Electronic Supplementary Information

An anionic zeolite-like metal-organic framework (AZMOF) with Moravia

network for organic dyes absorption through cation-exchange

Yu Shen,^a Cong-Cong Fan,^a Yu-Zhen Wei,^a Jie Du,^a Hai-Bin Zhu,^{*a} and Yue Zhao^{*b}

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 China. E-mail: zhuhaibin@seu.edu.cn

^b Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China. E-mail: zhaoyue@nju.edu.cn

Fig. S1 FT-IR spectra of H_3BTTC

Fig. S2 FT-IR spectra of Sr-BTTC

Fig. S3 FT-IR spectra of desolvated Sr-BTTC samples.

Fig. S4 PXRD pattern of Sr-BTTC

Fig. S5 TG curve of **Sr-BTTC**: The weight loss before 100 °C is contributed by the guest solvents, when the temperature was raised above 120 °C a substantial mass reduction was observed, which is possibly resulted by removal of coordinated water and terthienobenzene unit as the consequence of BTTC decarboxylation^[1]

Fig. S6 N₂ sorption isotherm for Sr-BTTC recorded at 77K.

Fig. S8 The absorption intensity (black dots) of BR2 dye at different concentrations (mol/L)(The red solid line represents the best linear fit.)

Fig. S10 The absorption intensity (black dots) of CV dye at different concentrations (mol/L)(The red solid line represents the best linear fit)

Fig. S11 The UV-Vis absorption change of AO7 in the presence of Sr-BTTC

Fig. S12 The UV-Vis absorption change of CR in the presence of Sr-BTTC

Fig. S13 The UV-Vis absorption change of CR in the presence of Sr-BTTC

Fig. S14 Removal efficiency of MB in the presence of the Sr-BTTC with increasing time.

Fig. S15 Removal efficiency of BR2 in the presence of the Sr-BTTC with increasing time.

Fig. S16 Removal efficiency of RB in the presence of the Sr-BTTC with increasing time.

Fig. S17 Removal efficiency of CV in the presence of the Sr-BTTC with increasing time.

Fig. S18 PXRD patterns of as-synthesized Sr-BTTC, activated Sr-BTTC and dye-absorbed Sr-BTTC.

Compound	Sr-BTTC
Formula	$C_{960}H_{192}O_{552}S_{192}Sr_{104}$
Crystal size(mm)	0.28 × 0.25 × 0.22
Т/К	293(2)
Crystal system	Cubic
Space group	Fm-3c
<i>a</i> (Å)	41.0051(9)
<i>b</i> (Å)	41.0051(9)
<i>c</i> (Å)	41.0051(9)
α (°)	90.00
в (°)	90.00
γ (°)	90.00
V (Å ³)	68947(5)
Z	1
D_c (g.cm ⁻³)	0.863
F(000)	17392
Theta range/°	2.25 to 25.50
Reflections collected	48727
Unique reflections	2671
Goof	1.853
$R_1^{\ a} [I > 2\sigma(I)]$	0.0859
$wR_2^{b}[I > 2\sigma(I)]$	0.2517

Table S1 Crystal data and structure refinements for Sr-BTTC

^a $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. ^b $wR_2 = |\Sigma w(|F_o|^2 - |F_c|^2)|/\Sigma |w(F_o^2)^2|^{1/2}$, where $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$. $P = (F_o^2 + 2F_c^2)/3$.

Adsorbents	Adsorption capacity (mg/g)	References
Sr-BTTC	675	This work
UiO-66-15	366	Chem. Eng. J., 2016, 289 , 486-493
UiO-66-ND	39	Chem. Eng. J., 2016, 289 , 486-493
Fly ash	7	J. Hazard. Mater., 2011, 187 , 562-573
PET depolymerization products	29	Clean-Soil Air Water., 2012, 40 , 325-333
Calcite	37.2	Separ. Sci. Technol., 2010, 45 , 1471-1481
HT-SDBS	40.5	J. Hazard. Mater., 2008, 153 , 911-918
HT-SDS	83.3	<i>J. Hazard. Mater</i> ., 2008, 153 , 911-918
Dairy sludge	95.2	J. Environ. Eng. Sci., 2008, 7 , 433-438
Sulfonated Phenol-Formaldehyde Resin	103	J. Appl. Polym. Sci., 2008, 109 , 2774-2780
Jalshakti	181.8	Bioresour. Technol., 2006, 97 , 877-885
G-SO3H/Fe3O4	199.3	Clean-Soil Air Water., 2013, 41 , 992-1001
starch-graft -AA	204	J. Appl. Polym. Sci., 2007, 106 , 2422-2426
Rice husk carbon	294.1	Indian. J. Chem. Techn., 2001, 8 , 133-139
Aluminium Pillared Clay	338	Colloids Surfaces A., 2010, 366 , 88-94
AAm-AMPSNa-clay hydrogel nanocomposites	484.2	Polym. Adv. Technol., 2008, 19 , 838-845.

Table S2 The adsorption capacity for BR on various adsorbents.

Olive stone	526.3	J. Hazard. Mater., 2009, 163 , 441-447
N-Vinyl 2-pyrrolidone/itaconic acid/organo clay nanocomposite hydrogel	550.0	Water Air Soil Pollut., 2013, 224 , 1760-1775
Treated spent bleaching earth	555.6	<i>J. Colloid Interface Sci.</i> , 2007, 307 , 9-16

Adsorbents	Adsorption capacity (mg/g)	References
Sr-BTTC	545	This work
TA-G	201	<i>Colloids Surf. A,</i> 2015, 477 , 35–41
Fe ₃ O ₄ nanoparticles	161.8	J. Hazard. Mater., 2012, 209–210 , 193–198
kaolinite	46.08	Appl. Clay Sci., 2012, 69 , 58-66
Coconut (Cocos nucifera)	71	J. Hazard. Mater., 2008, 158 , 65-72
Rice husk ash	13.76	J. Environ. Manage., 2007, 84, 390-400
Cocoa (Theobroma cacao) shell	41	Int. J. Eng. Sci. Technol., 2010, 2 , 6284-6292
Perlite	67	J. Mater. Environ. Sci., 2012, 3 , 157-170
NiO	111	Process Saf. Environ. Prot., 2015, 93 , 282-292

Table S3 The adsorption capacity for RB on various adsorbents.

Reference:

[1]. D. Yuan, D. Zhao, D. J. Timmons and H.-C. Zhou, *Chem. Sci.*, 2011, **2**, 103-106.