Photochemical and Electrochemical Catalytic Reduction of CO₂ with NHC-Containing Dicarbonyl Rhenium(I) Bipyridine Complexes

Antoine Maurin,^a Chi-On Ng,^b Lingjing Chen,^b Tai-Chu Lau,^b Marc Robert,^{a,*} Chi-

Chiu Ko^{b,*}

^{*a*}Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS no. 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France.

E-mail: robert@univ-paris-diderot.fr

^bDepartment of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China). Email: vinccko@cityu.edu.hk

Supplementary Information

Figure S1. Lamp spectrum of Osram Parathom 13W white-light LED.	S2
Figure S2. IR spectrum of the dichloromethane extracts of the photocatalytic reaction mixture of 2 after 30-min irradiation.	S2
Figure S3. Controlled potential electrolysis ($E = -1.8$ V vs. SCE at a glassy carbon plate $S = 1$ cm ²) with 2 0.5 mM (in DMF, LiClO ₄ 0.5 M, NBu ₄ PF ₆ 0.1 M): current (black trace) and charge (red trace) vs. time.	S3
Procedure for extracting the rate constant k_{cat} for catalysis for 2 from CV analysis and from the electrolysis current	S4

Figure S1. Lamp spectrum of Osram Parathom 13W white-light LED.

Figure S2. IR spectrum of the dichloromethane extracts of the photocatalytic reaction mixture of 2 after 30-min irradiation. (Due to the complexity, possibly resulted from various ligand dissociations and geometrical photo-isomerizations, these C=O and C=N stretches cannot be unambiguously assigned. The position of C=O and C=N stretches of 2 (\blacktriangle) and [Re(CO)(phen)(CNC₆H₄Cl-4)₃]PF₆⁺ (*) are marked for reference.)

[†]A. W.-Y. Cheung, L. T. L. Lo, C.-C. Ko and S.-M. Yiu, *Inorg. Chem.*, 2011, 50, 4798

Figure S3. Controlled potential electrolysis (E = -1.8 V vs. SCE at a glassy carbon plate S = 1 cm²) with 2 0.5 mM (in DMF, LiClO₄ 0.5 M, NBu₄PF₆ 0.1 M): current (black trace) and charge (red trace) vs. time.

Procedure for the extracting the rate constant k_{cat} for catalysis for 2 from CV analysis and from electrolysis current.

a. Determination of k_{cat} from the foot-of-the wave analysis. The foot of the wave analysis was performed as follows. The current was normalized toward the peak current of the ligand centred wave :

$$i_p^0 = 0.446 F S C_{cat}^0 \sqrt{D_{cat}} \sqrt{\frac{Fv}{RT}}$$

using the following values for the various parameters and constants :

$$F = 96485 \text{ C mol}^{-1}; S = 1 \text{ cm}^2; C_{cat}^0 = 0.5 \text{ x } 10^{-6} \text{ mol cm}^{-3}; D_{cat} = 2.26 \text{ x } 10^{-6} \text{ mol cm}^{-2}; v$$
$$= 0.1 \text{ V s}^{-1}; R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}; T = 298 \text{ K}$$

 $E_{cat}^{0} = -1.735$ V vs SCE (note that the catalyst wave is not fully reversible, leading to an uncertainty of 10 to 20 mV on the E_{cat}^{0} value).

$$k_{\text{cat}} = k \text{ [CO_2]}$$
 was then determined by plotting $\frac{i}{i_p^0}$ as a function of
 $\left\{1 + exp^{[10]}\left[\frac{F(E - E_{cat}^0)}{RT}\right]\right\}^{-1}$ from the slope of the linear part of the curve (

 $2k[CO_2] RT$ 2.24 Fv), that corresponds to low current values for which secondary phenomena

are minimized.^{S1}

Figure S4. Foot-of-the wave analysis for 2 (0.5 mM) from CV in DMF (v = 0.1 V/s, glassy carbon electrode 0.071 cm², 0.23 M CO₂ + 0.5 M MeOH).

b. Determination of k_{cat} from controlled potential electrolysis. k_{cat} was derived from the

(

electrolysis current *i*, by applying the following equation:^{S1}

$$\frac{i}{FS} = \frac{\sqrt{2k[\text{CO}_2]D_{cat}}C_{cat}^0}{1 + exp^{[in]}} \frac{F(E - E_{cat}^0)}{RT}$$

Reference

S1. C. Costentin, M. Robert and J.-M. Savéant, Chem. Soc. Rev., 2013, 42, 423.