Thermodynamic Study of the Complexation

between Nd³⁺ and Functionalized Diacetamide

Ligands in Solution

Phuong V. Dau,^a Zhicheng Zhang,^a Phuong D. Dau,^a John K. Gibson,^a and Linfeng Rao^{a*}

Chemical Science Division

Lawrence Berkeley National Laboratory One Cyclotron Rd., Berkeley, CA, United States 94720

*Email: lrao@lbl.gov, Phone: 1-510-486-5427, Fax: 1-510-486-5596.

Figure S1. Potentiometric titrations to determine the protonation stability constant of ABDMA (top) and MABDMA (bottom). Black line represents L, red line represents HL^+ , emptied blue circles represent observed pC_H, and blue line represents calculated pC_H. Detailed titration conditions are in Table S1.

Figure S2. Thermograms of calorimetric titrations to determine the enthalpy for the protonation of BnABDMA (top), ABDMA (middle), and MABDMA (bottom).

Figure S3. Thermograms of calorimetric titrations to determine the enthalpy for the formation of Nd³⁺ complexes with ABDMA (top) and MABDMA (bottom).

Figure S4. ESI-MS characterization of Nd³⁺ complexes with BnABDMA. In the top spectrum, triply and doubly charged Nd³⁺ complexes were observed, including Nd(ABDMA)₃³⁺ and Nd(BnABDMA)₂(NO₃)²⁺. An inset figure shows a peak to peak separation of $\Delta pp = 0.3 \text{ m/z}$ for Nd(ABDMA)₃³⁺. The bottom spectrum shows singly charged complexes of Nd(BnABDMA)(NO₃)₂⁺ and Nd(BnABDMA)₂(NO₃)₂⁺. NdO⁺ is suggested to produce by reaction of Nd³⁺ with the anodic oxidation products of water.

Figure S5. ESI-MS characterization of Nd³⁺ complexes with ABDMA. In the top spectrum, triply and doubly charged Nd³⁺ complexes were observed, including Nd(ABDMA)₃³⁺, Nd(ABDMA)₂(NO₃)²⁺, and Nd(ABDMA)₃(NO₃)²⁺. An inset figure shows a peak to peak separation of $\Delta pp = 0.3$ m/z for Nd(ABDMA)₃³⁺. The bottom spectrum shows singly charged complexes of Nd(ABDMA)(NO₃)₂⁺, Nd(ABDMA)₂(NO₃)₂⁺, and Nd(ABDMA)(NO₃)(OH)⁺. NdO⁺ is suggested to produce by reaction of Nd³⁺ with the anodic oxidation products of water.

Figure S6. ESI-MS characterization of Nd³⁺ complexes with MABDMA. In the top spectrum, triply and doubly charged Nd³⁺ complexes were observed, including Nd(MABDMA)₃³⁺, Nd(MABDMA)₂(NO₃)²⁺, and Nd(MABDMA)₃(NO₃)²⁺. An inset figure shows a peak to peak separation of $\Delta pp = 0.3 \text{ m/z}$ for Nd(MABDMA)₃³⁺. The bottom spectrum shows singly charged complexes of Nd(MABDMA)(NO₃)₂⁺, Nd(MABDMA)₂(NO₃)₂⁺. NdO⁺ is suggested to produce by reaction of Nd³⁺ with the anodic oxidation products of water.

Ligand	Titration 1 ^a		Titration 2 ^a		Titration 3 ^a	
	Initial	Final	Starting	Final	Starting	Final
	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions
BnABDMA	$n_L = 0.12 \text{ mmol}$	$n_L = 0.12 \text{ mmol}$	$n_{\rm L} = 0.13$	$n_{\rm L} = 0.13$	$n_{\rm L} = 0.13$	$n_{\rm L} = 0.13$
	pH = 10.68	pH = 2.64	mmol	mmol	mmol	mmol
			pH = 8.93	pH = 2.66	pH = 3.04	pH = 10.40
ABDMA	$n_{\rm L} = 0.067$	$n_{\rm L} = 0.067$	$n_{\rm L} = 0.066$	$n_{\rm L} = 0.066$	$n_{\rm L} = 0.070$	$n_{\rm L} = 0.070$
	mmol	mmol	mmol	mmol	mmol	mmol
	pH = 3.13	pH = 11.07	pH = 2.61	pH = 10.74	pH = 10.58	pH = 3.05
MABDMA	$n_L = 0.17 \text{ mmol}$	$n_L = 0.17 \text{ mmol}$	$n_{\rm L} = 0.17$	$n_{\rm L} = 0.17$	$n_{\rm L} = 0.33$	$n_{\rm L} = 0.33$
	pH = 11.24	pH = 2.48	mmol	mmol	mmol	mmol
			pH = 2.64	pH = 11.26	pH = 3.13	pH = 11.86

Table S1. Experimental conditions for potentiometric titrations to determine protonation stability constant of BnABDMA, ABDMA, and MABDMA in 1M NaNO₃ solution. ^a Initial volume for each titration is at least 22.0 mL, and the final volume for each titration is ~30.0-35.0 mL; the titrant is a 0.1 M HNO₃ in 0.9 M NaNO₃ solution, or a 0.10M NaOH in 0.90M NaNO₃ solution.

Ligand	Titration 1 ^a		Titration 2 ^a		Titration 3 ^a		
	Initial Conditions	Final	Starting Final		Starting	Final	
		Conditions	Conditions	Conditions	Conditions	Conditions	
BnABDMA	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	$n_{ligand} = 0.34$	$n_{ligand} = 0.34$	$n_{ligand} = 0.30$	$n_{ligand} = 0.30$	$n_{ligand} = 0.33$	$n_{ligand} = 0.33$	
	mmol	l mmol		mmol	mmol	mmol	
	$n_{nitrate} = 21.81$	$n_{nitrate} = 21.81$	$n_{nitrate} = 19.20$	$n_{nitrate} = 19.20$	$n_{nitrate} = 20.51$	$n_{nitrate} = 20.51$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	pH = 2.15	pH = 7.17	pH = 3.21	pH = 7.39	pH = 2.90	pH = 6.87	
ABDMA	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	$n_{Nd(III)} = 0.10$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	$n_{ligand} = 0.31$	$n_{ligand} = 0.31$	$n_{ligand} = 0.51$	$n_{ligand} = 0.51$	$n_{ligand} = 0.25$	$n_{ligand} = 0.25$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		$n_{nitrate} = 26.18$	$n_{nitrate} = 26.18$	$n_{nitrate} = 20.85$	$n_{nitrate} = 20.85$	
			mmol	mmol	mmol	mmol	
			pH = 3.20	pH = 7.09	pH = 2.99	pH = 6.80	
MABDMA	$n_{Nd(III)} = 0.16$	$n_{Nd(III)} = 0.16$	$n_{Nd(III)} = 0.14$	$n_{Nd(III)} = 0.14$	$n_{Nd(III)} = 0.36$	$n_{Nd(III)} = 0.36$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	$n_{ligand} = 0.37$	$n_{ligand} = 0.37$	$n_{ligand} = 0.38$	$n_{ligand} = 0.38$	$n_{ligand} = 2.48$	$n_{ligand} = 2.48$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	$n_{nitrate} = 18.79$	$n_{nitrate} = 18.79$	$n_{nitrate} = 18.56$	$n_{nitrate} = 18.56$	$n_{nitrate} = 28.01$	$n_{nitrate} = 28.01$	
	mmol	mmol	mmol	mmol	mmol	mmol	
	pH = 3.04 pH = 6.18		pH = 3.08	pH = 6.44	pH = 3.75	pH = 6.02	

Table S2. Experimental conditions for potentiometric titrations to determine the stability constant for the formations of Nd^{3+} complexes with BnABDMA, ABDMA, and MABDMA. ^a Initial volume for each titration is at least 22.0 mL, and the final volume for each titration is ~30.0-35.0 mL; The ionic strength of solutions was adjusted to be ~1.0 using 1.0 M NaNO₃, the titrant is a 0.10M NaOH in 0.90M NaNO₃ solution.

Conditions/Ligands	BnABDMA ^a	ABDMA ^b	MABDMA ^c	
n _{Nd(III)} (mmol)	0.20	0.20	0.20	
n_{H^+} (mmol)	0.01	0.01	0.01	
n _{nitrate} (mmol)	2.45	1.66	2.46	
n _{ligand} (mmol)	0	0	0	

Table S3. Experimental conditions for spectrophotometric titrations to verify the stability constant for the formation of Nd^{3+} complexes with BnABDMA, ABDMA, and MABDMA. The initial total volume in cuvette was 2.20 ml, and ~1.50-1.80 mL of titrant was added with a volume of 0.1 ml for each addition. ^a The titrant contained BnABDMA (0.613 M), H⁺ (0.20 M), and NaNO₃ (0.80 M). ^b The titrant contained ABDMA (0.880 M), H⁺ (0.10 M), and NaNO₃ (0.90 M). ^c The titrant contained MABDMA (0.480 M), H⁺ (0.20 M), and NaNO₃ (0.80 M).

Ligand	Titration 1 ^a	Titration 2 ^a	Titration 3 ^a	
	Initial conditions	Initial conditions	Initial conditions	
	244	22.0.1	24.0	
BnABDMA	$n_L = 34.1 \ \mu mol$	$n_L = 33.9 \ \mu mol$	$n_L = 34.9 \ \mu mol$	
	$n_{H^+} = 0 \ \mu mol$	$n_{H^+} = 0 \ \mu mol$	$n_{H^+} = 0 \ \mu mol$	
ABDMA	$n_L = 50.0 \ \mu mol$	$n_L = 50.0 \ \mu mol$	$n_L = 50.0 \ \mu mol$	
	$n_{H^+} = 25.7 \ \mu mol$	$n_{H^+} = 16.8 \ \mu mol$	n_{H^+} = 12.4 µmol	
MABDMA	$n_L = 31.5 \ \mu mol$	$n_L = 31.5 \ \mu mol$	$n_L = 33.0 \ \mu mol$	
	$n_{H^+} = 5.0 \ \mu mol$	$n_{H^+} = 4.8 \ \mu mol$	$n_{H^+} = 23.2 \ \mu mol$	

Table S4. Experimental conditions for calorimetric titrations to determine the enthalpy of the protonation of BnABDMA, ABDMA, and MABDMA in 1M NaNO₃ solution. ^a Initial volume is 750 μ L, and the final volume is 1.0 mL; the titrant is a 0.20 M HNO₃ in 0.80M NaNO₃ solution.

Ligand	Titration 1 ^a	Titration 2 ^a	Titration 3 ^a	
	Initial conditions	Initial conditions	Initial conditions	
BnABDMA	n _{Nd(III)} =9.0 μmol	n _{Nd(III)} =15. 0 μmol	n _{Nd(III)} = 14.8 μmol	
	$n_{ligand} = 60.0 \ \mu mol$	$n_{ligand} = 59.0 \ \mu mol$	$n_{ligand} = 41.5 \ \mu mol$	
	$n_{nitrate} = 750.0 \ \mu mol$	$n_{nitrate} = 740.0 \ \mu mol$	$n_{nitrate} = 750.0 \ \mu mol$	
	$n_{H^+} = 14.0 \ \mu mol$	n _{H+} = 14.0 μmol	$n_{H^+} = 0 \ \mu mol$	
ABDMA	$n_{Nd(III)} = 14.78 \ \mu mol$	$n_{Nd(III)} = 14.78 \ \mu mol$	n _{Nd(III)} = 14.78 μmol	
	$n_{ligand} = 57.7 \ \mu mol$	$n_{ligand} = 56.8 \ \mu mol$	$n_{ligand} = 56.0 \ \mu mol$	
	$n_{nitrate} = 750.0 \ \mu mol$	$n_{nitrate} = 750.0 \ \mu mol$	$n_{nitrate} = 750.0 \ \mu mol$	
	$n_{H^+} = 3.62 \ \mu mol$	$n_{H^+} = 25.0 \ \mu mol$	$n_{H^+} = 23.5 \ \mu mol$	
MABDMA	$n_{Nd(III)} = 14.78 \ \mu mol$	$n_{Nd(III)} = 14.78 \ \mu mol$	$n_{Nd(III)} = 14.78 \ \mu mol$	
	$n_{ligand} = 38.04 \ \mu mol$	$n_{ligand} = 45.0 \ \mu mol$	$n_{ligand} = 35.0 \ \mu mol$	
	$n_{nitrate} = 750.0 \ \mu mol$	n _{nitrate} = 750.0 μmol	n _{nitrate} = 750.0 μmol	
	$n_{H^+} = 11.0 \ \mu mol$	$n_{H+} = 4.1 \ \mu mol$	$n_{H^+} = 8.5 \ \mu mol$	

Table S5. Experimental conditions for calorimetric titrations to determine the enthalpy for the formations of Nd³⁺ complexes with BnABDMA, ABDMA, and MABDMA. ^a Initial volume is 750 μ L, and the final volume is 1.0 mL; the titrant is a 0.20 M HNO₃ in 0.80 M NaNO₃ solution.

Ligand	Method ^a	Logβ	Δ <i>H</i> (kJ mol ⁻¹)	Δ <i>S</i> (J K ⁻¹ mol ⁻¹)	Ref
TMDGA					8
$Nd^{3+} + L = NdL^{3+}$	sp, cal	(3.53 ± 0.10)	-(10.9 ± 0.9)	(26 ± 1)	
$NdL^{3+} + L = NdL_2^{3+}$	sp, cal	(2.31 ± 0.19)	-(4.7 ± 1.5)	(13 ± 2)	
$NdL_2^{3+} + L = NdL_3^{3+}$	sp, cal	(0.96 ± 0.19)	-(3.7 ± 2.2)	(20 ± 7)	
BnABDMA					this work
$H + L = HL^+$	pot,cal	(6.36 ± 0.09)	-(31.2 ± 0.3)	(17+1)	
$Nd^{3+} + L = NdL^{3+}$	pot, sp, cal	(2.92 ± 0.09)	-(13.3 ± 0.6)	(11 ± 1)	
$NdL^{3+} + L = NdL_2^{3+}$	pot, sp, cal	(2.16 ± 0.09)	-(9.3 ± 1.2)	(10 ± 3)	
$NdL_2^{3+} + L = NdL_3^{3+}$	pot, sp, cal	(2.05 ± 0.09)	-(8.3 ± 0.9)	(12 ± 2)	
ABDMA					this work
$H + L = HL^+$	pot, cal	(7.12 ± 0.09)	-(37.2 ± 2.1)	(11+6)	
$Nd^{3+} + L = NdL^{3+}$	pot, sp, cal	(4.08 ± 0.09)	-(13.5 ± 0.6)	(32±2)	
$NdL^{3+} + L = NdL_2^{3+}$	pot, sp, cal	(2.85 ± 0.09)	-(7.0 ± 2.1)	(32 ± 6)	
$NdL_{2^{3+}} + L = NdL_{3^{3+}}$	pot, sp, cal	(3.99 ± 0.9)	-(18.9 ± 1.5)	-(4 ± 4)	
MABDMA					this work
$H + L = HL^+$	pot, cal	(7.64 ± 0.09)	-(33.5 ± 0.6)	(34+2)	
$Nd^{3+} + L = NdL^{3+}$	pot, sp, cal	(4.40 ± 0.09)	-(11.4 ± 0.3)	(46 ± 1)	
$NdL^{3+} + L = NdL_2^{3+}$	pot, sp, cal	(3.12 ± 0.36)	-(12.0 ± 1.2)	(19 ± 3)	
$NdL_{2}^{3+} + L = NdL_{3}^{3+}$	sp, cal	(2.98 ± 0.50)	-(10.9 ± 1.5)	(21 ± 4)	

Table S6: Stepwise equilibrium constants, ΔH , and ΔS for the protonation and complexation of BnABDMA, ABDMA, and MABDMA, with Nd³⁺ at 25 °C and *I* = 1.0 NaNO₃. ^a Pot: potentiometry, sp: spectrophotometry, cal: calorimetry.