

Table of contents

NMR Spectra of Isolated Compounds	1
Crystallographic data of Complex I, II, III	. 14
NMR spectra of stoichiometric experiments	. 31
Reaction Optimization	. 35
Substrate Scope	. 38
Synthesis of substituted azobenzenes	. 39
Selected Mass Spectrum of Representative Products	. 40

NMR Spectra of Isolated Compounds

NMR spectra of Complex I

 $^{31}P{^{1}H}-NMR$

Figure S 2. ¹H-NMR of I

¹³C{¹H}-NMR

Figure S 3. ¹³C{¹H}-NMR of I

NMR Spectra of Complex II

 $^{31}P{}^{1}H}-NMR$

Figure S 4. ³¹P{¹H}-NMR of II

¹⁹F-NMR

-96 -98 -102 -106 -110 -114 -118 -122 -126 -130 -134 -138 -142 -146 -150 f1 (ppm)

¹H-NMR

Figure S 6. ¹H-NMR of II

¹³C{¹H}-NMR

Figure S 7. ¹³C{¹H}-NMR of II

NMR Spectra of complex III

³¹P{¹H}-NMR

78.0 77.5 77.0 76.5 76.0 75.5 75.0 74.5 74.0 73.5 73.0 72.5 72.0 71.5 71.0 70.5 70.0 69.5 69.0 68.5 68.0 67.5 67.0 66.5 f1 (ppm)

Figure S 8. ³¹P{¹H}-NMR of III

Figure S 10. ¹H-NMR of III

¹³C{¹H}-NMR

Figure S 11. ¹³C{¹H}-NMR of III

NMR spectra of azobenzenes

¹H-NMR

Figure S 13. ¹³C{¹H} NMR of Azobenzene in THF-*d*₈.

Figure S 14. ¹H-NMR of (E)-1,2-Bis(4-fluorophenyl)diazene in THF-*d*₈

¹³C{¹H}-NMR

Figure S 15. ¹³C{¹H} NMR of (E)-1,2-Bis(4-fluorophenyl)diazene in THF-*d*₈

¹⁹F-NMR

Figure S 16.¹⁹F NMR of (E)-1,2-Bis(4-fluorophenyl)diazene in THF-*d*₈

¹H-NMR

Figure S 17.¹H NMR of (E)-1,2-Bis(2-fluorophenyl)diazene in THF-d₈

¹³C{¹H}-NMR

Figure S 18. ¹³C{¹H} NMR of (E)-1,2-Bis(2-fluorophenyl)diazene in THF-*d*₈

¹⁹F-NMR

Figure S 19.¹⁹F NMR of (E)-1,2-Bis(2-fluorophenyl)diazene in THF-d₈

¹H NMR.

Figure S 20. ¹H NMR of 4-(phenylazo)acetophenone in THF-*d*₈

Figure S 21. ¹³C NMR of 4-(phenylazo)acetophenone in THF-*d*₈

NMR of [(dippe)Ni(µ-H)]₂

¹H-NMR

13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -11 -13 -15 -17 -19 f1(ppm)

Figure S 22. ¹H NMR of [(dippe)Ni(µ-H)]₂ in Tol-d₈

³¹P{¹H}-NMR

Figure S 23. ³¹P{¹H} NMR of $[(dippe)Ni(\mu-H)]_2$ in Tol- d_8

Crystallographic data of Complex I, II, III

Complex I

Table S 1. Crystal data and structure refinement for complex I.

shelx	
C26 H42 N2 Ni P2	
503.26	
130(2) K	
0.71073 Å	
Monoclinic	
P 21/c	
a = 11.1202(3) Å	<i>α</i> = 90°.
b = 15.6332(3) Å	$\beta = 94.422(2)^{\circ}.$
c = 16.5211(3) Å	$\gamma = 90^{\circ}$.
2863.55(11) Å ³	
4	
1.167 Mg/m ³	
0.804 mm ⁻¹	
1080	
3.369 to 29.554°.	
-14<=h<=15, -20<=k<=21, -22<=l<=19	
24891	
7095 [R(int) = 0.0231]	
99.8 %	
Full-matrix least-squares on F ²	
7095 / 0 / 288	
1.073	
R1 = 0.0316, wR2 = 0.0916	
R1 = 0.0369, wR2 = 0.0948	
n/a	
0.611 and -0.269 e.Å ⁻³	
	shelx C26 H42 N2 Ni P2 503.26 130(2) K 0.71073 Å Monoclinic P 21/c a = 11.1202(3) Å b = 15.6332(3) Å c = 16.5211(3) Å 2863.55(11) Å ³ 4 1.167 Mg/m ³ 0.804 mm ⁻¹ 1080 3.369 to 29.554°. -14<=h<=15, -20<=k<=21, -22 24891 7095 [R(int) = 0.0231] 99.8 % Full-matrix least-squares on F ² 7095 / 0 / 288 1.073 R1 = 0.0316, wR2 = 0.0916 R1 = 0.0369, wR2 = 0.0948 n/a 0.611 and -0.269 e.Å ⁻³

	х	У	Z	U(eq)
C(1)	7225(1)	2328(1)	3242(1)	22(1)
C(2)	8298(2)	2700(1)	3565(1)	26(1)
C(3)	9329(2)	2214(1)	3728(1)	32(1)
C(4)	9313(2)	1344(1)	3576(1)	37(1)
C(5)	8246(2)	961(1)	3268(1)	34(1)
C(6)	7202(2)	1443(1)	3106(1)	27(1)
C(7)	4141(1)	2964(1)	2920(1)	22(1)
C(8)	4140(2)	3792(1)	3239(1)	28(1)
C(9)	3060(2)	4221(1)	3303(1)	39(1)
C(10)	1965(2)	3835(2)	3064(1)	44(1)
C(11)	1955(2)	3012(1)	2761(1)	38(1)
C(12)	3030(2)	2580(1)	2691(1)	29(1)
C(13)	5682(2)	3374(1)	7(1)	29(1)
C(14)	7007(2)	3568(1)	256(1)	31(1)
C(15)	8913(2)	3288(1)	1520(1)	30(1)
C(16)	9022(2)	2328(1)	1372(1)	40(1)
C(17)	9776(2)	3793(2)	1026(1)	43(1)
C(18)	7373(2)	4799(1)	1606(1)	29(1)
C(19)	6093(2)	5155(1)	1539(1)	37(1)
C(20)	7976(2)	4955(1)	2453(1)	40(1)
C(21)	4926(2)	1624(1)	405(1)	35(1)
C(22)	6212(2)	1318(1)	306(2)	47(1)
C(23)	4291(2)	1056(1)	982(2)	50(1)
C(24)	3356(1)	3077(1)	645(1)	24(1)
C(27)	2751(2)	2933(1)	-209(1)	34(1)
C(28)	3239(2)	4007(1)	908(1)	30(1)
Ni(1)	5943(1)	2943(1)	1937(1)	17(1)
P(1)	7324(1)	3642(1)	1368(1)	22(1)
P(2)	4950(1)	2734(1)	776(1)	20(1)
N(1)	6229(1)	2893(1)	3094(1)	20(1)
N(2)	5180(1)	2455(1)	2829(1)	21(1)

Table S 2. Atomic coordinates ($x\,10^4$) and equivalent isotropic displacement parameters (Å $^2x\,10^3$) for complex I. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.396(2)	C(16)-H(16B)	0.9800
C(1)-C(6)	1.401(2)	C(16)-H(16C)	0.9800
C(1)-N(1)	1.424(2)	C(17)-H(17A)	0.9800
C(2)-C(3)	1.384(2)	C(17)-H(17B)	0.9800
C(2)-H(2)	0.9500	C(17)-H(17C)	0.9800
C(3)-C(4)	1.383(3)	C(18)-C(20)	1.524(3)
C(3)-H(3)	0.9500	C(18)-C(19)	1.525(3)
C(4)-C(5)	1.389(3)	C(18)-P(1)	1.8502(18)
C(4)-H(4)	0.9500	C(18)-H(18)	1.0000
C(5)-C(6)	1.393(2)	C(19)-H(19A)	0.9800
C(5)-H(5)	0.9500	C(19)-H(19B)	0.9800
C(6)-H(6)	0.9500	C(19)-H(19C)	0.9800
C(7)-C(8)	1.398(2)	C(20)-H(20A)	0.9800
C(7)-C(12)	1.400(2)	C(20)-H(20B)	0.9800
C(7)-N(2)	1.420(2)	C(20)-H(20C)	0.9800
C(8)-C(9)	1.387(3)	C(21)-C(23)	1.517(3)
C(8)-H(8)	0.9500	C(21)-C(22)	1.528(3)
C(9)-C(10)	1.389(3)	C(21)-P(2)	1.8401(18)
C(9)-H(9)	0.9500	C(21)-H(21)	1.0000
C(10)-C(11)	1.379(3)	C(22)-H(22A)	0.9800
C(10)-H(10)	0.9500	C(22)-H(22B)	0.9800
C(11)-C(12)	1.386(3)	C(22)-H(22C)	0.9800
C(11)-H(11)	0.9500	C(23)-H(23A)	0.9800
C(12)-H(12)	0.9500	C(23)-H(23B)	0.9800
C(13)-C(14)	1.529(2)	C(23)-H(23C)	0.9800
C(13)-P(2)	1.8539(17)	C(24)-C(28)	1.525(2)
C(13)-H(13A)	0.9900	C(24)-C(27)	1.532(2)
C(13)-H(13B)	0.9900	C(24)-P(2)	1.8482(17)
C(14)-P(1)	1.8474(17)	C(24)-H(24)	1.0000
C(14)-H(14A)	0.9900	C(27)-H(27A)	0.9800
C(14)-H(14B)	0.9900	C(27)-H(27B)	0.9800
C(15)-C(16)	1.527(3)	C(27)-H(27C)	0.9800
C(15)-C(17)	1.528(3)	C(28)-H(28A)	0.9800
C(15)-P(1)	1.8502(18)	C(28)-H(28B)	0.9800
C(15)-H(15)	1.0000	C(28)-H(28C)	0.9800
C(16)-H(16A)	0.9800	Ni(1)-N(2)	1.9148(12)

Table S 3. Bond lengths [Å] and angles [°] for complex I.

Ni(1)-N(1)	1.9149(13)	Ni(1)-P(2)	2.1629(4)
Ni(1)-P(1)	2.1598(4)	N(1)-N(2)	1.3933(18)
C(2)-C(1)-C(6)	118.54(15)	C(7)-C(12)-H(12)	119.4
C(2)-C(1)-N(1)	115.97(15)	C(14)-C(13)-P(2)	112.86(11)
C(6)-C(1)-N(1)	125.48(15)	C(14)-C(13)-H(13A)	109.0
C(3)-C(2)-C(1)	121.09(17)	P(2)-C(13)-H(13A)	109.0
C(3)-C(2)-H(2)	119.5	C(14)-C(13)-H(13B)	109.0
C(1)-C(2)-H(2)	119.5	P(2)-C(13)-H(13B)	109.0
C(4)-C(3)-C(2)	120.33(17)	H(13A)-C(13)-H(13B)	107.8
C(4)-C(3)-H(3)	119.8	C(13)-C(14)-P(1)	112.68(11)
C(2)-C(3)-H(3)	119.8	C(13)-C(14)-H(14A)	109.1
C(3)-C(4)-C(5)	119.27(17)	P(1)-C(14)-H(14A)	109.1
C(3)-C(4)-H(4)	120.4	C(13)-C(14)-H(14B)	109.1
C(5)-C(4)-H(4)	120.4	P(1)-C(14)-H(14B)	109.1
C(4)-C(5)-C(6)	120.88(18)	H(14A)-C(14)-H(14B)	107.8
C(4)-C(5)-H(5)	119.6	C(16)-C(15)-C(17)	111.18(16)
C(6)-C(5)-H(5)	119.6	C(16)-C(15)-P(1)	111.02(13)
C(5)-C(6)-C(1)	119.87(16)	C(17)-C(15)-P(1)	113.90(14)
C(5)-C(6)-H(6)	120.1	C(16)-C(15)-H(15)	106.8
C(1)-C(6)-H(6)	120.1	C(17)-C(15)-H(15)	106.8
C(8)-C(7)-C(12)	118.25(16)	P(1)-C(15)-H(15)	106.8
C(8)-C(7)-N(2)	125.66(15)	C(15)-C(16)-H(16A)	109.5
C(12)-C(7)-N(2)	116.06(15)	C(15)-C(16)-H(16B)	109.5
C(9)-C(8)-C(7)	120.14(17)	H(16A)-C(16)-H(16B)	109.5
C(9)-C(8)-H(8)	119.9	C(15)-C(16)-H(16C)	109.5
C(7)-C(8)-H(8)	119.9	H(16A)-C(16)-H(16C)	109.5
C(8)-C(9)-C(10)	120.9(2)	H(16B)-C(16)-H(16C)	109.5
C(8)-C(9)-H(9)	119.6	C(15)-C(17)-H(17A)	109.5
C(10)-C(9)-H(9)	119.6	C(15)-C(17)-H(17B)	109.5
C(11)-C(10)-C(9)	119.45(18)	H(17A)-C(17)-H(17B)	109.5
C(11)-C(10)-H(10)	120.3	C(15)-C(17)-H(17C)	109.5
C(9)-C(10)-H(10)	120.3	H(17A)-C(17)-H(17C)	109.5
C(10)-C(11)-C(12)	120.12(19)	H(17B)-C(17)-H(17C)	109.5
C(10)-C(11)-H(11)	119.9	C(20)-C(18)-C(19)	110.49(16)
C(12)-C(11)-H(11)	119.9	C(20)-C(18)-P(1)	110.80(12)
C(11)-C(12)-C(7)	121.13(18)	C(19)-C(18)-P(1)	109.29(12)
C(11)-C(12)-H(12)	119.4	C(20)-C(18)-H(18)	108.7

C(19)-C(18)-H(18)	108.7	C(24)-C(27)-H(27A)	109.5
P(1)-C(18)-H(18)	108.7	C(24)-C(27)-H(27B)	109.5
C(18)-C(19)-H(19A)	109.5	H(27A)-C(27)-H(27B)	109.5
C(18)-C(19)-H(19B)	109.5	C(24)-C(27)-H(27C)	109.5
H(19A)-C(19)-H(19B)	109.5	H(27A)-C(27)-H(27C)	109.5
C(18)-C(19)-H(19C)	109.5	H(27B)-C(27)-H(27C)	109.5
H(19A)-C(19)-H(19C)	109.5	C(24)-C(28)-H(28A)	109.5
H(19B)-C(19)-H(19C)	109.5	C(24)-C(28)-H(28B)	109.5
C(18)-C(20)-H(20A)	109.5	H(28A)-C(28)-H(28B)	109.5
C(18)-C(20)-H(20B)	109.5	C(24)-C(28)-H(28C)	109.5
H(20A)-C(20)-H(20B)	109.5	H(28A)-C(28)-H(28C)	109.5
C(18)-C(20)-H(20C)	109.5	H(28B)-C(28)-H(28C)	109.5
H(20A)-C(20)-H(20C)	109.5	N(2)-Ni(1)-N(1)	42.67(5)
H(20B)-C(20)-H(20C)	109.5	N(2)-Ni(1)-P(1)	155.40(4)
C(23)-C(21)-C(22)	111.67(18)	N(1)-Ni(1)-P(1)	112.74(4)
C(23)-C(21)-P(2)	109.73(14)	N(2)-Ni(1)-P(2)	113.35(4)
C(22)-C(21)-P(2)	109.95(14)	N(1)-Ni(1)-P(2)	155.94(4)
C(23)-C(21)-H(21)	108.5	P(1)-Ni(1)-P(2)	91.249(16)
C(22)-C(21)-H(21)	108.5	C(14)-P(1)-C(15)	102.95(8)
P(2)-C(21)-H(21)	108.5	C(14)-P(1)-C(18)	105.83(8)
C(21)-C(22)-H(22A)	109.5	C(15)-P(1)-C(18)	104.57(8)
C(21)-C(22)-H(22B)	109.5	C(14)-P(1)-Ni(1)	108.29(6)
H(22A)-C(22)-H(22B)	109.5	C(15)-P(1)-Ni(1)	119.55(6)
C(21)-C(22)-H(22C)	109.5	C(18)-P(1)-Ni(1)	114.33(6)
H(22A)-C(22)-H(22C)	109.5	C(21)-P(2)-C(24)	104.23(8)
H(22B)-C(22)-H(22C)	109.5	C(21)-P(2)-C(13)	106.02(9)
C(21)-C(23)-H(23A)	109.5	C(24)-P(2)-C(13)	103.37(8)
C(21)-C(23)-H(23B)	109.5	C(21)-P(2)-Ni(1)	115.54(6)
H(23A)-C(23)-H(23B)	109.5	C(24)-P(2)-Ni(1)	118.64(5)
C(21)-C(23)-H(23C)	109.5	C(13)-P(2)-Ni(1)	107.76(6)
H(23A)-C(23)-H(23C)	109.5	N(2)-N(1)-C(1)	111.73(12)
H(23B)-C(23)-H(23C)	109.5	N(2)-N(1)-Ni(1)	68.66(7)
C(28)-C(24)-C(27)	111.12(14)	C(1)-N(1)-Ni(1)	105.28(9)
C(28)-C(24)-P(2)	110.23(11)	N(1)-N(2)-C(7)	111.05(13)
C(27)-C(24)-P(2)	114.44(12)	N(1)-N(2)-Ni(1)	68.67(7)
C(28)-C(24)-H(24)	106.9	C(7)-N(2)-Ni(1)	105.68(9)
C(27)-C(24)-H(24)	106.9		
P(2)-C(24)-H(24)	106.9		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	23(1)	30(1)	12(1)	4(1)	2(1)	1(1)
C(2)	24(1)	33(1)	19(1)	3(1)	-1(1)	-1(1)
C(3)	23(1)	46(1)	28(1)	7(1)	-1(1)	1(1)
C(4)	28(1)	46(1)	36(1)	11(1)	4(1)	13(1)
C(5)	38(1)	31(1)	32(1)	5(1)	6(1)	8(1)
C(6)	29(1)	30(1)	21(1)	4(1)	2(1)	1(1)
C(7)	24(1)	31(1)	12(1)	7(1)	2(1)	0(1)
C(8)	29(1)	36(1)	19(1)	0(1)	1(1)	4(1)
C(9)	42(1)	47(1)	30(1)	-4(1)	2(1)	15(1)
C(10)	31(1)	68(1)	33(1)	5(1)	4(1)	19(1)
C(11)	23(1)	64(1)	26(1)	11(1)	2(1)	-1(1)
C(12)	26(1)	39(1)	21(1)	9(1)	1(1)	-4(1)
C(13)	25(1)	47(1)	15(1)	4(1)	2(1)	0(1)
C(14)	32(1)	43(1)	16(1)	4(1)	3(1)	-5(1)
C(15)	24(1)	40(1)	25(1)	1(1)	3(1)	-1(1)
C(16)	33(1)	45(1)	41(1)	-3(1)	5(1)	9(1)
C(17)	28(1)	62(1)	41(1)	5(1)	9(1)	-9(1)
C(18)	32(1)	25(1)	30(1)	5(1)	-2(1)	-8(1)
C(19)	37(1)	26(1)	45(1)	5(1)	-6(1)	0(1)
C(20)	47(1)	32(1)	40(1)	-7(1)	-14(1)	-1(1)
C(21)	45(1)	31(1)	27(1)	-12(1)	-10(1)	4(1)
C(22)	54(1)	40(1)	47(1)	-13(1)	-1(1)	12(1)
C(23)	65(2)	28(1)	54(1)	-7(1)	-3(1)	-11(1)
C(24)	20(1)	33(1)	17(1)	2(1)	-1(1)	-3(1)
C(27)	29(1)	48(1)	24(1)	-2(1)	-8(1)	-1(1)
C(28)	24(1)	36(1)	31(1)	-1(1)	0(1)	4(1)
Ni(1)	19(1)	20(1)	11(1)	1(1)	0(1)	-1(1)
P(1)	24(1)	26(1)	16(1)	2(1)	1(1)	-4(1)
P(2)	21(1)	27(1)	13(1)	-1(1)	-1(1)	0(1)
N(1)	21(1)	26(1)	13(1)	2(1)	-1(1)	-1(1)
N(2)	21(1)	26(1)	16(1)	5(1)	0(1)	-2(1)

Table S 4. Anisotropic displacement parameters (Ųx 10³)for complex I. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

Complex II

Table S 5. Crystal data and structure refinement for complex II.

Identification code	shelx	
Empirical formula	C26 H40 F2 N2 Ni P2	
Formula weight	539.25	
Temperature	130(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 11.1670(2) Å	$\alpha = 90^{\circ}$.
	b = 15.7392(3) Å	$\beta = 94.3740(10)^{\circ}.$
	c = 16.5550(3) Å	$\gamma = 90^{\circ}$.
Volume	2901.23(9) Å ³	
Z	4	
Density (calculated)	1.235 Mg/m ³	
Absorption coefficient	2.237 mm ⁻¹	
F(000)	1144	
Theta range for data collection	3.881 to 73.492°.	
Index ranges	-13<=h<=13, -18<=k<	=19, -20<=l<=18
Reflections collected	19891	
Independent reflections	5769 [R(int) = 0.0273]	l
Completeness to theta = 67.684°	100.0 %	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	5769 / 0 / 306	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0307, wR2 = 0	.0808
R indices (all data)	R1 = 0.0359, wR2 = 0	.0841
Extinction coefficient	n/a	
Largest diff. peak and hole	0.344 and -0.279 e.Å ⁻³	

	х	у	Z	U(eq)
C(1)	6885(2)	1497(1)	5270(1)	23(1)
C(2)	5556(1)	1674(1)	5025(1)	21(1)
C(3)	3230(1)	1943(1)	5658(1)	19(1)
C(4)	3112(2)	1017(1)	5921(1)	24(1)
C(5)	2645(2)	2083(1)	4802(1)	28(1)
C(6)	4778(2)	3401(1)	5439(1)	24(1)
C(7)	6054(2)	3723(1)	5350(1)	35(1)
C(8)	4130(2)	3954(1)	6024(1)	36(1)
C(9)	7274(2)	239(1)	6589(1)	21(1)
C(10)	6008(2)	-135(1)	6487(1)	28(1)
C(11)	7832(2)	72(1)	7446(1)	28(1)
C(12)	8782(1)	1762(1)	6548(1)	20(1)
C(13)	9648(2)	1291(1)	6034(1)	29(1)
C(14)	8860(2)	2723(1)	6427(1)	28(1)
C(15)	4015(1)	2013(1)	7943(1)	17(1)
C(16)	4029(1)	1179(1)	8236(1)	21(1)
C(17)	2960(2)	732(1)	8289(1)	29(1)
C(18)	1890(2)	1128(1)	8051(1)	30(1)
C(19)	1835(2)	1950(1)	7778(1)	26(1)
C(20)	2900(1)	2394(1)	7723(1)	21(1)
C(21)	7079(1)	2653(1)	8267(1)	16(1)
C(22)	8148(1)	2274(1)	8588(1)	18(1)
C(23)	9182(2)	2751(1)	8756(1)	22(1)
C(24)	9133(2)	3611(1)	8599(1)	24(1)
C(25)	8099(2)	4014(1)	8301(1)	24(1)
C(26)	7060(2)	3531(1)	8138(1)	19(1)
F(1)	844(1)	686(1)	8095(1)	48(1)
F(2)	10154(1)	4080(1)	8757(1)	39(1)
N(1)	5047(1)	2529(1)	7861(1)	16(1)
N(2)	6089(1)	2089(1)	8111(1)	16(1)
Ni(1)	5805(1)	2066(1)	6957(1)	13(1)
P(1)	7202(1)	1394(1)	6380(1)	15(1)
P(2)	4819(1)	2290(1)	5800(1)	15(1)

Table S 6. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for complex II. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.534(2)	C(11)-H(11B)	0.9800
C(1)-P(1)	1.8521(16)	C(11)-H(11C)	0.9800
C(1)-H(1A)	0.9900	C(12)-C(14)	1.529(2)
C(1)-H(1B)	0.9900	C(12)-C(13)	1.529(2)
C(2)-P(2)	1.8509(16)	C(12)-P(1)	1.8576(16)
C(2)-H(2A)	0.9900	C(12)-H(12)	1.0000
C(2)-H(2B)	0.9900	C(13)-H(13A)	0.9800
C(3)-C(4)	1.528(2)	C(13)-H(13B)	0.9800
C(3)-C(5)	1.531(2)	C(13)-H(13C)	0.9800
C(3)-P(2)	1.8548(16)	C(14)-H(14A)	0.9800
C(3)-H(3)	1.0000	C(14)-H(14B)	0.9800
C(4)-H(4A)	0.9800	C(14)-H(14C)	0.9800
C(4)-H(4B)	0.9800	C(15)-C(16)	1.400(2)
C(4)-H(4C)	0.9800	C(15)-C(20)	1.405(2)
C(5)-H(5A)	0.9800	C(15)-N(1)	1.425(2)
C(5)-H(5B)	0.9800	C(16)-C(17)	1.394(2)
C(5)-H(5C)	0.9800	C(16)-H(16)	0.9500
C(6)-C(8)	1.526(3)	C(17)-C(18)	1.378(3)
C(6)-C(7)	1.530(3)	C(17)-H(17)	0.9500
C(6)-P(2)	1.8474(18)	C(18)-F(1)	1.367(2)
C(6)-H(6)	1.0000	C(18)-C(19)	1.370(3)
C(7)-H(7A)	0.9800	C(19)-C(20)	1.389(2)
C(7)-H(7B)	0.9800	C(19)-H(19)	0.9500
C(7)-H(7C)	0.9800	C(20)-H(20)	0.9500
C(8)-H(8A)	0.9800	C(21)-C(26)	1.399(2)
C(8)-H(8B)	0.9800	C(21)-C(22)	1.402(2)
C(8)-H(8C)	0.9800	C(21)-N(2)	1.425(2)
C(9)-C(11)	1.527(2)	C(22)-C(23)	1.388(2)
C(9)-C(10)	1.529(2)	C(22)-H(22)	0.9500
C(9)-P(1)	1.8519(17)	C(23)-C(24)	1.379(3)
C(9)-H(9)	1.0000	C(23)-H(23)	0.9500
C(10)-H(10A)	0.9800	C(24)-F(2)	1.3658(19)
C(10)-H(10B)	0.9800	C(24)-C(25)	1.376(3)
C(10)-H(10C)	0.9800	C(25)-C(26)	1.396(2)
C(11)-H(11A)	0.9800	C(25)-H(25)	0.9500

Table S 7. Bond lengths [Å] and angles [°] for complex II.

C(26)-H(26)	0.9500	N(2)-Ni(1)	1.9131(12)
N(1)-N(2)	1.3897(18)	Ni(1)-P(2)	2.1637(4)
N(1)-Ni(1)	1.9190(13)	Ni(1)-P(1)	2.1653(4)
C(2)-C(1)-P(1)	112.66(11)	C(7)-C(6)-H(6)	108.6
C(2)-C(1)-H(1A)	109.1	P(2)-C(6)-H(6)	108.6
P(1)-C(1)-H(1A)	109.1	C(6)-C(7)-H(7A)	109.5
C(2)-C(1)-H(1B)	109.1	C(6)-C(7)-H(7B)	109.5
P(1)-C(1)-H(1B)	109.1	H(7A)-C(7)-H(7B)	109.5
H(1A)-C(1)-H(1B)	107.8	C(6)-C(7)-H(7C)	109.5
C(1)-C(2)-P(2)	112.61(11)	H(7A)-C(7)-H(7C)	109.5
C(1)-C(2)-H(2A)	109.1	H(7B)-C(7)-H(7C)	109.5
P(2)-C(2)-H(2A)	109.1	C(6)-C(8)-H(8A)	109.5
C(1)-C(2)-H(2B)	109.1	C(6)-C(8)-H(8B)	109.5
P(2)-C(2)-H(2B)	109.1	H(8A)-C(8)-H(8B)	109.5
H(2A)-C(2)-H(2B)	107.8	C(6)-C(8)-H(8C)	109.5
C(4)-C(3)-C(5)	111.16(14)	H(8A)-C(8)-H(8C)	109.5
C(4)-C(3)-P(2)	110.31(11)	H(8B)-C(8)-H(8C)	109.5
C(5)-C(3)-P(2)	114.27(12)	C(11)-C(9)-C(10)	110.16(15)
C(4)-C(3)-H(3)	106.9	C(11)-C(9)-P(1)	110.62(12)
C(5)-C(3)-H(3)	106.9	C(10)-C(9)-P(1)	109.27(12)
P(2)-C(3)-H(3)	106.9	C(11)-C(9)-H(9)	108.9
C(3)-C(4)-H(4A)	109.5	C(10)-C(9)-H(9)	108.9
C(3)-C(4)-H(4B)	109.5	P(1)-C(9)-H(9)	108.9
H(4A)-C(4)-H(4B)	109.5	C(9)-C(10)-H(10A)	109.5
C(3)-C(4)-H(4C)	109.5	C(9)-C(10)-H(10B)	109.5
H(4A)-C(4)-H(4C)	109.5	H(10A)-C(10)-H(10B)	109.5
H(4B)-C(4)-H(4C)	109.5	C(9)-C(10)-H(10C)	109.5
C(3)-C(5)-H(5A)	109.5	H(10A)-C(10)-H(10C)	109.5
C(3)-C(5)-H(5B)	109.5	H(10B)-C(10)-H(10C)	109.5
H(5A)-C(5)-H(5B)	109.5	C(9)-C(11)-H(11A)	109.5
C(3)-C(5)-H(5C)	109.5	C(9)-C(11)-H(11B)	109.5
H(5A)-C(5)-H(5C)	109.5	H(11A)-C(11)-H(11B)	109.5
H(5B)-C(5)-H(5C)	109.5	C(9)-C(11)-H(11C)	109.5
C(8)-C(6)-C(7)	111.25(16)	H(11A)-C(11)-H(11C)	109.5
C(8)-C(6)-P(2)	109.64(12)	H(11B)-C(11)-H(11C)	109.5
C(7)-C(6)-P(2)	110.16(13)	C(14)-C(12)-C(13)	111.23(14)
C(8)-C(6)-H(6)	108.6	C(14)-C(12)-P(1)	110.60(12)

C(13)-C(12)-P(1)	113.55(12)	C(23)-C(22)-H(22)	119.4
C(14)-C(12)-H(12)	107.0	C(21)-C(22)-H(22)	119.4
C(13)-C(12)-H(12)	107.0	C(24)-C(23)-C(22)	118.27(16)
P(1)-C(12)-H(12)	107.0	C(24)-C(23)-H(23)	120.9
C(12)-C(13)-H(13A)	109.5	C(22)-C(23)-H(23)	120.9
C(12)-C(13)-H(13B)	109.5	F(2)-C(24)-C(25)	119.02(16)
H(13A)-C(13)-H(13B)	109.5	F(2)-C(24)-C(23)	118.29(16)
C(12)-C(13)-H(13C)	109.5	C(25)-C(24)-C(23)	122.69(16)
H(13A)-C(13)-H(13C)	109.5	C(24)-C(25)-C(26)	118.73(16)
H(13B)-C(13)-H(13C)	109.5	C(24)-C(25)-H(25)	120.6
C(12)-C(14)-H(14A)	109.5	C(26)-C(25)-H(25)	120.6
C(12)-C(14)-H(14B)	109.5	C(25)-C(26)-C(21)	120.40(15)
H(14A)-C(14)-H(14B)	109.5	C(25)-C(26)-H(26)	119.8
C(12)-C(14)-H(14C)	109.5	C(21)-C(26)-H(26)	119.8
H(14A)-C(14)-H(14C)	109.5	N(2)-N(1)-C(15)	110.69(13)
H(14B)-C(14)-H(14C)	109.5	N(2)-N(1)-Ni(1)	68.51(7)
C(16)-C(15)-C(20)	118.47(15)	C(15)-N(1)-Ni(1)	105.40(9)
C(16)-C(15)-N(1)	125.42(14)	N(1)-N(2)-C(21)	111.34(12)
C(20)-C(15)-N(1)	116.09(15)	N(1)-N(2)-Ni(1)	68.96(7)
C(17)-C(16)-C(15)	120.53(16)	C(21)-N(2)-Ni(1)	105.11(9)
C(17)-C(16)-H(16)	119.7	N(2)-Ni(1)-N(1)	42.52(5)
C(15)-C(16)-H(16)	119.7	N(2)-Ni(1)-P(2)	156.25(4)
C(18)-C(17)-C(16)	118.76(18)	N(1)-Ni(1)-P(2)	113.82(4)
C(18)-C(17)-H(17)	120.6	N(2)-Ni(1)-P(1)	112.29(4)
C(16)-C(17)-H(17)	120.6	N(1)-Ni(1)-P(1)	154.79(4)
F(1)-C(18)-C(19)	118.74(17)	P(2)-Ni(1)-P(1)	91.391(17)
F(1)-C(18)-C(17)	118.67(18)	C(9)-P(1)-C(1)	105.87(8)
C(19)-C(18)-C(17)	122.59(17)	C(9)-P(1)-C(12)	104.50(8)
C(18)-C(19)-C(20)	118.66(16)	C(1)-P(1)-C(12)	103.22(8)
C(18)-C(19)-H(19)	120.7	C(9)-P(1)-Ni(1)	114.80(6)
C(20)-C(19)-H(19)	120.7	C(1)-P(1)-Ni(1)	107.82(6)
C(19)-C(20)-C(15)	120.97(17)	C(12)-P(1)-Ni(1)	119.33(6)
C(19)-C(20)-H(20)	119.5	C(6)-P(2)-C(2)	105.84(8)
C(15)-C(20)-H(20)	119.5	C(6)-P(2)-C(3)	103.78(8)
C(26)-C(21)-C(22)	118.75(15)	C(2)-P(2)-C(3)	103.28(7)
C(26)-C(21)-N(2)	125.79(14)	C(6)-P(2)-Ni(1)	116.05(6)
C(22)-C(21)-N(2)	115.45(14)	C(2)-P(2)-Ni(1)	107.76(5)
C(23)-C(22)-C(21)	121.12(16)	C(3)-P(2)-Ni(1)	118.76(5)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	22(1)	33(1)	14(1)	-2(1)	2(1)	1(1)
C(2)	20(1)	31(1)	11(1)	-3(1)	1(1)	1(1)
C(3)	15(1)	24(1)	18(1)	0(1)	2(1)	0(1)
C(4)	17(1)	27(1)	26(1)	2(1)	0(1)	-4(1)
C(5)	19(1)	42(1)	22(1)	3(1)	-6(1)	-2(1)
C(6)	26(1)	26(1)	19(1)	8(1)	-5(1)	-3(1)
C(7)	36(1)	29(1)	39(1)	10(1)	1(1)	-9(1)
C(8)	44(1)	23(1)	42(1)	6(1)	4(1)	8(1)
C(9)	19(1)	18(1)	25(1)	-4(1)	1(1)	2(1)
C(10)	27(1)	20(1)	37(1)	-5(1)	-2(1)	-2(1)
C(11)	30(1)	21(1)	33(1)	6(1)	-5(1)	-2(1)
C(12)	16(1)	25(1)	21(1)	1(1)	4(1)	-1(1)
C(13)	17(1)	39(1)	32(1)	-3(1)	6(1)	3(1)
C(14)	24(1)	27(1)	33(1)	3(1)	6(1)	-6(1)
C(15)	16(1)	25(1)	10(1)	-4(1)	3(1)	0(1)
C(16)	18(1)	28(1)	15(1)	2(1)	-1(1)	-1(1)
C(17)	29(1)	36(1)	23(1)	5(1)	0(1)	-10(1)
C(18)	20(1)	48(1)	21(1)	1(1)	3(1)	-14(1)
C(19)	15(1)	47(1)	17(1)	-5(1)	0(1)	0(1)
C(20)	18(1)	28(1)	17(1)	-4(1)	2(1)	3(1)
C(21)	17(1)	21(1)	9(1)	-2(1)	2(1)	0(1)
C(22)	17(1)	21(1)	16(1)	-1(1)	0(1)	0(1)
C(23)	16(1)	29(1)	21(1)	-2(1)	0(1)	0(1)
C(24)	18(1)	29(1)	26(1)	-6(1)	1(1)	-9(1)
C(25)	28(1)	19(1)	23(1)	-2(1)	2(1)	-2(1)
C(26)	20(1)	22(1)	16(1)	-2(1)	0(1)	2(1)
F(1)	24(1)	71(1)	47(1)	12(1)	0(1)	-24(1)
F(2)	25(1)	36(1)	54(1)	-2(1)	-4(1)	-15(1)
N(1)	14(1)	22(1)	11(1)	-3(1)	0(1)	2(1)
N(2)	15(1)	21(1)	11(1)	-1(1)	-1(1)	1(1)
Ni(1)	13(1)	15(1)	9(1)	-1(1)	0(1)	1(1)
P(1)	14(1)	19(1)	13(1)	-1(1)	2(1)	2(1)

Table S 8. Anisotropic displacement parameters (Å²x 10³) for complex II. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h$ k a* b* U^{12}]

	P(2)	14(1)	20(1)	11(1)	1(1)	0(1)	-1(1)
--	------	-------	-------	-------	------	------	-------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(11)-H(11B)F(1)#1	0.98	2.64	3.585(2)	161.9
C(13)-H(13B)F(2)#2	0.98	2.54	3.502(2)	168.5

Table S 9. Hydrogen bonds for complex II [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 -x+2,y-1/2,-z+3/2

Complex III

Table S 10. Crystal data and structure refinement for complex III.

Identification code	shelx	shelx			
Empirical formula	C26 H40 F2 N2 Ni P2	C26 H40 F2 N2 Ni P2			
Formula weight	539.25				
Temperature	130(2) K				
Wavelength	0.71073 Å				
Crystal system	Orthorhombic				
Space group	F d d 2				
Unit cell dimensions	a = 38.069(2) Å	<i>α</i> = 90°.			
	b = 17.3973(6) Å	β= 90°.			
	c = 8.3793(3) Å	$\gamma = 90^{\circ}$.			
Volume	5549.6(4) Å ³				
Z	8				
Density (calculated)	1.291 Mg/m ³				
Absorption coefficient	0.844 mm ⁻¹				
F(000)	2288				
Crystal size	0.360 x 0.230 x 0.060 mm	0.360 x 0.230 x 0.060 mm ³			
Theta range for data collection	3.801 to 29.491°.	3.801 to 29.491°.			
Index ranges	-49<=h<=48, -23<=k<=23	-49<=h<=48, -23<=k<=23, -11<=l<=11			
Reflections collected	9727	9727			
Independent reflections	3301 [R(int) = 0.0306]	3301 [R(int) = 0.0306]			
Completeness to theta = 25.242°	99.6 %	99.6 %			
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²			
Data / restraints / parameters	3301 / 1 / 154	3301 / 1 / 154			

Goodness-of-fit on F ²	1.054
Final R indices [I>2sigma(I)]	R1 = 0.0319, wR2 = 0.0661
R indices (all data)	R1 = 0.0391, wR2 = 0.0702
Absolute structure parameter	0.006(8)
Extinction coefficient	n/a
Largest diff. peak and hole	0.562 and -0.228 e.Å ⁻³

	X	у	Z	U(eq)
C(1)	150(1)	-294(2)	4859(3)	28(1)
C(2)	673(1)	-1057(2)	6887(4)	36(1)
C(3)	913(1)	-352(2)	6954(5)	47(1)
C(4)	781(1)	-1610(2)	5564(5)	52(1)
C(5)	-37(1)	-1673(2)	6646(4)	34(1)
C(6)	-431(1)	-1534(2)	6453(6)	51(1)
C(7)	34(1)	-2188(2)	8078(5)	50(1)
C(8)	459(1)	-103(2)	11070(4)	26(1)
C(9)	706(1)	-679(2)	11295(4)	33(1)
C(10)	1050(1)	-546(2)	11730(5)	41(1)
C(11)	1161(1)	207(2)	11912(5)	48(1)
C(12)	923(1)	803(2)	11686(5)	46(1)
C(13)	577(1)	655(2)	11282(4)	34(1)
F(1)	599(1)	-1423(1)	11126(3)	42(1)
N(1)	108(1)	-325(1)	10749(3)	23(1)
Ni(1)	0	0	8627(1)	21(1)
P(1)	205(1)	-758(1)	6823(1)	25(1)

Table S 11. Atomic coordinates ($x\,10^4$) and equivalent isotropic displacement parameters (Å $^2x\,10^3$) for complex III. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S 12. Bond lengths [Å] and angles [°] for complex III.

C(1)-C(1)#1	1.535(6)	C(7)-H(7A)	0.9800
C(1)-P(1)	1.845(3)	C(7)-H(7B)	0.9800
C(1)-H(1A)	0.9900	C(7)-H(7C)	0.9800
C(1)-H(1B)	0.9900	C(8)-C(9)	1.386(4)
C(2)-C(4)	1.525(5)	C(8)-C(13)	1.403(4)
C(2)-C(3)	1.530(5)	C(8)-N(1)	1.417(3)
C(2)-P(1)	1.854(3)	C(9)-F(1)	1.364(4)
C(2)-H(2)	1.0000	C(9)-C(10)	1.378(4)
C(3)-H(3A)	0.9800	C(10)-C(11)	1.385(5)
C(3)-H(3B)	0.9800	C(10)-H(10)	0.9500
C(3)-H(3C)	0.9800	C(11)-C(12)	1.389(5)
C(4)-H(4A)	0.9800	C(11)-H(11)	0.9500
C(4)-H(4B)	0.9800	C(12)-C(13)	1.385(5)
C(4)-H(4C)	0.9800	C(12)-H(12)	0.9500
C(5)-C(7)	1.522(5)	C(13)-H(13)	0.9500
C(5)-C(6)	1.527(5)	N(1)-N(1)#1	1.398(5)
C(5)-P(1)	1.846(3)	N(1)-Ni(1)	1.911(2)
C(5)-H(5)	1.0000	Ni(1)-N(1)#1	1.911(2)
C(6)-H(6A)	0.9800	Ni(1)-P(1)#1	2.1531(8)
C(6)-H(6B)	0.9800	Ni(1)-P(1)	2.1532(8)
C(6)-H(6C)	0.9800		
C(1)#1-C(1)-P(1)	112.12(12)	C(2)-C(3)-H(3C)	109.5
C(1)#1-C(1)-H(1A)	109.2	H(3A)-C(3)-H(3C)	109.5
P(1)-C(1)-H(1A)	109.2	H(3B)-C(3)-H(3C)	109.5
C(1)#1-C(1)-H(1B)	109.2	C(2)-C(4)-H(4A)	109.5
P(1)-C(1)-H(1B)	109.2	C(2)-C(4)-H(4B)	109.5
H(1A)-C(1)-H(1B)	107.9	H(4A)-C(4)-H(4B)	109.5
C(4)-C(2)-C(3)	111.8(3)	C(2)-C(4)-H(4C)	109.5
C(4)-C(2)-P(1)	114.5(3)	H(4A)-C(4)-H(4C)	109.5
C(3)-C(2)-P(1)	110.5(2)	H(4B)-C(4)-H(4C)	109.5
C(4)-C(2)-H(2)	106.5	C(7)-C(5)-C(6)	110.6(3)
C(3)-C(2)-H(2)	106.5	C(7)-C(5)-P(1)	110.7(2)
P(1)-C(2)-H(2)	106.5	C(6)-C(5)-P(1)	111.3(2)
C(2)-C(3)-H(3A)	109.5	C(7)-C(5)-H(5)	108.0
C(2)-C(3)-H(3B)	109.5	C(6)-C(5)-H(5)	108.0
H(3A)-C(3)-H(3B)	109.5	P(1)-C(5)-H(5)	108.0

C(5)-C(6)-H(6A)	109.5	C(13)-C(12)-C(11)	121.0(3)
C(5)-C(6)-H(6B)	109.5	C(13)-C(12)-H(12)	119.5
H(6A)-C(6)-H(6B)	109.5	C(11)-C(12)-H(12)	119.5
C(5)-C(6)-H(6C)	109.5	C(12)-C(13)-C(8)	120.6(3)
H(6A)-C(6)-H(6C)	109.5	C(12)-C(13)-H(13)	119.7
H(6B)-C(6)-H(6C)	109.5	C(8)-C(13)-H(13)	119.7
C(5)-C(7)-H(7A)	109.5	N(1)#1-N(1)-C(8)	109.6(3)
C(5)-C(7)-H(7B)	109.5	N(1)#1-N(1)-Ni(1)	68.54(7)
H(7A)-C(7)-H(7B)	109.5	C(8)-N(1)-Ni(1)	107.42(17)
C(5)-C(7)-H(7C)	109.5	N(1)-Ni(1)-N(1)#1	42.92(14)
H(7A)-C(7)-H(7C)	109.5	N(1)-Ni(1)-P(1)#1	155.88(7)
H(7B)-C(7)-H(7C)	109.5	N(1)#1-Ni(1)-P(1)#1	113.20(8)
C(9)-C(8)-C(13)	116.5(3)	N(1)-Ni(1)-P(1)	113.20(8)
C(9)-C(8)-N(1)	117.8(3)	N(1)#1-Ni(1)-P(1)	155.88(7)
C(13)-C(8)-N(1)	125.6(3)	P(1)#1-Ni(1)-P(1)	90.83(4)
F(1)-C(9)-C(10)	118.0(3)	C(1)-P(1)-C(5)	104.41(15)
F(1)-C(9)-C(8)	118.1(3)	C(1)-P(1)-C(2)	104.91(15)
C(10)-C(9)-C(8)	123.9(3)	C(5)-P(1)-C(2)	103.96(15)
C(9)-C(10)-C(11)	118.6(3)	C(1)-P(1)-Ni(1)	108.46(10)
C(9)-C(10)-H(10)	120.7	C(5)-P(1)-Ni(1)	113.78(11)
С(11)-С(10)-Н(10)	120.7	C(2)-P(1)-Ni(1)	119.95(12)
C(10)-C(11)-C(12)	119.4(3)	Symmetry transformations u	sed to generate
C(10)-C(11)-H(11)	120.3	equivalent atoms: #1 -x,-y,z	
С(12)-С(11)-Н(11)	120.3		

Table S 13. Anisotropic displacement parameters (Å²x 10³)for complex III. The anisotropic displacement factor exponent takes the form: $-2 \pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	45(2)	26(2)	13(1)	0(1)	1(1)	-4(1)
C(2)	45(2)	37(2)	25(2)	3(2)	2(2)	9(1)
C(3)	42(2)	57(2)	42(2)	2(2)	0(2)	0(2)
C(4)	69(3)	50(2)	37(2)	-8(2)	4(2)	22(2)
C(5)	63(2)	19(2)	21(2)	-2(1)	-2(2)	-6(1)
C(6)	64(2)	33(2)	57(3)	0(2)	-6(2)	-21(2)
C(7)	97(3)	24(2)	30(2)	6(2)	-1(2)	-14(2)

C(8)	33(1)	33(2)	12(1)	2(1)	1(1)	-6(1)
C(9)	38(2)	39(2)	21(2)	-1(1)	3(1)	-3(1)
C(10)	36(2)	58(2)	29(2)	0(2)	2(2)	2(2)
C(11)	34(2)	72(3)	37(2)	2(2)	-2(2)	-14(2)
C(12)	49(2)	50(2)	40(2)	3(2)	-6(2)	-23(2)
C(13)	42(2)	35(2)	24(2)	3(1)	-5(1)	-9(1)
F(1)	50(1)	32(1)	43(1)	-2(1)	-3(1)	5(1)
N(1)	34(1)	23(1)	13(1)	1(1)	0(1)	-5(1)
Ni(1)	33(1)	19(1)	11(1)	0	0	-4(1)
P(1)	41(1)	20(1)	13(1)	0(1)	2(1)	-3(1)

Table S 14. Torsion angles [°] for complex III.

C(1)#1-C78)9(3))-Ni(1)	-24.
C(7)-C(5)2B((4))-C(1)	170.
C(6)-C(5)+P2((5))-C(1)	-66.
C(7)-C(5))7B(0)3C(2)	60.0
C(6)-C(5))79(8)3C(2)	-175
C(7)-C(5)2RQ(5)Ni(1)	-71.
C(6)-C(5)+P4((6))-Ni(1)	52.0
C(4)-C(2))P2((6))-C(1)	-59.
$C(3)-C(2) \rightarrow C(1)$	67.9
C(4)-C(2))B((5))-C(5)	50.0
C(3)-C(2)76(11(3)C(5)	177.
C(4)-C(2)7 P (9()2Ni(1)	178
C(3)-C(2)2P8(0)Ni(1)	-54.
-114.2(3)	
70.0(3)	
Symmetry6ter(na)formations used to generate	
equivalen164t0(03): #1 -x,-y,z	
	C(1)#1- $C78$) $97(6$))-Ni(1) C(7)-C(5) 218 ((4))-C(1) C(6)-C(5)+ 12 (5))-C(1) C(7)-C(5)79(0)3C(2) C(6)-C(5))79(8)3C(2) C(7)-C(5) $217(6$)Ni(1) C(6)-C(5)+ 14 ((5))-Ni(1) C(4)-C(2) $97(6$))-C(1) C(4)-C(2) $97(6$))-C(1) C(4)-C(2) $97(6$)(5) C(3)-C(2) $77(6$ (10)3C(5) C(4)-C(2) $77(9)$ (2)Ni(1) C(3)-C(2) 2176 (10)3C(5) C(4)-C(2) $77(9)$ (2)Ni(1) C(3)-C(2) 218 (3)Ni(1) -114.2(3) 70.0(3) Symmett960(68)formations used to generate equivaleth 64t0(68): #1 -x,-y,z

NMR spectra of stoichiometric experiments

Reactivity of complex I with N-benzylidenebenzylamine

5mg (0.010 mmol) of **I** were dissolved in 0.8mL of Tol- d_8 with 2.1 mg (0.010 mmol) of *N*-benzylidenebenzylamine in NMR tube with young valve. The mixture was head for 12 hours at intervals of 20°C until 150 °C. The mixture was monitored by ¹H-NMR and ³¹P{¹H} NMR spectroscopy. No color change was observed in complex solution; new signals were not observed during this experiment.

Figure S 24. ¹H-NMR spectra of mixture of *N*-benzylidenebenzylamine and complex I

Figure S 25. ³¹P{¹H}-NMR spectra of mixture of *N*-benzylidenebenzylamine and complex I

Reactivity of complex I with benzonitrile

5mg (0.010 mmol) of **I** were dissolved in 0.8mL of THF- d_8 with 1.5 mg (0.010 mmol) of benzonitrile in NMR tube with young valve. The mixture was head for 12 hours at intervals of 20°C until 90 °C. The mixture was monitored by ¹H-NMR and ³¹P{¹H} NMR spectroscopy. No color change was observed in the solution; new signals were not observed during this experiment even when solution was heated for 48 hours. Similar experiments with one and two equivalents of benzonitrile in Tol- d_8 show the same results, when mixtures were heated until 150 °C.

Figure S 26. ¹H-NMR spectra of mixture of benzonitrile and complex I

Figure S 27. ³¹P{¹H}-NMR spectra of mixture of benzonitrile and complex I

Reactivity of complex I with benzylamine in presence of azobenzene.

12.5mg (0.025mmol) of **I** and 4.7 mg (0.025mmol) of azobenzene were dissolved in 0.8mL of Tol- d_8 with 2.8 mg (0.025mmol) of benzylamine in NMR tube with young valve. The mixture was head for 12 hours at 150 °C, and monitored by ¹H-NMR and ³¹P{¹H} NMR spectroscopy. After heating, the solution changes from red to dark red color; new signals were observed during this experiment, however these signals are overlapping, 1uL of solution was injected to CG-MS and benzonitrile was the principal product detected.

Figure S 28. ¹H-NMR spectra of reaction between azobenzene, complex I and benzylamine

Figure S 29. ³¹P{¹H}-¹H-NMR spectra of reaction between azobenzene, complex I and benzylamine

Reaction Optimization

Entry	t	Т	PhCH ₂ NH ₂				Sele	ctivity	/ (%) ^b		
	(h)	(°C)	conv. (%)	3a	4 a	5a	6a	7a	8 a	9a	10a
1	12	180	98	10	24	14	10	8	14	17	1
2	24	180	100	26	23	21	16	11	3	-	Traces
3	48	180	100	18	25	21	12	14	10	-	Traces
4 ^c	72	180	100	13	9	23	26	-	3	-	20
5 ^d	72	180	100	24	33	24	10	7	-	-	2
6	24	150	49	-	2	-	3	-	43	-	1
7	24	160	99	5	17	8	9	6	19	35	<1
8	24	170	100	7	19	5	36	7	14	11	1
9 ^e	24	180	100	16	15	15	27	11	5	1	4
10 ^f	72	180	48	-	-	-	-	-	48	-	-
11 ^g	24	180	100	16	19	21	27	9	4	-	4
12 ^h	24	180	100	22	44	23	2	7	2	-	-
13 ⁱ	24	180	95	22	19	15	8	9	22	-	-

Table S 15. Reaction Optimization

^a Reaction conditions: Ph_2N_2 , 0.250 mmol; $PhCH_2NH_2$, 0.250 mmol; solvent, 0.5 mL; $[(dippe)Ni(\mu-H)]_2$, 1 mol %. ^b Selectivity was determined by GC-MS. ^c 6% 2,3-diphenylquinoxalina was detected. ^d Ph_2N_2 , 1.000 mmol. ^e solvent, 1mL, 6% of tetra-substituted imidazolines and imidazoles was detected. ^f solvent, 1.5 mL. ^g $[(dippe)Ni(\mu-H)]_2$, 2 mol %. ^h Ph_2N_2 , 0.500 mmol. ⁱ $PhCH_2NH_2$, 0.500 mmol.

Entry	Solvent	PhCH ₂ NH ₂	Selectivity (%)							
		conv. (%)	3 a	4a	5a	6a	7a	8a	9a	10a
1	Dioxane	100	12	22	8	28	5	9	11	5
2	Toluene	100	26	23	21	16	11	3	-	<1
3	THF	92	14	14	14	6	5	33	-	6
4	CH ₃ CN	86	12	31	13	-	7	23	-	-

 Table S 16. Solvent Screening

^a Reaction conditions: Ph_2N_2 , 0.250 mmol; $PhCH_2NH_2$, 0.250 mmol; solvent, 0.5 mL; [(dippe)Ni(μ -H)]₂, 1 mol %; 180°C. ^b Selectivity was determined by GC-MS. ^c Without catalyst.

10a

9a

	Table S	17. I	Ligand	Sco	pe
--	----------------	-------	--------	-----	----

Selectivity (%) ^f											
Enter	Licond	Metal-	PhCH ₂ NH ₂								
Entry	Ligand	ligand	conv. (%)	3a	4a	5a	6a	7a	8 a	9a	10a
		ratio									
1 ^b	Dippe	1:1	100	29	22	26	13	7	3	-	traces
2	Dcype	1:1	100	26	24	14	26	10	-	-	traces
3	Dppe	1:1	100	18	38	23	3	10	8	-	-
4	BINAP±	1:1	100	20	32	10	7	11	14	6	-
5	-	-	100	14	25	13	33	8	4	3	-
$6^{\rm c}$	PPh ₃	1:2	96	20	39	18	4	7	8	-	-
7^{d}	PEt ₃	1:2	97	16	38	8	13	6	13	3	-
8 ^e	-	-	100	5	3	-	84	3	4	1	-

^a Reaction conditions: **Ph₂N₂**, (0.250 mmol); **PhCH₂NH₂**, (0.250 mmol); **[Ni(cod)₂]**, (2 mol %); **ligand**, (2 mol%); **Toluene**, (0.5 mL); 180 °C, 24 h. ^b Mercury-drop test of this reaction show no inhibition ^c **PPh₃**, (4 mol%), ^d **PEt₃**, (4 mol%), ^e Without catalyst. ^f Selectivity was determined by GC-MS.

Substrate Scope

Main by-products for low yield reactions

Table S	18.	Substrate	scope I
---------	-----	-----------	---------

Entry	Azohonzono	Donzulomino	Selectivity (%) ^d				
	Azobelizelle	Benzylannie	3	4	5	6	
1	1a	2a	29	22	26		

2	1b	2a	21	37	15	
3	1c	2a	8	-	-	21 ^b
4	1d	2a	28	4	-	
5	1a	2b	34	13	18	
6	1a	2c	23	5	17	
7	1a	2d	19	10	8	
8	1a	2e	34	-	-	
9	1a	2f	23	3	4	
10	1a	2g	10	-	-	52
11	1a	2h	32	2	6	
12	1a	2i	17	18	8	
13	1e	2a	$10^{\rm c}$	27	15	20

^a Reaction conditions: **Azobenzene**, (0.250 mmol); **Benzylamine**, (0.250 mmol); [**Ni(cod)**₂], 1.4mg (2 mol %); **dippe**, 1.3mg (2 mol%); **Toluene**, (0.5 mL); 180 °C, 24 h. ^b 22% and 25% of 2-substituted benzimidazol and 1,2-disubstituted benzimidazol respectively were the other principal byproducts

^c mixture of regioisomers:

^d Selectivity	was	determined	by	GC-MS.
--------------------------	-----	------------	----	--------

Entry	Azobanzana	Donzulomino	Se	Selectivity (%) ^b			
Liiu y	Azobelizelle	Denzyrannine	3 a	4	5		
1	1a	2b	10	45	9		
2	1a	2c	3	34	19		
3	1a	2d	11	26	13		
4	1a	2f	15	8	8		
5	1a	2i	6	29	11		
^a Reaction	conditions: Azobe	enzene. (0.250 mmol)	: Benzvlan	nine. (0.25	0 mmol):		

Table S 19. Substrate Scope II

^a Reaction conditions: **Azobenzene**, (0.250 mmol); **Benzylamine**, (0.250 mmol); **[Ni(cod)₂]**, 1.4mg (2 mol %); **PPh₃**, 2.6 mg (4 mol%); **Toluene**, (0.5 mL); 180 °C, 24 h. ^b Selectivity was determined by CG-EM.

Synthesis of substituted azobenzenes¹

General procedure: In a 50mL round-botton flask equipped with a stir bar were added CuBr (15mg, 0.1 mmol), pyridine (24mg, 0.3 mmol), aniline (2 mmol) and toluene

(4mL) under air. The reaction mixture was stirred at 70 °C for 24 h. The reaction crude was concentrated at vacuum and the residue was purified by chromatography on a short silica gel column (eluent: hexane/ethyl acetate).

(E)-1,2-Bis(4-fluorophenyl)diazene. CuBr (24 mg, 0.2 mmol), pyridine (50 mg, 0.6 mmol), 4-fluorobenzenamine (300 mg, 3 mmol) in toluene (4 mL). Afford 313.3 mg (91 %); yellow solid. GC-MS (EI, 70 eV): m/z (%): 218.1(17) [M⁺], 123(16), 95(100). ¹H NMR (300 MHz, 295 K, THF- d_8): δ (ppm)= 8.10 – 7.84 (m, 4H, H₂), 7.45 – 7.18 (m, 4H, H₃). ¹⁹F NMR (282 MHz, 295 K, THF- d_8): δ (ppm)= -105.08 – -114.18 (m). ¹³C{¹H} NMR (75 MHz, 295 K, THF- d_8): δ (ppm)= 165.64 (d, J = 252.2 Hz, C₄), 150.27 (d, J = 2.1 Hz, C₁), 125.92 (d, J = 9.2 Hz, C₂), 117.02 (d, J = 23.2 Hz, C₃).

(E)-1,2-Bis(2-fluorophenyl)diazene. CuBr (24 mg, 0.2 mmol), pyridine (50 mg, 0.6 mmol), 2-fluorobenzenamine (300 mg, 3 mmol) in toluene (4 mL). Afford 79.3 mg (23 %); yellow solid. GC-MS (EI, 70 eV): m/z (%): 218.1(29) [M⁺], 123 (35), 95 (100). ¹H NMR (300 MHz, 295 K, THF- d_8): δ (ppm)= 7.80 (td, J = 7.8, 1.7 Hz, 2H, H₃), 7.63 – 7.48 (m, 2H, H₅), 7.40 – 7.31 (m, 2H, H₆), 7.26 (tdt, J = 7.9, 1.2, 0.6 Hz, 2H, H₄). ¹⁹F NMR (282 MHz, 295 K, THF- d_8): δ (ppm)= -125.02 – -125.18 (m). ¹³C{¹H} NMR (75 MHz, 295 K, THF- d_8): δ (ppm)= 161.69 (d, J = 258.2 Hz, C₁), 141.86 (d, J = 6.8 Hz, C₂), 134.46 (d, J = 8.4 Hz, C₅), 125.52 (d, J = 3.9 Hz, C₃), 118.50 (s, C₄), 118.11 (d, J = 19.8 Hz, C₆).

(E)-1,2-Bis(4-methoxyphenyl)diazene. CuBr (15 mg, 0.1 mmol), pyridine (23 mg, 0.3 mmol), 4-methoxybenzenamine (240 mg, 2 mmol) in toluene (4 mL). Afford 77 mg (32 %); red-orange solid. GC-MS (EI, 70 eV): *m/z* (%): 242.0 (93) [M⁺], 135.0 (40), 107.0 (100).

Selected Mass Spectrum of Representative Products

Figure S 30. Mass spectrum of (E)-1,2-Bis(4-fluorophenyl)diazene

Figure S 31. Mass spectrum of (E)-1,2-Bis(2-fluorophenyl)diazene

Figure S 32. Mass spectrum of (E)-1,2-Bis(4-methoxyphenyl)diazene

Figure S 33. Mass spectrum of 1,2-diphenylbenzimidazol, 3a

Figure S 34. Mass spectrum of 2,4,5-triphenylimidazoline, 4a

Figure S 35. Mass spectrum of 2,4,5-triphenylimidazol, 5a

Figure S 36. Mass spectrum of 6a

Figure S 37. Mass spectrum of 7a

Figure S 38. Mass spectrum of 8a

Figure S 39. Mass spectrum of 9a

Figure S 40. Mass spectrum of 3b

Figure S 41. Mass spectrum of 3c

S-46

Figure S 43. Mass spectrum of 3e

Figure S 45. Mass spectrum of 5b

Figure S 46. Mass spectrum of 3f

Figure S 47. Mass spectrum of 4c

Figure S 48. Mass spectrum of 5c

Figure S 50. Mass spectrum of 4d

Figure S 51. Mass spectrum of 5d

Figure S 52. Mass spectrum of 3h

Figure S 53. Mass spectrum of 3i

Figure S 54. Mass spectrum of 4e

Figure S 56. Mass spectrum of 3j

Figure S 57. Mass spectrum of 3k

Figure S 58. Mass spectrum of 5g

Figure S 59. Mass spectrum of 4g

Figure S 60. Mass spectrum of 31

Figure S 61. Mass spectrum of 4f

Figure S 62. Mass spectrum of 5f

Figure S 63. Mass spectrum of 3m and 3n

References

¹ Zhang, C.; Jiao, N. Angew. Chem. Int. Ed. 2010, 49, 6174-6177.