Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Sterically (un)encumbered *mer*-tridentate N-heterocyclic carbene complexes of titanium(IV) for the copolymerization of cyclohexene oxide with CO₂

Julie Hessevik, Ralte Lalrempuia, Hajar Nsiri, Karl W. Törnroos, Vidar R. Jensen

and Erwan Le Roux*

TABLE OF CONTENTS

Synthesis of onium salts	S3
Fig. S1. ¹ H NMR spectra of proligand A and complex 3-THF	S4
Fig. S2. ¹³ C NMR of proligand A	S4
Fig. S3. 2D ¹ H- ¹ H COSY NMR spectrum of complex 3-THF	S5
Fig. S4. ¹ H NMR spectrum of complex 4	S5
Fig. S5. ¹ H NMR spectrum of complex 5	S6
Fig. S6. Molecular structure of complex 5 (isomer B)	S6
Fig. S7. ¹ H NMR spectra of 5, 5/[PPN]Cl , 4, [PPN]OAr' and [PPN]OiPr complexes	S7
X-Ray crystallography details and data	S8
Table S1. Crystal data and structure refinement for 3-CH ₃ CN	S8
Table S2. Bond lengths [Å] and angles [°] for 3-CH ₃ CN	S8
Table S3. Torsion angles [°] for 3-CH ₃ CN	S11
Table S4. Crystal data and structure refinement for 4	S13
Table S5. Bond lengths [Å] and angles [°] for 4	S13
Table S6. Torsion angles [°] for 4	S19
Table S7. Crystal data and structure refinement for 5	S21
Table S8. Bond lengths [Å] and angles [°] for 5	S22
Table S9. Torsion angles [°] for 5	S29
Table S10. Coupling of PO/SO with CO_2 catalyzed by NHC-Ti complexes	S32
Calculated absolute energies	S33
Table S11. Calculated absolute energies with the PBE-D3BJ functional	S33
Table S12. Calculated absolute energies with the M06-D3 functional	S33
Table S13. Calculated absolute energies with the M06L-D3 functional	S34
Table S14. Calculated absolute energies with the PBE-D3M(BJ) functional	S34
Table S15. Calculated absolute energies with the B3LYP-D3M(BJ) functional	S35

Calculated relatives energies:	S35
Table S16. Calculated relative Gibbs free energies for the coordination of THF to 3	S35
Table S17. Calculated relative Gibbs free energies of dimerization, including E _{disp}	S36
Table S18. Calculated relative Gibbs free energies of dimerization, excluding Edisp	S36
Sample input files:	S37
Input file for geometry optimization of 3	S37
Input file for SP calculation of 3 with PBEGD3BJ functional	S41
Optimized Cartesian coordinates:	S47
For 3	S47
For THF	S48
For 3-THF	S48
For 3'-µ-Cl	S49
For 3'-µ-OiPr	S50
For 3''-µ-Cl/Cl	S51
For 3''-µ-Cl/OiPr	S52
For 3''-µ- OiPr/OiPr	S53

Synthesis of onium salts

[PPN]OiPr

In a glovebox, a solution of LiO*i*Pr (5.7 mg, 87 μ mol, 1 equiv) in CH₂Cl₂ (2 mL) was added at -30 °C to a stirring solution of [PPN]Cl (50 mg, 87 μ mol) in CH₂Cl₂ (2 mL). The colorless solution was stirred overnight, and then centrifuged, filtered and all volatile removed under vacuum (92% yield). Anal. Calcd. for [PPN]O*i*Pr-1.2CH₂Cl₂, C_{40.2}H_{39.4}Cl_{2.4}NOP₂: C, 69.02; H, 5.68; Cl, 12.16; N, 2.00; O, 2.29; P, 8.85%. Found: C, 69.00; H, 5.22; N, 2.19%. ¹H NMR (500.13 MHz, 25 °C, chloroform-*d*) δ 7.70-7.64 (m, 6H, Ar-*H*), 7.50-7.40 (m, 24H, Ar-*H*), 3.99 (bsept, 1H, OC*H*(CH₃)₂), 1.16 (bd, 6H, OCH(CH₃)₂) ppm. ¹³C NMR (125.75 MHz, 25 °C, chloroform-*d*) δ 134.0 (Ar), 132.2 (Ar), 132.1 (Ar), 132.0 (Ar), 132.0 (Ar), 129.8 (Ar), 129.7 (Ar), 129.7 (Ar), 129.6 (Ar), 129.6 (Ar), 129.6 (Ar), 127.4 (Ar), 126.6 (Ar), 77.7 (OCH(CH₃)₂), 25.4 (OCH(CH₃)₂) ppm.

[PPN]OAr'

In a glovebox, a solution of LiOAr' (9.1 mg, 139 µmol, 1 equiv) in CH_2Cl_2 (2 mL) was added at -30 °C to a stirring solution of [PPN]Cl (80 mg, 139 µmol) in CH_2Cl_2 (2 mL). The colorless solution was stirred overnight, and then centrifuged, filtered and all volatile removed under vacuum (85% yield). Anal. Calcd. for [PPN]OAr'-1.2CH_2Cl_2, C_{52.2}H_{55.4}Cl_{2.4}NOP₂: C, 72.92; H, 6.49; Cl, 9.90; N, 1.63; O, 1.86; P, 7.20%. Found: C, 72.72; H, 6.13; N, 1.81%. ¹H NMR (500.13 MHz, 25 °C, chloroform-*d*) δ 7.71-7.63 (m, 6H, Ar-*H*), 7.52-7.39 (m, 24H, Ar-*H*), 6.97 (s, 2H, Ar-*H*), 2.26 (s, 3H, Ar'-CH₃), 1.42 (s, 18H, Ar'-C(CH₃)₃) ppm. ¹³C NMR (125.75 MHz, 25 °C, chloroform-*d*) δ 135.7 (Ar'), 134.0 (Ar), 132.2 (Ar), 132.2 (Ar), 132.1 (Ar), 132.1 (Ar), 132.1 (Ar), 129.8 (Ar), 129.8 (Ar), 129.7 (Ar), 129.7 (Ar), 129.6 (Ar), 128.3 (Ar'), 127.5 (Ar'), 127.4 (Ar), 126.6 (Ar'), 126.6 (Ar), 125.6 (Ar'), 34.3 (Ar'-C(CH₃)₃), 30.4 (Ar'-C(CH₃)₃), 21.3 (Ar'-CH₃) ppm.

Fig. S1. a) ¹H NMR spectra of proligand **A** and b) complex **1-THF** in dmso- d_6 .

Fig. S2. ¹³C NMR of proligand **A** in dmso- d_6 .

Fig. S3. 2D ¹H-¹H COSY NMR spectrum of complex **1-THF** in dmso- d_6 .

Fig. S4. ¹H NMR spectrum of complex **2** in chloroform-*d* (* = hexane).

Fig. S5. ¹H NMR spectrum of complex **3** in benzene- d_6 .

Fig. S6. Molecular structure of complex **5** (isomer B) with anisotropic displacement parameters at the 50% probability level. Hydrogen atoms and co-recrystallized hexane molecules were removed for clarity. Selected bond lengths (Å): Ti2-C34 = 2.222(3), Ti2-O5 = 1.868(2), Ti2-O6 = 1.889(2), Ti2-O7 = 1.792(2), Ti2-O8 = 1.8397(19), C34-N3 = 1.344(4), C34-N4 = 1.347(4). Selected angle (°): O5-Ti2-O6 = 157.75(9), C34-Ti2-O8 = 143.43(9).

Fig. S7. ¹H NMR spectra of 5, 5/[PPN]Cl, 4, [PPN]OAr' and [PPN]OiPr complexes in chloroform-d.

X-Ray crystallography details and data

Table S1. Crystal data and structure refinement for $3-CH_3CN$.

Identification code	Compound3 (3-CH ₃ CN)	
Empirical formula	C ₂₆ H ₂₇ CIFN ₃ O ₃ Ti	
Formula weight	531.85	
Temperature	103(2) K	
Wavelength (λ)	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/C	
Unit cell dimensions	a = 17.700(10) Å	α= 90°.
	b = 7.391(4) Å	β= 111.032(8)°.
	c = 19.676(12) Å	γ = 90°.
Volume	2403(2) Å ³	
Z	4	
Density (calculated)	1.470 Mg/m ³	
Linear absorption coefficient (µ)	0.510 mm ⁻¹	
F(000)	1104	
Crystal size	0.408 x 0.083 x 0.016 mm	3
Crystal habit/color	Lath/Brown	
Theta range for data collection	2.116 to 18.932°.	
Index ranges	-16<=h<=16, -6<=k<=6, -1	7<=l<=17
Reflections collected	13120	
Independent reflections	1905 [R(int) = 0.1282]	
Completeness to theta = 18.932°	99.6 %	
Absorption correction	Semi-empirical from equiv	valents
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	1905 / 448 / 328	
Goodness-of-fit on F ²	1.060	
Final R indices [I>2sigma(I)]	R1 = 0.0645, wR2 = 0.1593	3
R indices (all data)	R1 = 0.0879, wR2 = 0.178	5
Extinction coefficient	n/a	
Largest diff. peak and hole	0.747 and -0.287 e.Å ⁻³	

Table S2. Bond lengths [Å] and angles [°] for 3-CH₃CN.

Ti(1)-O(3)	1.762(5)	Ti(1)-N(3)	2.276(7)
Ti(1)-O(1)	1.835(6)	Ti(1)-Cl(1)	2.354(3)
Ti(1)-O(2)	1.850(5)	O(1)-C(5)	1.327(9)
Ti(1)-C(1)	2.175(8)	N(1)-C(1)	1.327(9)

N(1)-C(4)	1.382(9)	C(18)-H(18)	1.0000
N(1)-C(3)	1.477(9)	C(19)-H(19A)	0.9800
C(1)-N(2)	1.307(9)	C(19)-H(19B)	0.9800
O(2)-C(11)	1.328(9)	C(19)-H(19C)	0.9800
N(2)-C(10)	1.388(9)	C(20)-H(20A)	0.9800
N(2)-C(2)	1.472(9)	C(20)-H(20B)	0.9800
C(2)-C(3)	1.501(10)	C(20)-H(20C)	0.9800
C(2)-H(2A)	0.9900	C(18A)-C(20A)	1.498(8)
C(2)-H(2B)	0.9900	C(18A)-C(19A)	1.498(8)
O(3)-C(18A)	1.447(9)	C(18A)-H(18A)	1.0000
O(3)-C(18)	1.447(9)	C(19A)-H(19D)	0.9800
N(3)-C(16)	1.145(9)	C(19A)-H(19E)	0.9800
C(3)-H(3A)	0.9900	C(19A)-H(19F)	0.9800
C(3)-H(3B)	0.9900	C(20A)-H(20D)	0.9800
C(4)-C(9)	1.359(10)	C(20A)-H(20E)	0.9800
C(4)-C(5)	1.412(11)	C(20A)-H(20F)	0.9800
C(5)-C(6)	1.354(10)	C(21)-F(1)	1.198(10)
C(6)-C(7)	1.352(11)	C(21)-C(22)	1.3900
C(6)-H(6)	0.9500	C(21)-C(26)	1.3900
C(7)-C(8)	1.397(11)	C(22)-C(23)	1.3900
C(7)-H(7)	0.9500	C(22)-H(22)	0.9500
C(8)-C(9)	1.360(10)	C(23)-C(24)	1.3900
C(8)-H(8)	0.9500	C(23)-H(23)	0.9500
С(9)-Н(9)	0.9500	C(24)-C(25)	1.3900
C(10)-C(15)	1.374(10)	C(24)-H(24)	0.9500
C(10)-C(11)	1.394(10)	C(25)-C(26)	1.3900
C(11)-C(12)	1.371(10)	C(25)-H(25)	0.9500
C(12)-C(13)	1.354(10)	C(26)-H(26)	0.9500
C(12)-H(12)	0.9500	C(21A)-C(22A)	1.3900
C(13)-C(14)	1.388(11)	C(21A)-C(26A)	1.3900
C(13)-H(13)	0.9500	C(21A)-H(21A)	0.9500
C(14)-C(15)	1.344(11)	C(22A)-C(23A)	1.3900
C(14)-H(14)	0.9500	C(22A)-H(22A)	0.9500
C(15)-H(15)	0.9500	C(23A)-C(24A)	1.3900
C(16)-C(17)	1.416(11)	C(23A)-H(23A)	0.9500
C(17)-H(17A)	0.9800	C(24A)-F(1A)	1.198(10)
C(17)-H(17B)	0.9800	C(24A)-C(25A)	1.3900
C(17)-H(17C)	0.9800	C(25A)-C(26A)	1.3900
C(18)-C(19)	1.498(8)	C(25A)-H(25A)	0.9500
C(18)-C(20)	1.498(8)	C(26A)-H(26A)	0.9500
O(3)-Ti(1)-O(1)	95.0(2)	O(3)-Ti(1)-C(1)	96.3(3)
O(3)-Ti(1)-O(2)	95.9(2)	O(1)-Ti(1)-C(1)	81.9(3)
O(1)-Ti(1)-O(2)	161.5(2)	O(2)-Ti(1)-C(1)	82.1(3)

O(3)-Ti(1)-N(3)	179.5(2)	C(6)-C(7)-C(8)	119.9(8)
O(1)-Ti(1)-N(3)	85.3(2)	C(6)-C(7)-H(7)	120.1
O(2)-Ti(1)-N(3)	83.9(2)	C(8)-C(7)-H(7)	120.1
C(1)-Ti(1)-N(3)	84.0(2)	C(9)-C(8)-C(7)	117.7(8)
O(3)-Ti(1)-Cl(1)	98.00(17)	C(9)-C(8)-H(8)	121.1
O(1)-Ti(1)-Cl(1)	96.82(17)	C(7)-C(8)-H(8)	121.1
O(2)-Ti(1)-Cl(1)	96.46(17)	C(4)-C(9)-C(8)	122.9(8)
C(1)-Ti(1)-Cl(1)	165.7(2)	C(4)-C(9)-H(9)	118.5
N(3)-Ti(1)-Cl(1)	81.66(16)	C(8)-C(9)-H(9)	118.5
C(5)-O(1)-Ti(1)	141.4(5)	C(15)-C(10)-N(2)	120.4(7)
C(1)-N(1)-C(4)	129.1(7)	C(15)-C(10)-C(11)	118.2(7)
C(1)-N(1)-C(3)	111.3(6)	N(2)-C(10)-C(11)	121.3(7)
C(4)-N(1)-C(3)	119.5(6)	O(2)-C(11)-C(12)	120.7(7)
N(2)-C(1)-N(1)	110.2(7)	O(2)-C(11)-C(10)	120.6(7)
N(2)-C(1)-Ti(1)	125.7(6)	C(12)-C(11)-C(10)	118.7(7)
N(1)-C(1)-Ti(1)	124.1(6)	C(13)-C(12)-C(11)	122.4(7)
C(11)-O(2)-Ti(1)	142.0(5)	C(13)-C(12)-H(12)	118.8
C(1)-N(2)-C(10)	128.1(7)	C(11)-C(12)-H(12)	118.8
C(1)-N(2)-C(2)	112.4(6)	C(12)-C(13)-C(14)	118.6(7)
C(10)-N(2)-C(2)	119.5(6)	C(12)-C(13)-H(13)	120.7
N(2)-C(2)-C(3)	102.8(6)	C(14)-C(13)-H(13)	120.7
N(2)-C(2)-H(2A)	111.2	C(15)-C(14)-C(13)	119.8(7)
C(3)-C(2)-H(2A)	111.2	C(15)-C(14)-H(14)	120.1
N(2)-C(2)-H(2B)	111.2	C(13)-C(14)-H(14)	120.1
C(3)-C(2)-H(2B)	111.2	C(14)-C(15)-C(10)	122.3(8)
H(2A)-C(2)-H(2B)	109.1	C(14)-C(15)-H(15)	118.9
C(18A)-O(3)-Ti(1)	126.3(6)	C(10)-C(15)-H(15)	118.9
C(18)-O(3)-Ti(1)	156.2(7)	N(3)-C(16)-C(17)	178.5(9)
C(16)-N(3)-Ti(1)	167.3(6)	C(16)-C(17)-H(17A)	109.5
N(1)-C(3)-C(2)	102.8(6)	C(16)-C(17)-H(17B)	109.5
N(1)-C(3)-H(3A)	111.2	H(17A)-C(17)-H(17B)	109.5
C(2)-C(3)-H(3A)	111.2	C(16)-C(17)-H(17C)	109.5
N(1)-C(3)-H(3B)	111.2	H(17A)-C(17)-H(17C)	109.5
C(2)-C(3)-H(3B)	111.2	H(17B)-C(17)-H(17C)	109.5
H(3A)-C(3)-H(3B)	109.1	O(3)-C(18)-C(19)	107.5(9)
C(9)-C(4)-N(1)	121.6(7)	O(3)-C(18)-C(20)	107.4(11)
C(9)-C(4)-C(5)	118.7(8)	C(19)-C(18)-C(20)	113.2(13)
N(1)-C(4)-C(5)	119.5(7)	O(3)-C(18)-H(18)	109.6
O(1)-C(5)-C(6)	121.1(7)	C(19)-C(18)-H(18)	109.6
O(1)-C(5)-C(4)	120.7(7)	C(20)-C(18)-H(18)	109.6
C(6)-C(5)-C(4)	118.1(8)	C(18)-C(19)-H(19A)	109.5
C(7)-C(6)-C(5)	122.6(8)	C(18)-C(19)-H(19B)	109.5
C(7)-C(6)-H(6)	118.7	H(19A)-C(19)-H(19B)	109.5
C(5)-C(6)-H(6)	118.7	C(18)-C(19)-H(19C)	109.5

H(19A)-C(19)-H(19C)	109.5	С(23)-С(22)-Н(22)	120.0
H(19B)-C(19)-H(19C)	109.5	C(24)-C(23)-C(22)	120.0
C(18)-C(20)-H(20A)	109.5	C(24)-C(23)-H(23)	120.0
C(18)-C(20)-H(20B)	109.5	C(22)-C(23)-H(23)	120.0
H(20A)-C(20)-H(20B)	109.5	C(25)-C(24)-C(23)	120.0
C(18)-C(20)-H(20C)	109.5	C(25)-C(24)-H(24)	120.0
H(20A)-C(20)-H(20C)	109.5	C(23)-C(24)-H(24)	120.0
H(20B)-C(20)-H(20C)	109.5	C(24)-C(25)-C(26)	120.0
O(3)-C(18A)-C(20A)	107.6(9)	C(24)-C(25)-H(25)	120.0
O(3)-C(18A)-C(19A)	106.5(9)	C(26)-C(25)-H(25)	120.0
C(20A)-C(18A)-C(19A)	114.0(13)	C(25)-C(26)-C(21)	120.0
O(3)-C(18A)-H(18A)	109.5	C(25)-C(26)-H(26)	120.0
C(20A)-C(18A)-H(18A)	109.5	C(21)-C(26)-H(26)	120.0
C(19A)-C(18A)-H(18A)	109.5	C(22A)-C(21A)-C(26A)	120.0
C(18A)-C(19A)-H(19D)	109.5	C(22A)-C(21A)-H(21A)	120.0
C(18A)-C(19A)-H(19E)	109.5	C(26A)-C(21A)-H(21A)	120.0
H(19D)-C(19A)-H(19E)	109.5	C(23A)-C(22A)-C(21A)	120.0
C(18A)-C(19A)-H(19F)	109.5	C(23A)-C(22A)-H(22A)	120.0
H(19D)-C(19A)-H(19F)	109.5	C(21A)-C(22A)-H(22A)	120.0
H(19E)-C(19A)-H(19F)	109.5	C(22A)-C(23A)-C(24A)	120.0
C(18A)-C(20A)-H(20D)	109.5	C(22A)-C(23A)-H(23A)	120.0
C(18A)-C(20A)-H(20E)	109.5	C(24A)-C(23A)-H(23A)	120.0
H(20D)-C(20A)-H(20E)	109.5	F(1A)-C(24A)-C(23A)	121.6(7)
C(18A)-C(20A)-H(20F)	109.5	F(1A)-C(24A)-C(25A)	118.4(7)
H(20D)-C(20A)-H(20F)	109.5	C(23A)-C(24A)-C(25A)	120.0
H(20E)-C(20A)-H(20F)	109.5	C(26A)-C(25A)-C(24A)	120.0
F(1)-C(21)-C(22)	124.5(7)	C(26A)-C(25A)-H(25A)	120.0
F(1)-C(21)-C(26)	115.3(7)	C(24A)-C(25A)-H(25A)	120.0
C(22)-C(21)-C(26)	120.0	C(25A)-C(26A)-C(21A)	120.0
C(21)-C(22)-C(23)	120.0	C(25A)-C(26A)-H(26A)	120.0
C(21)-C(22)-H(22)	120.0	C(21A)-C(26A)-H(26A)	120.0

O(3)-Ti(1)-O(1)-C(5)	74.4(8)	C(4)-N(1)-C(1)-Ti(1)	-2.9(10)
O(2)-Ti(1)-O(1)-C(5)	-51.4(12)	C(3)-N(1)-C(1)-Ti(1)	173.4(5)
C(1)-Ti(1)-O(1)-C(5)	-21.2(8)	O(3)-Ti(1)-O(2)-C(11)	-102.0(7)
N(3)-Ti(1)-O(1)-C(5)	-105.9(8)	O(1)-Ti(1)-O(2)-C(11)	23.7(12)
Cl(1)-Ti(1)-O(1)-C(5)	173.1(8)	C(1)-Ti(1)-O(2)-C(11)	-6.4(7)
C(4)-N(1)-C(1)-N(2)	178.0(6)	N(3)-Ti(1)-O(2)-C(11)	78.4(7)
C(3)-N(1)-C(1)-N(2)	-5.7(8)	Cl(1)-Ti(1)-O(2)-C(11)	159.2(7)

Table S3. Torsion angles [°] for 3-CH₃CN.

N(1)-C(1)-N(2)-C(10)	-179.8(6)	C(1)-N(2)-C(10)-C(11)	-3.4(11)
Ti(1)-C(1)-N(2)-C(10)	1.1(11)	C(2)-N(2)-C(10)-C(11)	175.4(6)
N(1)-C(1)-N(2)-C(2)	1.3(8)	Ti(1)-O(2)-C(11)-C(12)	-174.3(5)
Ti(1)-C(1)-N(2)-C(2)	-177.8(5)	Ti(1)-O(2)-C(11)-C(10)	6.0(11)
C(1)-N(2)-C(2)-C(3)	3.5(8)	C(15)-C(10)-C(11)-O(2)	178.4(6)
C(10)-N(2)-C(2)-C(3)	-175.6(6)	N(2)-C(10)-C(11)-O(2)	0.6(10)
O(1)-Ti(1)-O(3)-C(18A)	15.9(6)	C(15)-C(10)-C(11)-C(12)	-1.4(10)
O(2)-Ti(1)-O(3)-C(18A)	-179.2(6)	N(2)-C(10)-C(11)-C(12)	-179.1(6)
C(1)-Ti(1)-O(3)-C(18A)	98.2(6)	O(2)-C(11)-C(12)-C(13)	-177.8(6)
Cl(1)-Ti(1)-O(3)-C(18A)	-81.8(6)	C(10)-C(11)-C(12)-C(13)	2.0(11)
O(1)-Ti(1)-O(3)-C(18)	10.6(14)	C(11)-C(12)-C(13)-C(14)	-1.9(11)
O(2)-Ti(1)-O(3)-C(18)	175.6(13)	C(12)-C(13)-C(14)-C(15)	1.2(11)
C(1)-Ti(1)-O(3)-C(18)	93.0(14)	C(13)-C(14)-C(15)-C(10)	-0.7(11)
Cl(1)-Ti(1)-O(3)-C(18)	-87.0(13)	N(2)-C(10)-C(15)-C(14)	178.6(7)
C(1)-N(1)-C(3)-C(2)	7.5(8)	C(11)-C(10)-C(15)-C(14)	0.8(11)
C(4)-N(1)-C(3)-C(2)	-175.8(6)	Ti(1)-O(3)-C(18)-C(19)	49(2)
N(2)-C(2)-C(3)-N(1)	-6.2(7)	Ti(1)-O(3)-C(18)-C(20)	-73(2)
C(1)-N(1)-C(4)-C(9)	174.4(7)	Ti(1)-O(3)-C(18A)-C(20A)	-122.3(14)
C(3)-N(1)-C(4)-C(9)	-1.5(10)	Ti(1)-O(3)-C(18A)-C(19A)	115.1(10)
C(1)-N(1)-C(4)-C(5)	-9.0(11)	F(1)-C(21)-C(22)-C(23)	175.2(9)
C(3)-N(1)-C(4)-C(5)	175.1(6)	C(26)-C(21)-C(22)-C(23)	0.0
Ti(1)-O(1)-C(5)-C(6)	-160.8(6)	C(21)-C(22)-C(23)-C(24)	0.0
Ti(1)-O(1)-C(5)-C(4)	16.0(12)	C(22)-C(23)-C(24)-C(25)	0.0
C(9)-C(4)-C(5)-O(1)	-178.2(7)	C(23)-C(24)-C(25)-C(26)	0.0
N(1)-C(4)-C(5)-O(1)	5.1(10)	C(24)-C(25)-C(26)-C(21)	0.0
C(9)-C(4)-C(5)-C(6)	-1.3(11)	F(1)-C(21)-C(26)-C(25)	-175.6(8)
N(1)-C(4)-C(5)-C(6)	-178.1(6)	C(22)-C(21)-C(26)-C(25)	0.0
O(1)-C(5)-C(6)-C(7)	178.8(7)	C(26A)-C(21A)-C(22A)-C(23A)	0.0
C(4)-C(5)-C(6)-C(7)	2.0(11)	C(21A)-C(22A)-C(23A)-C(24A)	0.0
C(5)-C(6)-C(7)-C(8)	-2.1(12)	C(22A)-C(23A)-C(24A)-F(1A)	-178.9(9)
C(6)-C(7)-C(8)-C(9)	1.6(11)	C(22A)-C(23A)-C(24A)-C(25A)	0.0
N(1)-C(4)-C(9)-C(8)	177.6(7)	F(1A)-C(24A)-C(25A)-C(26A)	178.9(8)
C(5)-C(4)-C(9)-C(8)	1.0(11)	C(23A)-C(24A)-C(25A)-C(26A)	0.0
C(7)-C(8)-C(9)-C(4)	-1.1(11)	C(24A)-C(25A)-C(26A)-C(21A)	0.0
C(1)-N(2)-C(10)-C(15)	178.9(7)	C(22A)-C(21A)-C(26A)-C(25A)	0.0
C(2)-N(2)-C(10)-C(15)	-2.3(10)		

Table S4. Crystal data and structure refiner	ment for 4 .	
Identification code	Compound4	
Empirical formula	$C_{46}H_{60}N_4O_9Ti_2$	
Formula weight	908.78	
Temperature	103(2) K	
Wavelength (λ)	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 29.100(4) Å	α= 90°.
	b = 19.218(3) Å	β= 130.641(2)°.
	c = 20.797(3) Å	γ = 90°.
Volume	8825(2) Å ³	
Z	8	
Density (calculated)	1.368 Mg/m ³	
Linear absorption coefficient (μ)	0.422 mm ⁻¹	
F(000)	3840	
Crystal size	0.480 x 0.340 x 0.320 mm	3
Crystal habit/color	Prism/Yellow	
Theta range for data collection	1.845 to 26.372°.	
Index ranges	-36<=h<=36, -24<=k<=24,	-25<=l<=25
Reflections collected	55583	
Independent reflections	9018 [R(int) = 0.0630]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equiv	valents
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	9018 / 36 / 615	
Goodness-of-fit on F ²	1.057	
Final R indices [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.1176	6
R indices (all data)	R1 = 0.0590, wR2 = 0.1269	9
Extinction coefficient	n/a	
Largest diff. peak and hole	0.691 and -0.489 e.Å ⁻³	

Table S5. Bond lengths [Å] and angles [°] for 4.

Ti(1)-O(3)	1.8413(17)	Ti(2)-O(6)	1.8772(16)
Ti(1)-O(5)	1.8465(17)	Ti(2)-O(7)	1.8844(16)
Ti(1)-O(1)	1.8811(16)	Ti(2)-O(4)	1.9646(16)
Ti(1)-O(2)	2.0122(16)	Ti(2)-C(25)	2.210(2)
Ti(1)-O(4)	2.1126(16)	Ti(2)-O(2)	2.2332(16)
Ti(1)-C(1)	2.231(2)	O(1)-C(11)	1.336(3)
Ti(1)-Ti(2)	3.3332(6)	O(2)-C(9)	1.358(3)
Ti(2)-O(8)	1.8145(16)	O(3)-C(16)	1.411(3)

O(4)-C(19)	1.442(3)	C(16)-C(17)	1.516(4)
O(5)-C(22)	1.404(4)	C(16)-H(16)	1.0000
O(5)-C(22A)	1.404(4)	C(17)-H(17A)	0.9800
O(6)-C(35)	1.331(3)	C(17)-H(17B)	0.9800
O(7)-C(33)	1.327(3)	C(17)-H(17C)	0.9800
O(8)-C(40)	1.431(3)	C(18)-H(18A)	0.9800
N(1)-C(1)	1.336(3)	C(18)-H(18B)	0.9800
N(1)-C(10)	1.410(3)	C(18)-H(18C)	0.9800
N(1)-C(2)	1.478(3)	C(19)-C(21)	1.512(4)
N(2)-C(1)	1.340(3)	C(19)-C(20)	1.515(4)
N(2)-C(4)	1.408(3)	C(19)-H(19)	1.0000
N(2)-C(3)	1.485(3)	C(20)-H(20A)	0.9800
N(3)-C(25)	1.345(3)	C(20)-H(20B)	0.9800
N(3)-C(34)	1.415(3)	C(20)-H(20C)	0.9800
N(3)-C(26)	1.474(3)	C(21)-H(21A)	0.9800
N(4)-C(25)	1.348(3)	C(21)-H(21B)	0.9800
N(4)-C(28)	1.412(3)	C(21)-H(21C)	0.9800
N(4)-C(27)	1.479(3)	C(22)-C(23)	1.524(4)
C(2)-C(3)	1.515(3)	C(22)-C(24)	1.524(4)
C(2)-H(2A)	0.9900	C(22)-H(22)	1.0000
C(2)-H(2B)	0.9900	C(23)-H(23A)	0.9800
C(3)-H(3A)	0.9900	C(23)-H(23B)	0.9800
C(3)-H(3B)	0.9900	C(23)-H(23C)	0.9800
C(4)-C(5)	1.396(3)	C(24)-H(24A)	0.9800
C(4)-C(9)	1.406(3)	C(24)-H(24B)	0.9800
C(5)-C(6)	1.381(4)	C(24)-H(24C)	0.9800
C(5)-H(5)	0.9500	C(22A)-C(24A)	1.524(4)
C(6)-C(7)	1.380(4)	C(22A)-C(23A)	1.524(4)
C(6)-H(6)	0.9500	C(22A)-H(22A)	1.0000
C(7)-C(8)	1.392(4)	C(23A)-H(23D)	0.9800
C(7)-H(7)	0.9500	C(23A)-H(23E)	0.9800
C(8)-C(9)	1.390(3)	C(23A)-H(23F)	0.9800
C(8)-H(8)	0.9500	C(24A)-H(24D)	0.9800
C(10)-C(15)	1.391(3)	C(24A)-H(24E)	0.9800
C(10)-C(11)	1.415(3)	C(24A)-H(24F)	0.9800
C(11)-C(12)	1.397(3)	C(26)-C(27)	1.511(4)
C(12)-C(13)	1.381(4)	C(26)-H(26A)	0.9900
C(12)-H(12)	0.9500	C(26)-H(26B)	0.9900
C(13)-C(14)	1.382(4)	C(27)-H(27A)	0.9900
C(13)-H(13)	0.9500	C(27)-H(27B)	0.9900
C(14)-C(15)	1.380(4)	C(28)-C(29)	1.398(3)
C(14)-H(14)	0.9500	C(28)-C(33)	1.409(3)
C(15)-H(15)	0.9500	C(29)-C(30)	1.381(4)
C(16)-C(18)	1.511(4)	C(29)-H(29)	0.9500

C(30)-C(31)	1.381(4)	O(1S)-C(4S)	1.424(7)
C(30)-H(30)	0.9500	C(1S)-C(2S)	1.533(5)
C(31)-C(32)	1.380(4)	C(1S)-H(1S1)	0.9900
C(31)-H(31)	0.9500	C(1S)-H(1S2)	0.9900
C(32)-C(33)	1.398(3)	C(2S)-C(3S)	1.524(5)
C(32)-H(32)	0.9500	C(2S)-H(2S1)	0.9900
C(34)-C(39)	1.396(3)	C(2S)-H(2S2)	0.9900
C(34)-C(35)	1.402(4)	C(3S)-C(4S)	1.525(5)
C(35)-C(36)	1.401(4)	C(3S)-H(3S1)	0.9900
C(36)-C(37)	1.392(4)	C(3S)-H(3S2)	0.9900
C(36)-H(36)	0.9500	C(4S)-H(4S1)	0.9900
C(37)-C(38)	1.372(4)	C(4S)-H(4S2)	0.9900
C(37)-H(37)	0.9500	O(2S)-C(8S)	1.397(11)
C(38)-C(39)	1.388(4)	O(2S)-C(5S)	1.415(8)
C(38)-H(38)	0.9500	C(5S)-C(6S)	1.526(5)
C(39)-H(39)	0.9500	C(5S)-H(5S1)	0.9900
C(40)-C(42)	1.513(4)	C(5S)-H(5S2)	0.9900
C(40)-C(41)	1.515(4)	C(6S)-C(7S)	1.526(5)
C(40)-H(40)	1.0000	C(6S)-H(6S1)	0.9900
C(41)-H(41A)	0.9800	C(6S)-H(6S2)	0.9900
C(41)-H(41B)	0.9800	C(7S)-C(8S)	1.524(5)
C(41)-H(41C)	0.9800	C(7S)-H(7S1)	0.9900
C(42)-H(42A)	0.9800	C(7S)-H(7S2)	0.9900
C(42)-H(42B)	0.9800	C(8S)-H(8S1)	0.9900
C(42)-H(42C)	0.9800	C(8S)-H(8S2)	0.9900
O(1S)-C(1S)	1.397(10)		
O(3)-Ti(1)-O(5)	96.01(8)	O(1)-Ti(1)-Ti(2)	119.97(5)
O(3)-Ti(1)-O(1)	98.67(7)	O(2)-Ti(1)-Ti(2)	40.68(5)
O(5)-Ti(1)-O(1)	102.83(7)	O(4)-Ti(1)-Ti(2)	33.72(4)
O(3)-Ti(1)-O(2)	95.53(7)	C(1)-Ti(1)-Ti(2)	81.74(6)
O(5)-Ti(1)-O(2)	96.96(7)	O(8)-Ti(2)-O(6)	92.02(7)
O(1)-Ti(1)-O(2)	154.18(7)	O(8)-Ti(2)-O(7)	93.02(7)
O(3)-Ti(1)-O(4)	168.39(7)	O(6)-Ti(2)-O(7)	163.13(7)
O(5)-Ti(1)-O(4)	91.03(7)	O(8)-Ti(2)-O(4)	108.29(7)
O(1)-Ti(1)-O(4)	88.71(7)	O(6)-Ti(2)-O(4)	96.69(7)
O(2)-Ti(1)-O(4)	74.40(6)	O(7)-Ti(2)-O(4)	96.99(7)
O(3)-Ti(1)-C(1)	83.55(8)	O(8)-Ti(2)-C(25)	96.01(8)
O(5)-Ti(1)-C(1)	175.19(8)	O(6)-Ti(2)-C(25)	81.38(8)
O(1)-Ti(1)-C(1)	81.96(8)	O(7)-Ti(2)-C(25)	82.08(8)
O(2)-Ti(1)-C(1)	78.34(7)	O(4)-Ti(2)-C(25)	155.69(8)
O(4)-Ti(1)-C(1)	88.67(7)	O(8)-Ti(2)-O(2)	178.27(7)
O(3)-Ti(1)-Ti(2)	135.83(5)	O(6)-Ti(2)-O(2)	89.32(7)
O(5)-Ti(1)-Ti(2)	95.37(5)	O(7)-Ti(2)-O(2)	85.39(7)

O(4)-Ti(2)-O(2)	72.62(6)	C(2)-C(3)-H(3A)	111.4
C(25)-Ti(2)-O(2)	83.11(7)	N(2)-C(3)-H(3B)	111.4
O(8)-Ti(2)-Ti(1)	144.95(5)	C(2)-C(3)-H(3B)	111.4
O(6)-Ti(2)-Ti(1)	93.04(5)	H(3A)-C(3)-H(3B)	109.3
O(7)-Ti(2)-Ti(1)	92.05(5)	C(5)-C(4)-C(9)	119.0(2)
O(4)-Ti(2)-Ti(1)	36.66(5)	C(5)-C(4)-N(2)	120.0(2)
C(25)-Ti(2)-Ti(1)	119.05(6)	C(9)-C(4)-N(2)	121.0(2)
O(2)-Ti(2)-Ti(1)	35.97(4)	C(6)-C(5)-C(4)	120.9(2)
C(11)-O(1)-Ti(1)	138.29(15)	C(6)-C(5)-H(5)	119.5
C(9)-O(2)-Ti(1)	123.81(14)	C(4)-C(5)-H(5)	119.5
C(9)-O(2)-Ti(2)	121.97(13)	C(7)-C(6)-C(5)	120.2(2)
Ti(1)-O(2)-Ti(2)	103.34(7)	C(7)-C(6)-H(6)	119.9
C(16)-O(3)-Ti(1)	144.91(16)	C(5)-C(6)-H(6)	119.9
C(19)-O(4)-Ti(2)	127.61(14)	C(6)-C(7)-C(8)	119.5(2)
C(19)-O(4)-Ti(1)	120.47(13)	C(6)-C(7)-H(7)	120.2
Ti(2)-O(4)-Ti(1)	109.62(7)	C(8)-C(7)-H(7)	120.2
C(22)-O(5)-Ti(1)	134.8(2)	C(9)-C(8)-C(7)	121.1(2)
C(22A)-O(5)-Ti(1)	141.6(3)	C(9)-C(8)-H(8)	119.5
C(35)-O(6)-Ti(2)	142.11(16)	C(7)-C(8)-H(8)	119.5
C(33)-O(7)-Ti(2)	141.81(15)	O(2)-C(9)-C(8)	119.2(2)
C(40)-O(8)-Ti(2)	134.86(14)	O(2)-C(9)-C(4)	121.7(2)
C(1)-N(1)-C(10)	125.86(19)	C(8)-C(9)-C(4)	119.0(2)
C(1)-N(1)-C(2)	112.90(19)	C(15)-C(10)-N(1)	119.5(2)
C(10)-N(1)-C(2)	121.07(19)	C(15)-C(10)-C(11)	119.4(2)
C(1)-N(2)-C(4)	124.7(2)	N(1)-C(10)-C(11)	121.2(2)
C(1)-N(2)-C(3)	113.30(19)	O(1)-C(11)-C(12)	119.2(2)
C(4)-N(2)-C(3)	121.70(19)	O(1)-C(11)-C(10)	122.4(2)
C(25)-N(3)-C(34)	127.0(2)	C(12)-C(11)-C(10)	118.3(2)
C(25)-N(3)-C(26)	113.0(2)	C(13)-C(12)-C(11)	121.3(2)
C(34)-N(3)-C(26)	119.9(2)	C(13)-C(12)-H(12)	119.3
C(25)-N(4)-C(28)	126.8(2)	C(11)-C(12)-H(12)	119.3
C(25)-N(4)-C(27)	112.7(2)	C(12)-C(13)-C(14)	119.9(2)
C(28)-N(4)-C(27)	120.2(2)	C(12)-C(13)-H(13)	120.0
N(1)-C(1)-N(2)	108.1(2)	C(14)-C(13)-H(13)	120.0
N(1)-C(1)-Ti(1)	125.96(16)	C(15)-C(14)-C(13)	120.0(2)
N(2)-C(1)-Ti(1)	125.41(17)	C(15)-C(14)-H(14)	120.0
N(1)-C(2)-C(3)	103.16(19)	C(13)-C(14)-H(14)	120.0
N(1)-C(2)-H(2A)	111.1	C(14)-C(15)-C(10)	121.0(2)
C(3)-C(2)-H(2A)	111.1	C(14)-C(15)-H(15)	119.5
N(1)-C(2)-H(2B)	111.1	C(10)-C(15)-H(15)	119.5
C(3)-C(2)-H(2B)	111.1	O(3)-C(16)-C(18)	108.2(2)
H(2A)-C(2)-H(2B)	109.1	O(3)-C(16)-C(17)	110.6(2)
N(2)-C(3)-C(2)	101.89(18)	C(18)-C(16)-C(17)	112.7(2)
N(2)-C(3)-H(3A)	111.4	O(3)-C(16)-H(16)	108.4

C(18)-C(16)-H(16)	108.4	C(22)-C(24)-H(24A)	109.5
C(17)-C(16)-H(16)	108.4	C(22)-C(24)-H(24B)	109.5
C(16)-C(17)-H(17A)	109.5	H(24A)-C(24)-H(24B)	109.5
C(16)-C(17)-H(17B)	109.5	C(22)-C(24)-H(24C)	109.5
H(17A)-C(17)-H(17B)	109.5	H(24A)-C(24)-H(24C)	109.5
C(16)-C(17)-H(17C)	109.5	H(24B)-C(24)-H(24C)	109.5
H(17A)-C(17)-H(17C)	109.5	O(5)-C(22A)-C(24A)	112.1(5)
H(17B)-C(17)-H(17C)	109.5	O(5)-C(22A)-C(23A)	107.3(10)
C(16)-C(18)-H(18A)	109.5	C(24A)-C(22A)-C(23A)	110.9(6)
C(16)-C(18)-H(18B)	109.5	O(5)-C(22A)-H(22A)	108.8
H(18A)-C(18)-H(18B)	109.5	C(24A)-C(22A)-H(22A)	108.8
C(16)-C(18)-H(18C)	109.5	C(23A)-C(22A)-H(22A)	108.8
H(18A)-C(18)-H(18C)	109.5	C(22A)-C(23A)-H(23D)	109.5
H(18B)-C(18)-H(18C)	109.5	C(22A)-C(23A)-H(23E)	109.5
O(4)-C(19)-C(21)	109.2(2)	H(23D)-C(23A)-H(23E)	109.5
O(4)-C(19)-C(20)	110.4(2)	C(22A)-C(23A)-H(23F)	109.5
C(21)-C(19)-C(20)	113.6(3)	H(23D)-C(23A)-H(23F)	109.5
O(4)-C(19)-H(19)	107.8	H(23E)-C(23A)-H(23F)	109.5
C(21)-C(19)-H(19)	107.8	C(22A)-C(24A)-H(24D)	109.5
C(20)-C(19)-H(19)	107.8	C(22A)-C(24A)-H(24E)	109.5
C(19)-C(20)-H(20A)	109.5	H(24D)-C(24A)-H(24E)	109.5
C(19)-C(20)-H(20B)	109.5	C(22A)-C(24A)-H(24F)	109.5
H(20A)-C(20)-H(20B)	109.5	H(24D)-C(24A)-H(24F)	109.5
C(19)-C(20)-H(20C)	109.5	H(24E)-C(24A)-H(24F)	109.5
H(20A)-C(20)-H(20C)	109.5	N(3)-C(25)-N(4)	107.9(2)
H(20B)-C(20)-H(20C)	109.5	N(3)-C(25)-Ti(2)	126.07(17)
C(19)-C(21)-H(21A)	109.5	N(4)-C(25)-Ti(2)	125.86(17)
C(19)-C(21)-H(21B)	109.5	N(3)-C(26)-C(27)	103.1(2)
H(21A)-C(21)-H(21B)	109.5	N(3)-C(26)-H(26A)	111.2
C(19)-C(21)-H(21C)	109.5	C(27)-C(26)-H(26A)	111.2
H(21A)-C(21)-H(21C)	109.5	N(3)-C(26)-H(26B)	111.2
H(21B)-C(21)-H(21C)	109.5	C(27)-C(26)-H(26B)	111.2
O(5)-C(22)-C(23)	109.0(5)	H(26A)-C(26)-H(26B)	109.1
O(5)-C(22)-C(24)	109.4(3)	N(4)-C(27)-C(26)	102.9(2)
C(23)-C(22)-C(24)	110.9(6)	N(4)-C(27)-H(27A)	111.2
O(5)-C(22)-H(22)	109.2	C(26)-C(27)-H(27A)	111.2
C(23)-C(22)-H(22)	109.2	N(4)-C(27)-H(27B)	111.2
C(24)-C(22)-H(22)	109.2	C(26)-C(27)-H(27B)	111.2
C(22)-C(23)-H(23A)	109.5	H(27A)-C(27)-H(27B)	109.1
C(22)-C(23)-H(23B)	109.5	C(29)-C(28)-C(33)	118.6(2)
H(23A)-C(23)-H(23B)	109.5	C(29)-C(28)-N(4)	119.9(2)
C(22)-C(23)-H(23C)	109.5	C(33)-C(28)-N(4)	121.4(2)
H(23A)-C(23)-H(23C)	109.5	C(30)-C(29)-C(28)	121.2(3)
H(23B)-C(23)-H(23C)	109.5	C(30)-C(29)-H(29)	119.4

C(28)-C(29)-H(29)	119.4	C(40)-C(42)-H(42B)	109.5
C(29)-C(30)-C(31)	120.2(2)	H(42A)-C(42)-H(42B)	109.5
C(29)-C(30)-H(30)	119.9	C(40)-C(42)-H(42C)	109.5
C(31)-C(30)-H(30)	119.9	H(42A)-C(42)-H(42C)	109.5
C(32)-C(31)-C(30)	119.5(3)	H(42B)-C(42)-H(42C)	109.5
C(32)-C(31)-H(31)	120.2	C(1S)-O(1S)-C(4S)	107.6(5)
C(30)-C(31)-H(31)	120.2	O(1S)-C(1S)-C(2S)	105.2(5)
C(31)-C(32)-C(33)	121.4(3)	O(1S)-C(1S)-H(1S1)	110.7
C(31)-C(32)-H(32)	119.3	C(2S)-C(1S)-H(1S1)	110.7
C(33)-C(32)-H(32)	119.3	O(1S)-C(1S)-H(1S2)	110.7
O(7)-C(33)-C(32)	119.2(2)	C(2S)-C(1S)-H(1S2)	110.7
O(7)-C(33)-C(28)	121.8(2)	H(1S1)-C(1S)-H(1S2)	108.8
C(32)-C(33)-C(28)	119.0(2)	C(3S)-C(2S)-C(1S)	100.9(5)
C(39)-C(34)-C(35)	119.6(2)	C(3S)-C(2S)-H(2S1)	111.6
C(39)-C(34)-N(3)	119.9(2)	C(1S)-C(2S)-H(2S1)	111.6
C(35)-C(34)-N(3)	120.5(2)	C(3S)-C(2S)-H(2S2)	111.6
O(6)-C(35)-C(36)	118.9(2)	C(1S)-C(2S)-H(2S2)	111.6
O(6)-C(35)-C(34)	122.0(2)	H(2S1)-C(2S)-H(2S2)	109.4
C(36)-C(35)-C(34)	119.1(2)	C(2S)-C(3S)-C(4S)	104.0(5)
C(37)-C(36)-C(35)	120.2(3)	C(2S)-C(3S)-H(3S1)	111.0
C(37)-C(36)-H(36)	119.9	C(4S)-C(3S)-H(3S1)	111.0
C(35)-C(36)-H(36)	119.9	C(2S)-C(3S)-H(3S2)	111.0
C(38)-C(37)-C(36)	120.5(3)	C(4S)-C(3S)-H(3S2)	111.0
C(38)-C(37)-H(37)	119.8	H(3S1)-C(3S)-H(3S2)	109.0
C(36)-C(37)-H(37)	119.8	O(1S)-C(4S)-C(3S)	107.5(5)
C(37)-C(38)-C(39)	120.1(2)	O(1S)-C(4S)-H(4S1)	110.2
C(37)-C(38)-H(38)	119.9	C(3S)-C(4S)-H(4S1)	110.2
C(39)-C(38)-H(38)	119.9	O(1S)-C(4S)-H(4S2)	110.2
C(38)-C(39)-C(34)	120.4(3)	C(3S)-C(4S)-H(4S2)	110.2
C(38)-C(39)-H(39)	119.8	H(4S1)-C(4S)-H(4S2)	108.5
C(34)-C(39)-H(39)	119.8	C(8S)-O(2S)-C(5S)	105.4(7)
O(8)-C(40)-C(42)	108.5(2)	O(2S)-C(5S)-C(6S)	106.2(7)
O(8)-C(40)-C(41)	109.6(2)	O(2S)-C(5S)-H(5S1)	110.5
C(42)-C(40)-C(41)	112.0(2)	C(6S)-C(5S)-H(5S1)	110.5
O(8)-C(40)-H(40)	108.9	O(2S)-C(5S)-H(5S2)	110.5
C(42)-C(40)-H(40)	108.9	C(6S)-C(5S)-H(5S2)	110.5
C(41)-C(40)-H(40)	108.9	H(5S1)-C(5S)-H(5S2)	108.7
C(40)-C(41)-H(41A)	109.5	C(7S)-C(6S)-C(5S)	104.0(8)
C(40)-C(41)-H(41B)	109.5	C(7S)-C(6S)-H(6S1)	111.0
H(41A)-C(41)-H(41B)	109.5	C(5S)-C(6S)-H(6S1)	111.0
C(40)-C(41)-H(41C)	109.5	C(7S)-C(6S)-H(6S2)	111.0
H(41A)-C(41)-H(41C)	109.5	C(5S)-C(6S)-H(6S2)	111.0
H(41B)-C(41)-H(41C)	109.5	H(6S1)-C(6S)-H(6S2)	109.0
C(40)-C(42)-H(42A)	109.5	C(8S)-C(7S)-C(6S)	102.6(7)

C(8S)-C(7S)-H(7S1)	111.2	O(2S)-C(8S)-H(8S1)	110.6
C(6S)-C(7S)-H(7S1)	111.2	C(7S)-C(8S)-H(8S1)	110.6
C(8S)-C(7S)-H(7S2)	111.2	O(2S)-C(8S)-H(8S2)	110.6
C(6S)-C(7S)-H(7S2)	111.2	C(7S)-C(8S)-H(8S2)	110.6
H(7S1)-C(7S)-H(7S2)	109.2	H(8S1)-C(8S)-H(8S2)	108.7
O(2S)-C(8S)-C(7S)	105.6(8)		

 Table S6.
 Torsion angles [°] for 4.

O(3)-Ti(1)-O(1)-C(11)	-104.7(2)	O(2)-Ti(2)-O(7)-C(33)	85.1(2)	
O(5)-Ti(1)-O(1)-C(11)	157.0(2)	Ti(1)-Ti(2)-O(7)-C(33)	120.5(2)	
O(2)-Ti(1)-O(1)-C(11)	17.9(3)	O(6)-Ti(2)-O(8)-C(40)	-20.0(2)	
O(4)-Ti(1)-O(1)-C(11)	66.3(2)	O(7)-Ti(2)-O(8)-C(40)	143.9(2)	
C(1)-Ti(1)-O(1)-C(11)	-22.6(2)	O(4)-Ti(2)-O(8)-C(40)	-117.7(2)	
Ti(2)-Ti(1)-O(1)-C(11)	53.0(2)	C(25)-Ti(2)-O(8)-C(40)	61.6(2)	
O(5)-Ti(1)-O(3)-C(16)	161.6(3)	Ti(1)-Ti(2)-O(8)-C(40)	-118.19(19)	
O(1)-Ti(1)-O(3)-C(16)	57.6(3)	C(10)-N(1)-C(1)-N(2)	-178.5(2)	
O(2)-Ti(1)-O(3)-C(16)	-100.7(3)	C(2)-N(1)-C(1)-N(2)	-3.1(3)	
O(4)-Ti(1)-O(3)-C(16)	-71.3(5)	C(10)-N(1)-C(1)-Ti(1)	9.5(3)	
C(1)-Ti(1)-O(3)-C(16)	-23.2(3)	C(2)-N(1)-C(1)-Ti(1)	-175.11(16)	
Ti(2)-Ti(1)-O(3)-C(16)	-94.3(3)	C(4)-N(2)-C(1)-N(1)	-176.18(19)	
O(3)-Ti(1)-O(5)-C(22)	75.2(3)	C(3)-N(2)-C(1)-N(1)	-2.5(3)	
O(1)-Ti(1)-O(5)-C(22)	175.5(3)	C(4)-N(2)-C(1)-Ti(1)	-4.2(3)	
O(2)-Ti(1)-O(5)-C(22)	-21.2(3)	C(3)-N(2)-C(1)-Ti(1)	169.51(15)	
O(4)-Ti(1)-O(5)-C(22)	-95.6(3)	C(1)-N(1)-C(2)-C(3)	7.1(3)	
Ti(2)-Ti(1)-O(5)-C(22)	-62.1(3)	C(10)-N(1)-C(2)-C(3)	-177.24(19)	
O(3)-Ti(1)-O(5)-C(22A)	28.8(5)	C(1)-N(2)-C(3)-C(2)	6.7(2)	
O(1)-Ti(1)-O(5)-C(22A)	129.1(5)	C(4)-N(2)-C(3)-C(2)	-179.43(19)	
O(2)-Ti(1)-O(5)-C(22A)	-67.6(5)	N(1)-C(2)-C(3)-N(2)	-7.6(2)	
O(4)-Ti(1)-O(5)-C(22A)	-142.0(5)	C(1)-N(2)-C(4)-C(5)	165.2(2)	
Ti(2)-Ti(1)-O(5)-C(22A)	-108.5(5)	C(3)-N(2)-C(4)-C(5)	-8.0(3)	
O(8)-Ti(2)-O(6)-C(35)	87.2(2)	C(1)-N(2)-C(4)-C(9)	-15.8(3)	
O(7)-Ti(2)-O(6)-C(35)	-20.1(4)	C(3)-N(2)-C(4)-C(9)	171.0(2)	
O(4)-Ti(2)-O(6)-C(35)	-164.1(2)	C(9)-C(4)-C(5)-C(6)	3.0(3)	
C(25)-Ti(2)-O(6)-C(35)	-8.5(2)	N(2)-C(4)-C(5)-C(6)	-178.0(2)	
O(2)-Ti(2)-O(6)-C(35)	-91.7(2)	C(4)-C(5)-C(6)-C(7)	1.4(4)	
Ti(1)-Ti(2)-O(6)-C(35)	-127.5(2)	C(5)-C(6)-C(7)-C(8)	-3.1(4)	
O(8)-Ti(2)-O(7)-C(33)	-94.2(2)	C(6)-C(7)-C(8)-C(9)	0.2(4)	
O(6)-Ti(2)-O(7)-C(33)	12.9(4)	Ti(1)-O(2)-C(9)-C(8)	-128.51(19)	
O(4)-Ti(2)-O(7)-C(33)	156.9(2)	Ti(2)-O(2)-C(9)-C(8)	93.3(2)	
C(25)-Ti(2)-O(7)-C(33)	1.4(2)	Ti(1)-O(2)-C(9)-C(4)	54.4(3)	

Ti(2)-O(2)-C(9)-C(4)	-83.8(2)
C(7)-C(8)-C(9)-O(2)	-173.0(2)
C(7)-C(8)-C(9)-C(4)	4.2(3)
C(5)-C(4)-C(9)-O(2)	171.4(2)
N(2)-C(4)-C(9)-O(2)	-7.6(3)
C(5)-C(4)-C(9)-C(8)	-5.7(3)
N(2)-C(4)-C(9)-C(8)	175.3(2)
C(1)-N(1)-C(10)-C(15)	168.4(2)
C(2)-N(1)-C(10)-C(15)	-6.6(3)
C(1)-N(1)-C(10)-C(11)	-12.0(3)
C(2)-N(1)-C(10)-C(11)	173.0(2)
Ti(1)-O(1)-C(11)-C(12)	-155.08(18)
Ti(1)-O(1)-C(11)-C(10)	26.3(3)
C(15)-C(10)-C(11)-O(1)	176.0(2)
N(1)-C(10)-C(11)-O(1)	-3.7(3)
C(15)-C(10)-C(11)-C(12)	-2.6(3)
N(1)-C(10)-C(11)-C(12)	177.7(2)
O(1)-C(11)-C(12)-C(13)	-176.8(2)
C(10)-C(11)-C(12)-C(13)	1.9(4)
C(11)-C(12)-C(13)-C(14)	-0.1(4)
C(12)-C(13)-C(14)-C(15)	-1.0(4)
C(13)-C(14)-C(15)-C(10)	0.2(4)
N(1)-C(10)-C(15)-C(14)	-178.7(2)
C(11)-C(10)-C(15)-C(14)	1.6(4)
Ti(1)-O(3)-C(16)-C(18)	166.8(2)
Ti(1)-O(3)-C(16)-C(17)	-69.3(3)
Ti(2)-O(4)-C(19)-C(21)	73.7(3)
Ti(1)-O(4)-C(19)-C(21)	-125.36(19)
Ti(2)-O(4)-C(19)-C(20)	-51.8(3)
Ti(1)-O(4)-C(19)-C(20)	109.1(2)
Ti(1)-O(5)-C(22)-C(23)	171.4(7)
Ti(1)-O(5)-C(22)-C(24)	-67.2(5)
Ti(1)-O(5)-C(22A)-C(24A)	54.2(9)
Ti(1)-O(5)-C(22A)-C(23A)	176.1(10)
C(34)-N(3)-C(25)-N(4)	-176.8(2)
C(26)-N(3)-C(25)-N(4)	0.5(3)
C(34)-N(3)-C(25)-Ti(2)	7.3(3)
C(26)-N(3)-C(25)-Ti(2)	-175.44(16)
C(28)-N(4)-C(25)-N(3)	-178.5(2)
C(27)-N(4)-C(25)-N(3)	-4.3(3)
C(28)-N(4)-C(25)-Ti(2)	-2.6(3)
C(27)-N(4)-C(25)-Ti(2)	171.56(16)
C(25)-N(3)-C(26)-C(27)	3.3(3)
C(34)-N(3)-C(26)-C(27)	-179.2(2)

C(25)-N(4)-C(27)-C(26)	6.2(3)
C(28)-N(4)-C(27)-C(26)	-179.2(2)
N(3)-C(26)-C(27)-N(4)	-5.3(2)
C(25)-N(4)-C(28)-C(29)	-175.5(2)
C(27)-N(4)-C(28)-C(29)	10.8(3)
C(25)-N(4)-C(28)-C(33)	4.4(4)
C(27)-N(4)-C(28)-C(33)	-169.3(2)
C(33)-C(28)-C(29)-C(30)	0.8(4)
N(4)-C(28)-C(29)-C(30)	-179.3(2)
C(28)-C(29)-C(30)-C(31)	1.2(4)
C(29)-C(30)-C(31)-C(32)	-1.5(4)
C(30)-C(31)-C(32)-C(33)	-0.1(4)
Ti(2)-O(7)-C(33)-C(32)	179.10(17)
Ti(2)-O(7)-C(33)-C(28)	-0.1(4)
C(31)-C(32)-C(33)-O(7)	-177.1(2)
C(31)-C(32)-C(33)-C(28)	2.1(3)
C(29)-C(28)-C(33)-O(7)	176.8(2)
N(4)-C(28)-C(33)-O(7)	-3.1(3)
C(29)-C(28)-C(33)-C(32)	-2.4(3)
N(4)-C(28)-C(33)-C(32)	177.7(2)
C(25)-N(3)-C(34)-C(39)	174.3(2)
C(26)-N(3)-C(34)-C(39)	-2.7(3)
C(25)-N(3)-C(34)-C(35)	-5.5(4)
C(26)-N(3)-C(34)-C(35)	177.4(2)
Ti(2)-O(6)-C(35)-C(36)	-167.68(18)
Ti(2)-O(6)-C(35)-C(34)	12.0(4)
C(39)-C(34)-C(35)-O(6)	177.1(2)
N(3)-C(34)-C(35)-O(6)	-3.1(3)
C(39)-C(34)-C(35)-C(36)	-3.2(3)
N(3)-C(34)-C(35)-C(36)	176.6(2)
O(6)-C(35)-C(36)-C(37)	-177.4(2)
C(34)-C(35)-C(36)-C(37)	2.8(4)
C(35)-C(36)-C(37)-C(38)	-0.3(4)
C(36)-C(37)-C(38)-C(39)	-1.7(4)
C(37)-C(38)-C(39)-C(34)	1.3(4)
C(35)-C(34)-C(39)-C(38)	1.2(4)
N(3)-C(34)-C(39)-C(38)	-178.6(2)
Ti(2)-O(8)-C(40)-C(42)	-96.1(2)
Ti(2)-O(8)-C(40)-C(41)	141.41(19)
C(4S)-O(1S)-C(1S)-C(2S)	-36.6(9)
O(1S)-C(1S)-C(2S)-C(3S)	37.9(9)
C(1S)-C(2S)-C(3S)-C(4S)	-24.7(9)
C(1S)-O(1S)-C(4S)-C(3S)	19.9(9)
C(2S)-C(3S)-C(4S)-O(1S)	4.8(10)

C(8S)-O(2S)-C(5S)-C(6S)	-36.2(9)	
O(2S)-C(5S)-C(6S)-C(7S)	16.3(16)	
C(5S)-C(6S)-C(7S)-C(8S)	8(2)	

C(5S)-O(2S)-C(8S)-C(7S)	41.6(13)
C(6S)-C(7S)-C(8S)-O(2S)	-30(2 (2)

Table S7. Crystal data and structure refinement for 5.

Identification code	Compound5		
Empirical formula	$C_{81}H_{119}N_4O_8Ti_2$		
Formula weight	1372.59		
Temperature	103(2) K		
Wavelength (λ)	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 16.7643(16) Å	α = 90°.	
	b = 27.625(3) Å	β = 112.6230(10)°.	
	c = 17.7509(17) Å	γ = 90°.	
Volume	7588.2(13) Å ³		
Z	4		
Density (calculated)	1.201 Mg/m ³		
Linear absorption coefficient (µ)	0.267 mm ⁻¹		
F(000)	2964		
Crystal size	0.484 x 0.252 x 0.118	0.484 x 0.252 x 0.118 mm ³	
Crystal habit/colour	Elongated prism/Pale	e yellow	
Theta range for data collection	1.928 to 25.290°.		
Index ranges	-20<=h<=20, -33<=k<	=33, -21<=l<=21	
Reflections collected	88763		
Independent reflections	13786 [R(int) = 0.064	8]	
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from	equivalents	
Refinement method	Full-matrix least-squa	ares on F ²	
Data / restraints / parameters	13786 / 9 / 879		
Goodness-of-fit on F ²	1.088		
Final R indices [I>2sigma(I)]	R1 = 0.0587, wR2 = 0	.1672	
R indices (all data)	R1 = 0.0739, wR2 = 0	.1785	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.990 and -0.773 e.Å [·]	0.990 and -0.773 e.Å ⁻³	

C(1)-N(1)	1.341(4)	C(8)-C(9)	1.393(4)
C(1)-N(2)	1.348(4)	C(8)-H(8)	0.9500
C(1)-Ti(1)	2.212(3)	O(8)-C(52)	1.357(3)
N(1)-C(10)	1.411(4)	C(10)-C(15)	1.395(4)
N(1)-C(2)	1.476(4)	C(10)-C(11)	1.406(4)
O(1)-C(11)	1.337(3)	C(11)-C(12)	1.394(4)
O(1)-Ti(1)	1.892(2)	C(12)-C(13)	1.384(4)
Ti(1)-O(3)	1.769(2)	C(12)-H(12)	0.9500
Ti(1)-O(4)	1.8598(18)	C(13)-C(14)	1.382(5)
Ti(1)-O(2)	1.876(2)	C(13)-H(13)	0.9500
C(2)-C(3)	1.518(4)	C(14)-C(15)	1.384(5)
C(2)-H(2A)	0.9900	C(14)-H(14)	0.9500
C(2)-H(2B)	0.9900	C(15)-H(15)	0.9500
N(2)-C(4)	1.411(4)	C(16)-C(17)	1.502(5)
N(2)-C(3)	1.482(4)	C(16)-C(18)	1.514(4)
O(2)-C(9)	1.331(3)	C(16)-H(16)	1.0000
Ti(2)-O(7)	1.792(2)	C(17)-H(17A)	0.9800
Ti(2)-O(8)	1.8397(19)	C(17)-H(17B)	0.9800
Ti(2)-O(5)	1.868(2)	C(17)-H(17C)	0.9800
Ti(2)-O(6)	1.889(2)	C(18)-H(18A)	0.9800
Ti(2)-C(34)	2.222(3)	C(18)-H(18B)	0.9800
C(3)-H(3A)	0.9900	C(18)-H(18C)	0.9800
C(3)-H(3B)	0.9900	C(19)-C(24)	1.422(4)
N(3)-C(34)	1.344(4)	C(19)-C(20)	1.422(4)
N(3)-C(43)	1.409(4)	C(20)-C(21)	1.395(4)
N(3)-C(35)	1.479(4)	C(20)-C(26)	1.542(4)
O(3)-C(16)	1.429(4)	C(21)-C(22)	1.388(4)
C(4)-C(5)	1.393(4)	C(21)-H(21)	0.9500
C(4)-C(9)	1.409(4)	C(22)-C(23)	1.382(4)
N(4)-C(34)	1.347(4)	C(22)-C(25)	1.511(4)
N(4)-C(37)	1.410(4)	C(23)-C(24)	1.397(4)
N(4)-C(36)	1.478(4)	C(23)-H(23)	0.9500
O(4)-C(19)	1.348(3)	C(24)-C(30)	1.541(4)
C(5)-C(6)	1.377(5)	C(25)-H(25A)	0.9800
C(5)-H(5)	0.9500	C(25)-H(25B)	0.9800
O(5)-C(44)	1.339(4)	C(25)-H(25C)	0.9800
C(6)-C(7)	1.381(5)	C(26)-C(29)	1.527(4)
C(6)-H(6)	0.9500	C(26)-C(28)	1.528(4)
O(6)-C(42)	1.329(3)	C(26)-C(27)	1.543(4)
C(7)-C(8)	1.384(4)	C(27)-H(27A)	0.9800
C(7)-H(7)	0.9500	C(27)-H(27B)	0.9800
O(7)-C(49)	1.436(4)	C(27)-H(27C)	0.9800

Table S8. Bond lengths [Å] and angles [°] for 5.

C(28)-H(28A)	0.9800	C(49)-C(50)	1.514(5)
C(28)-H(28B)	0.9800	C(49)-H(49)	1.0000
C(28)-H(28C)	0.9800	C(50)-H(50A)	0.9800
C(29)-H(29A)	0.9800	C(50)-H(50B)	0.9800
С(29)-Н(29В)	0.9800	C(50)-H(50C)	0.9800
С(29)-Н(29С)	0.9800	C(51)-H(51A)	0.9800
C(30)-C(32)	1.537(4)	C(51)-H(51B)	0.9800
C(30)-C(33)	1.538(4)	C(51)-H(51C)	0.9800
C(30)-C(31)	1.544(4)	C(52)-C(53)	1.411(4)
C(31)-H(31A)	0.9800	C(52)-C(57)	1.411(4)
C(31)-H(31B)	0.9800	C(53)-C(54)	1.393(4)
C(31)-H(31C)	0.9800	C(53)-C(59)	1.539(4)
C(32)-H(32A)	0.9800	C(54)-C(55)	1.384(4)
С(32)-Н(32В)	0.9800	C(54)-H(54)	0.9500
С(32)-Н(32С)	0.9800	C(55)-C(56)	1.379(4)
C(33)-H(33A)	0.9800	C(55)-C(58)	1.513(4)
С(33)-Н(33В)	0.9800	C(56)-C(57)	1.396(4)
C(33)-H(33C)	0.9800	C(56)-H(56)	0.9500
C(35)-C(36)	1.510(5)	C(57)-C(63)	1.543(4)
C(35)-H(35A)	0.9900	C(58)-H(58A)	0.9800
С(35)-Н(35В)	0.9900	C(58)-H(58B)	0.9800
C(36)-H(36A)	0.9900	C(58)-H(58C)	0.9800
С(36)-Н(36В)	0.9900	C(59)-C(62)	1.537(4)
C(37)-C(38)	1.393(4)	C(59)-C(60)	1.539(4)
C(37)-C(42)	1.408(4)	C(59)-C(61)	1.543(4)
C(38)-C(39)	1.381(5)	C(60)-H(60A)	0.9800
С(38)-Н(38)	0.9500	C(60)-H(60B)	0.9800
C(39)-C(40)	1.386(5)	C(60)-H(60C)	0.9800
С(39)-Н(39)	0.9500	C(61)-H(61A)	0.9800
C(40)-C(41)	1.381(4)	C(61)-H(61B)	0.9800
C(40)-H(40)	0.9500	C(61)-H(61C)	0.9800
C(41)-C(42)	1.393(4)	C(62)-H(62A)	0.9800
C(41)-H(41)	0.9500	C(62)-H(62B)	0.9800
C(43)-C(44)	1.399(5)	C(62)-H(62C)	0.9800
C(43)-C(48)	1.406(4)	C(63)-C(64)	1.531(4)
C(44)-C(45)	1.394(5)	C(63)-C(66)	1.535(4)
C(45)-C(46)	1.385(5)	C(63)-C(65)	1.539(4)
C(45)-H(45)	0.9500	C(64)-H(64A)	0.9800
C(46)-C(47)	1.375(6)	C(64)-H(64B)	0.9800
C(46)-H(46)	0.9500	C(64)-H(64C)	0.9800
C(47)-C(48)	1.377(5)	C(65)-H(65A)	0.9800
C(47)-H(47)	0.9500	C(65)-H(65B)	0.9800
C(48)-H(48)	0.9500	C(65)-H(65C)	0.9800
C(49)-C(51)	1.511(5)	C(66)-H(66A)	0.9800

C(66)-H(66B)	0.9800	C(11S)-H(11A)	0.9900
C(66)-H(66C)	0.9800	C(11S)-H(11B)	0.9900
C(1S)-C(2S)	1.497(15)	C(12S)-H(12A)	0.9800
C(1S)-H(1SA)	0.9800	C(12S)-H(12B)	0.9800
C(1S)-H(1SB)	0.9800	C(12S)-H(12C)	0.9800
C(1S)-H(1SC)	0.9800	C(13S)-C(14S)	1.531(6)
C(2S)-C(3S)	1.586(15)	C(13S)-H(13A)	0.9800
C(2S)-H(2SA)	0.9900	C(13S)-H(13B)	0.9800
C(2S)-H(2SB)	0.9900	C(13S)-H(13C)	0.9800
C(3S)-C(3S)#1	1.57(2)	C(14S)-C(15S)	1.512(6)
C(3S)-H(3SA)	0.9900	C(14S)-H(14A)	0.9900
C(3S)-H(3SB)	0.9900	C(14S)-H(14B)	0.9900
C(7S)-C(8S)	1.448(8)	C(15S)-C(16S)	1.504(6)
C(7S)-H(7SA)	0.9800	C(15S)-H(15A)	0.9900
C(7S)-H(7SB)	0.9800	C(15S)-H(15B)	0.9900
C(7S)-H(7SC)	0.9800	C(16S)-C(17S)	1.500(6)
C(8S)-C(9S)	1.488(7)	C(16S)-H(16A)	0.9900
C(8S)-H(8A)	0.9900	C(16S)-H(16B)	0.9900
C(8S)-H(8B)	0.9900	C(17S)-C(18S)	1.536(6)
C(9S)-C(10S)	1.468(7)	C(17S)-H(17D)	0.9900
C(9S)-H(9SA)	0.9900	C(17S)-H(17E)	0.9900
C(9S)-H(9SB)	0.9900	C(18S)-H(18D)	0.9800
C(10S)-C(11S)	1.493(7)	C(18S)-H(18E)	0.9800
C(10S)-H(10A)	0.9900	C(18S)-H(18F)	0.9800
C(10S)-H(10B)	0.9900		
C(11S)-C(12S)	1.411(7)		
N(1)-C(1)-N(2)	108.3(2)	N(1)-C(2)-C(3)	102.9(2)
N(1)-C(1)-Ti(1)	125.26(19)	N(1)-C(2)-H(2A)	111.2
N(2)-C(1)-Ti(1)	126.3(2)	C(3)-C(2)-H(2A)	111.2
C(1)-N(1)-C(10)	126.5(2)	N(1)-C(2)-H(2B)	111.2
C(1)-N(1)-C(2)	113.1(2)	C(3)-C(2)-H(2B)	111.2
C(10)-N(1)-C(2)	120.4(2)	H(2A)-C(2)-H(2B)	109.1
C(11)-O(1)-Ti(1)	135.71(18)	C(1)-N(2)-C(4)	127.7(2)
O(3)-Ti(1)-O(4)	113.53(9)	C(1)-N(2)-C(3)	112.6(2)
O(3)-Ti(1)-O(2)	101.23(9)	C(4)-N(2)-C(3)	119.7(2)
O(4)-Ti(1)-O(2)	94.62(8)	C(9)-O(2)-Ti(1)	144.14(19)
O(3)-Ti(1)-O(1)	99.26(10)	O(7)-Ti(2)-O(8)	111.39(9)
O(4)-Ti(1)-O(1)	91.76(8)	O(7)-Ti(2)-O(5)	97.63(9)
O(2)-Ti(1)-O(1)	153.96(9)	O(8)-Ti(2)-O(5)	94.73(9)
O(3)-Ti(1)-C(1)	99.75(10)	O(7)-Ti(2)-O(6)	98.46(9)
O(4)-Ti(1)-C(1)	146.64(9)	O(8)-Ti(2)-O(6)	93.60(8)
O(2)-Ti(1)-C(1)	80.46(9)	O(5)-Ti(2)-O(6)	157.75(9)
O(1)-Ti(1)-C(1)	80.38(9)	O(7)-Ti(2)-C(34)	105.17(10)
	· · /		· · · /

O(8)-Ti(2)-C(34)	143.43(9)	C(12)-C(11)-C(10)	118.8(3)
O(5)-Ti(2)-C(34)	80.50(10)	C(13)-C(12)-C(11)	121.3(3)
O(6)-Ti(2)-C(34)	80.52(10)	C(13)-C(12)-H(12)	119.3
N(2)-C(3)-C(2)	102.8(2)	C(11)-C(12)-H(12)	119.3
N(2)-C(3)-H(3A)	111.2	C(14)-C(13)-C(12)	119.7(3)
C(2)-C(3)-H(3A)	111.2	C(14)-C(13)-H(13)	120.2
N(2)-C(3)-H(3B)	111.2	C(12)-C(13)-H(13)	120.2
C(2)-C(3)-H(3B)	111.2	C(13)-C(14)-C(15)	120.1(3)
H(3A)-C(3)-H(3B)	109.1	C(13)-C(14)-H(14)	120.0
C(34)-N(3)-C(43)	127.0(3)	C(15)-C(14)-H(14)	120.0
C(34)-N(3)-C(35)	113.0(3)	C(14)-C(15)-C(10)	120.9(3)
C(43)-N(3)-C(35)	119.9(3)	C(14)-C(15)-H(15)	119.6
C(16)-O(3)-Ti(1)	146.57(19)	C(10)-C(15)-H(15)	119.6
C(5)-C(4)-C(9)	119.4(3)	O(3)-C(16)-C(17)	109.2(3)
C(5)-C(4)-N(2)	120.6(3)	O(3)-C(16)-C(18)	109.2(3)
C(9)-C(4)-N(2)	120.0(2)	C(17)-C(16)-C(18)	113.3(3)
C(34)-N(4)-C(37)	127.1(2)	O(3)-C(16)-H(16)	108.3
C(34)-N(4)-C(36)	112.6(3)	C(17)-C(16)-H(16)	108.3
C(37)-N(4)-C(36)	120.1(2)	C(18)-C(16)-H(16)	108.3
C(19)-O(4)-Ti(1)	160.30(17)	C(16)-C(17)-H(17A)	109.5
C(6)-C(5)-C(4)	120.7(3)	C(16)-C(17)-H(17B)	109.5
C(6)-C(5)-H(5)	119.7	H(17A)-C(17)-H(17B)	109.5
C(4)-C(5)-H(5)	119.7	C(16)-C(17)-H(17C)	109.5
C(44)-O(5)-Ti(2)	143.9(2)	H(17A)-C(17)-H(17C)	109.5
C(5)-C(6)-C(7)	120.4(3)	H(17B)-C(17)-H(17C)	109.5
C(5)-C(6)-H(6)	119.8	C(16)-C(18)-H(18A)	109.5
C(7)-C(6)-H(6)	119.8	C(16)-C(18)-H(18B)	109.5
C(42)-O(6)-Ti(2)	140.63(19)	H(18A)-C(18)-H(18B)	109.5
C(6)-C(7)-C(8)	119.6(3)	C(16)-C(18)-H(18C)	109.5
C(6)-C(7)-H(7)	120.2	H(18A)-C(18)-H(18C)	109.5
C(8)-C(7)-H(7)	120.2	H(18B)-C(18)-H(18C)	109.5
C(49)-O(7)-Ti(2)	133.47(19)	O(4)-C(19)-C(24)	119.4(2)
C(7)-C(8)-C(9)	121.2(3)	O(4)-C(19)-C(20)	119.8(2)
C(7)-C(8)-H(8)	119.4	C(24)-C(19)-C(20)	120.8(2)
C(9)-C(8)-H(8)	119.4	C(21)-C(20)-C(19)	117.7(2)
C(52)-O(8)-Ti(2)	158.87(17)	C(21)-C(20)-C(26)	119.4(2)
O(2)-C(9)-C(8)	120.1(3)	C(19)-C(20)-C(26)	122.9(2)
O(2)-C(9)-C(4)	121.2(3)	C(22)-C(21)-C(20)	122.8(3)
C(8)-C(9)-C(4)	118.7(3)	C(22)-C(21)-H(21)	118.6
C(15)-C(10)-C(11)	119.3(3)	C(20)-C(21)-H(21)	118.6
C(15)-C(10)-N(1)	120.5(3)	C(23)-C(22)-C(21)	118.1(3)
C(11)-C(10)-N(1)	120.2(2)	C(23)-C(22)-C(25)	120.9(3)
O(1)-C(11)-C(12)	119.3(3)	C(21)-C(22)-C(25)	121.0(3)
O(1)-C(11)-C(10)	121.8(3)	C(22)-C(23)-C(24)	123.1(3)

C(22)-C(23)-H(2	23) :	118.5	C(30)-C(31)-H(31C)	109.5
C(24)-C(23)-H(2	23) :	118.5	H(31A)-C(31)-H(31C)	109.5
C(23)-C(24)-C(1	L9) :	117.5(2)	H(31B)-C(31)-H(31C)	109.5
C(23)-C(24)-C(3	30) :	119.8(2)	C(30)-C(32)-H(32A)	109.5
C(19)-C(24)-C(3	30)	122.7(2)	C(30)-C(32)-H(32B)	109.5
C(22)-C(25)-H(2	25A)	109.5	H(32A)-C(32)-H(32B)	109.5
C(22)-C(25)-H(2	25B) :	109.5	C(30)-C(32)-H(32C)	109.5
H(25A)-C(25)-H	I(25B)	109.5	H(32A)-C(32)-H(32C)	109.5
C(22)-C(25)-H(2	25C) :	109.5	H(32B)-C(32)-H(32C)	109.5
H(25A)-C(25)-H	I(25C)	109.5	C(30)-C(33)-H(33A)	109.5
H(25B)-C(25)-H	l(25C)	109.5	C(30)-C(33)-H(33B)	109.5
C(29)-C(26)-C(2	28) :	105.7(2)	H(33A)-C(33)-H(33B)	109.5
C(29)-C(26)-C(2	20) :	112.9(2)	C(30)-C(33)-H(33C)	109.5
C(28)-C(26)-C(2	20) :	111.3(2)	H(33A)-C(33)-H(33C)	109.5
C(29)-C(26)-C(2	27) :	106.2(2)	H(33B)-C(33)-H(33C)	109.5
C(28)-C(26)-C(2	27) :	110.5(2)	N(3)-C(34)-N(4)	108.1(2)
C(20)-C(26)-C(2	27) :	110.1(2)	N(3)-C(34)-Ti(2)	126.3(2)
C(26)-C(27)-H(2	27A) :	109.5	N(4)-C(34)-Ti(2)	125.5(2)
C(26)-C(27)-H(2	27B) :	109.5	N(3)-C(35)-C(36)	102.7(2)
H(27A)-C(27)-H	I(27B) :	109.5	N(3)-C(35)-H(35A)	111.2
C(26)-C(27)-H(2	27C) 1	109.5	C(36)-C(35)-H(35A)	111.2
H(27A)-C(27)-H	I(27C)	109.5	N(3)-C(35)-H(35B)	111.2
H(27B)-C(27)-H	l(27C)	109.5	C(36)-C(35)-H(35B)	111.2
C(26)-C(28)-H(2	28A) :	109.5	H(35A)-C(35)-H(35B)	109.1
C(26)-C(28)-H(2	28B) :	109.5	N(4)-C(36)-C(35)	103.2(2)
H(28A)-C(28)-H	I(28B) :	109.5	N(4)-C(36)-H(36A)	111.1
C(26)-C(28)-H(2	28C) (109.5	C(35)-C(36)-H(36A)	111.1
H(28A)-C(28)-H	I(28C)	109.5	N(4)-C(36)-H(36B)	111.1
H(28B)-C(28)-H	l(28C)	109.5	C(35)-C(36)-H(36B)	111.1
C(26)-C(29)-H(2	29A) :	109.5	H(36A)-C(36)-H(36B)	109.1
C(26)-C(29)-H(2	29B) :	109.5	C(38)-C(37)-C(42)	119.4(3)
H(29A)-C(29)-H	I(29B) :	109.5	C(38)-C(37)-N(4)	120.0(3)
C(26)-C(29)-H(2	29C) :	109.5	C(42)-C(37)-N(4)	120.6(3)
H(29A)-C(29)-H	I(29C)	109.5	C(39)-C(38)-C(37)	120.7(3)
H(29B)-C(29)-H	l(29C)	109.5	C(39)-C(38)-H(38)	119.7
C(32)-C(30)-C(3	33) :	110.9(3)	C(37)-C(38)-H(38)	119.7
C(32)-C(30)-C(2	24) :	111.5(2)	C(38)-C(39)-C(40)	120.2(3)
C(33)-C(30)-C(2	24)	109.8(2)	C(38)-C(39)-H(39)	119.9
C(32)-C(30)-C(3	31) :	106.2(2)	C(40)-C(39)-H(39)	119.9
C(33)-C(30)-C(3	31) :	106.2(2)	C(41)-C(40)-C(39)	119.7(3)
C(24)-C(30)-C(3	31) :	112.0(2)	C(41)-C(40)-H(40)	120.1
C(30)-C(31)-H(31A) :	109.5	C(39)-C(40)-H(40)	120.1
C(30)-C(31)-H(31B) :	109.5	C(40)-C(41)-C(42)	121.2(3)
H(31A)-C(31)-H	I(31B) :	109.5	C(40)-C(41)-H(41)	119.4

C(42)-C(41)-H(41)	119.4	C(54)-C(53)-C(59)	120.4(3)
O(6)-C(42)-C(41)	119.8(3)	C(52)-C(53)-C(59)	121.4(2)
O(6)-C(42)-C(37)	121.3(3)	C(55)-C(54)-C(53)	122.3(3)
C(41)-C(42)-C(37)	118.8(3)	C(55)-C(54)-H(54)	118.9
C(44)-C(43)-C(48)	118.8(3)	C(53)-C(54)-H(54)	118.9
C(44)-C(43)-N(3)	120.9(3)	C(56)-C(55)-C(54)	118.1(3)
C(48)-C(43)-N(3)	120.3(3)	C(56)-C(55)-C(58)	121.4(3)
O(5)-C(44)-C(45)	119.5(3)	C(54)-C(55)-C(58)	120.5(3)
O(5)-C(44)-C(43)	121.1(3)	C(55)-C(56)-C(57)	123.1(3)
C(45)-C(44)-C(43)	119.4(3)	C(55)-C(56)-H(56)	118.5
C(46)-C(45)-C(44)	121.0(3)	C(57)-C(56)-H(56)	118.5
C(46)-C(45)-H(45)	119.5	C(56)-C(57)-C(52)	117.4(3)
C(44)-C(45)-H(45)	119.5	C(56)-C(57)-C(63)	120.4(3)
C(47)-C(46)-C(45)	119.4(3)	C(52)-C(57)-C(63)	122.3(2)
C(47)-C(46)-H(46)	120.3	C(55)-C(58)-H(58A)	109.5
C(45)-C(46)-H(46)	120.3	C(55)-C(58)-H(58B)	109.5
C(46)-C(47)-C(48)	120.9(3)	H(58A)-C(58)-H(58B)	109.5
C(46)-C(47)-H(47)	119.6	C(55)-C(58)-H(58C)	109.5
C(48)-C(47)-H(47)	119.6	H(58A)-C(58)-H(58C)	109.5
C(47)-C(48)-C(43)	120.4(3)	H(58B)-C(58)-H(58C)	109.5
C(47)-C(48)-H(48)	119.8	C(62)-C(59)-C(60)	106.7(3)
C(43)-C(48)-H(48)	119.8	C(62)-C(59)-C(53)	112.2(2)
O(7)-C(49)-C(51)	109.4(3)	C(60)-C(59)-C(53)	108.7(2)
O(7)-C(49)-C(50)	107.9(3)	C(62)-C(59)-C(61)	105.5(3)
C(51)-C(49)-C(50)	112.8(3)	C(60)-C(59)-C(61)	111.2(2)
O(7)-C(49)-H(49)	108.9	C(53)-C(59)-C(61)	112.5(2)
C(51)-C(49)-H(49)	108.9	C(59)-C(60)-H(60A)	109.5
C(50)-C(49)-H(49)	108.9	C(59)-C(60)-H(60B)	109.5
C(49)-C(50)-H(50A)	109.5	H(60A)-C(60)-H(60B)	109.5
C(49)-C(50)-H(50B)	109.5	C(59)-C(60)-H(60C)	109.5
H(50A)-C(50)-H(50B)	109.5	H(60A)-C(60)-H(60C)	109.5
C(49)-C(50)-H(50C)	109.5	H(60B)-C(60)-H(60C)	109.5
H(50A)-C(50)-H(50C)	109.5	C(59)-C(61)-H(61A)	109.5
H(50B)-C(50)-H(50C)	109.5	C(59)-C(61)-H(61B)	109.5
C(49)-C(51)-H(51A)	109.5	H(61A)-C(61)-H(61B)	109.5
C(49)-C(51)-H(51B)	109.5	C(59)-C(61)-H(61C)	109.5
H(51A)-C(51)-H(51B)	109.5	H(61A)-C(61)-H(61C)	109.5
C(49)-C(51)-H(51C)	109.5	H(61B)-C(61)-H(61C)	109.5
H(51A)-C(51)-H(51C)	109.5	C(59)-C(62)-H(62A)	109.5
H(51B)-C(51)-H(51C)	109.5	C(59)-C(62)-H(62B)	109.5
O(8)-C(52)-C(53)	119.6(2)	H(62A)-C(62)-H(62B)	109.5
O(8)-C(52)-C(57)	119.4(2)	C(59)-C(62)-H(62C)	109.5
C(53)-C(52)-C(57)	120.9(2)	H(62A)-C(62)-H(62C)	109.5
C(54)-C(53)-C(52)	118.2(3)	H(62B)-C(62)-H(62C)	109.5

C(64)-C(63)-C(66)	110.7(3)	H(7SA)-C(7S)-H(7SB)	109.5
C(64)-C(63)-C(65)	106.4(2)	C(8S)-C(7S)-H(7SC)	109.5
C(66)-C(63)-C(65)	106.5(3)	H(7SA)-C(7S)-H(7SC)	109.5
C(64)-C(63)-C(57)	110.4(2)	H(7SB)-C(7S)-H(7SC)	109.5
C(66)-C(63)-C(57)	110.8(2)	C(7S)-C(8S)-C(9S)	115.2(5)
C(65)-C(63)-C(57)	111.9(3)	C(7S)-C(8S)-H(8A)	108.5
C(63)-C(64)-H(64A)	109.5	C(9S)-C(8S)-H(8A)	108.5
C(63)-C(64)-H(64B)	109.5	C(7S)-C(8S)-H(8B)	108.5
H(64A)-C(64)-H(64B)	109.5	C(9S)-C(8S)-H(8B)	108.5
C(63)-C(64)-H(64C)	109.5	H(8A)-C(8S)-H(8B)	107.5
H(64A)-C(64)-H(64C)	109.5	C(10S)-C(9S)-C(8S)	118.8(5)
H(64B)-C(64)-H(64C)	109.5	C(10S)-C(9S)-H(9SA)	107.6
C(63)-C(65)-H(65A)	109.5	C(8S)-C(9S)-H(9SA)	107.6
C(63)-C(65)-H(65B)	109.5	C(10S)-C(9S)-H(9SB)	107.6
H(65A)-C(65)-H(65B)	109.5	C(8S)-C(9S)-H(9SB)	107.6
C(63)-C(65)-H(65C)	109.5	H(9SA)-C(9S)-H(9SB)	107.1
H(65A)-C(65)-H(65C)	109.5	C(9S)-C(10S)-C(11S)	116.3(5)
H(65B)-C(65)-H(65C)	109.5	C(9S)-C(10S)-H(10A)	108.2
C(63)-C(66)-H(66A)	109.5	C(11S)-C(10S)-H(10A)	108.2
C(63)-C(66)-H(66B)	109.5	C(9S)-C(10S)-H(10B)	108.2
H(66A)-C(66)-H(66B)	109.5	C(11S)-C(10S)-H(10B)	108.2
C(63)-C(66)-H(66C)	109.5	H(10A)-C(10S)-H(10B)	107.4
H(66A)-C(66)-H(66C)	109.5	C(12S)-C(11S)-C(10S)	119.1(5)
H(66B)-C(66)-H(66C)	109.5	C(12S)-C(11S)-H(11A)	107.5
C(2S)-C(1S)-H(1SA)	109.5	C(10S)-C(11S)-H(11A)	107.5
C(2S)-C(1S)-H(1SB)	109.5	C(12S)-C(11S)-H(11B)	107.5
H(1SA)-C(1S)-H(1SB)	109.5	C(10S)-C(11S)-H(11B)	107.5
C(2S)-C(1S)-H(1SC)	109.5	H(11A)-C(11S)-H(11B)	107.0
H(1SA)-C(1S)-H(1SC)	109.5	C(11S)-C(12S)-H(12A)	109.5
H(1SB)-C(1S)-H(1SC)	109.5	C(11S)-C(12S)-H(12B)	109.5
C(1S)-C(2S)-C(3S)	116.9(13)	H(12A)-C(12S)-H(12B)	109.5
C(1S)-C(2S)-H(2SA)	108.1	C(11S)-C(12S)-H(12C)	109.5
C(3S)-C(2S)-H(2SA)	108.1	H(12A)-C(12S)-H(12C)	109.5
C(1S)-C(2S)-H(2SB)	108.1	H(12B)-C(12S)-H(12C)	109.5
C(3S)-C(2S)-H(2SB)	108.1	C(14S)-C(13S)-H(13A)	109.5
H(2SA)-C(2S)-H(2SB)	107.3	C(14S)-C(13S)-H(13B)	109.5
C(3S)#1-C(3S)-C(2S)	107.2(12)	H(13A)-C(13S)-H(13B)	109.5
C(3S)#1-C(3S)-H(3SA)	110.3	C(14S)-C(13S)-H(13C)	109.5
C(2S)-C(3S)-H(3SA)	110.3	H(13A)-C(13S)-H(13C)	109.5
C(3S)#1-C(3S)-H(3SB)	110.3	H(13B)-C(13S)-H(13C)	109.5
C(2S)-C(3S)-H(3SB)	110.3	C(15S)-C(14S)-C(13S)	112.7(4)
H(3SA)-C(3S)-H(3SB)	108.5	C(15S)-C(14S)-H(14A)	109.0
C(8S)-C(7S)-H(7SA)	109.5	C(13S)-C(14S)-H(14A)	109.0
C(8S)-C(7S)-H(7SB)	109.5	C(15S)-C(14S)-H(14B)	109.0

C(13S)-C(14S)-H(14B)	109.0	H(16A)-C(16S)-H(16B)	107.5
H(14A)-C(14S)-H(14B)	107.8	C(16S)-C(17S)-C(18S)	113.6(4)
C(16S)-C(15S)-C(14S)	114.5(4)	C(16S)-C(17S)-H(17D)	108.8
C(16S)-C(15S)-H(15A)	108.6	C(18S)-C(17S)-H(17D)	108.8
C(14S)-C(15S)-H(15A)	108.6	C(16S)-C(17S)-H(17E)	108.8
C(16S)-C(15S)-H(15B)	108.6	C(18S)-C(17S)-H(17E)	108.8
C(14S)-C(15S)-H(15B)	108.6	H(17D)-C(17S)-H(17E)	107.7
H(15A)-C(15S)-H(15B)	107.6	C(17S)-C(18S)-H(18D)	109.5
C(17S)-C(16S)-C(15S)	115.3(4)	C(17S)-C(18S)-H(18E)	109.5
C(17S)-C(16S)-H(16A)	108.4	H(18D)-C(18S)-H(18E)	109.5
C(15S)-C(16S)-H(16A)	108.4	C(17S)-C(18S)-H(18F)	109.5
C(17S)-C(16S)-H(16B)	108.4	H(18D)-C(18S)-H(18F)	109.5
C(15S)-C(16S)-H(16B)	108.4	H(18E)-C(18S)-H(18F)	109.5

#1 -x,-y+1,-z

Table S9.Torsion angles [°] for 5.

N(2)-C(1)-N(1)-C(10)	-179.0(2)	C(1)-Ti(1)-O(3)-C(16)	58.1(4)	
Ti(1)-C(1)-N(1)-C(10)	4.7(4)	C(1)-N(2)-C(4)-C(5)	-177.0(3)	
N(2)-C(1)-N(1)-C(2)	-0.7(3)	C(3)-N(2)-C(4)-C(5)	5.4(4)	
Ti(1)-C(1)-N(1)-C(2)	-177.09(19)	C(1)-N(2)-C(4)-C(9)	3.1(4)	
C(11)-O(1)-Ti(1)-O(3)	-60.6(3)	C(3)-N(2)-C(4)-C(9)	-174.4(2)	
C(11)-O(1)-Ti(1)-O(4)	-174.7(3)	O(3)-Ti(1)-O(4)-C(19)	-125.1(5)	
C(11)-O(1)-Ti(1)-O(2)	81.0(3)	O(2)-Ti(1)-O(4)-C(19)	130.5(5)	
C(11)-O(1)-Ti(1)-C(1)	37.9(3)	O(1)-Ti(1)-O(4)-C(19)	-24.2(5)	
C(1)-N(1)-C(2)-C(3)	4.1(3)	C(1)-Ti(1)-O(4)-C(19)	50.8(6)	
C(10)-N(1)-C(2)-C(3)	-177.6(2)	C(9)-C(4)-C(5)-C(6)	-2.1(4)	
N(1)-C(1)-N(2)-C(4)	179.1(2)	N(2)-C(4)-C(5)-C(6)	178.1(3)	
Ti(1)-C(1)-N(2)-C(4)	-4.6(4)	O(7)-Ti(2)-O(5)-C(44)	-106.9(3)	
N(1)-C(1)-N(2)-C(3)	-3.2(3)	O(8)-Ti(2)-O(5)-C(44)	140.8(3)	
Ti(1)-C(1)-N(2)-C(3)	173.11(19)	O(6)-Ti(2)-O(5)-C(44)	29.1(5)	
O(3)-Ti(1)-O(2)-C(9)	101.2(3)	C(34)-Ti(2)-O(5)-C(44)	-2.7(3)	
O(4)-Ti(1)-O(2)-C(9)	-143.7(3)	C(4)-C(5)-C(6)-C(7)	1.0(5)	
O(1)-Ti(1)-O(2)-C(9)	-40.0(4)	O(7)-Ti(2)-O(6)-C(42)	78.5(3)	
C(1)-Ti(1)-O(2)-C(9)	3.1(3)	O(8)-Ti(2)-O(6)-C(42)	-169.3(3)	
C(1)-N(2)-C(3)-C(2)	5.5(3)	O(5)-Ti(2)-O(6)-C(42)	-57.4(4)	
C(4)-N(2)-C(3)-C(2)	-176.6(2)	C(34)-Ti(2)-O(6)-C(42)	-25.6(3)	
N(1)-C(2)-C(3)-N(2)	-5.3(3)	C(5)-C(6)-C(7)-C(8)	0.4(5)	
O(4)-Ti(1)-O(3)-C(16)	-124.1(3)	O(8)-Ti(2)-O(7)-C(49)	76.8(3)	
O(2)-Ti(1)-O(3)-C(16)	-24.0(4)	O(5)-Ti(2)-O(7)-C(49)	-21.3(3)	
O(1)-Ti(1)-O(3)-C(16)	139.9(3)	O(6)-Ti(2)-O(7)-C(49)	174.1(3)	

C(34)-Ti(2)-O(7)-C(49)	-103.5(3)
C(6)-C(7)-C(8)-C(9)	-0.7(5)
O(7)-Ti(2)-O(8)-C(52)	134.9(5)
O(5)-Ti(2)-O(8)-C(52)	-125.0(5)
O(6)-Ti(2)-O(8)-C(52)	34.4(5)
C(34)-Ti(2)-O(8)-C(52)	-44.6(6)
Ti(1)-O(2)-C(9)-C(8)	174.7(2)
Ti(1)-O(2)-C(9)-C(4)	-4.9(5)
C(7)-C(8)-C(9)-O(2)	-180.0(3)
C(7)-C(8)-C(9)-C(4)	-0.4(4)
C(5)-C(4)-C(9)-O(2)	-178.6(3)
N(2)-C(4)-C(9)-O(2)	1.2(4)
C(5)-C(4)-C(9)-C(8)	1.8(4)
N(2)-C(4)-C(9)-C(8)	-178.4(3)
C(1)-N(1)-C(10)-C(15)	-172.1(3)
C(2)-N(1)-C(10)-C(15)	9.8(4)
C(1)-N(1)-C(10)-C(11)	9.3(4)
C(2)-N(1)-C(10)-C(11)	-168.8(3)
Ti(1)-O(1)-C(11)-C(12)	145.4(2)
Ti(1)-O(1)-C(11)-C(10)	-36.3(4)
C(15)-C(10)-C(11)-O(1)	-176.2(3)
N(1)-C(10)-C(11)-O(1)	2.5(4)
C(15)-C(10)-C(11)-C(12)	2.2(4)
N(1)-C(10)-C(11)-C(12)	-179.2(2)
O(1)-C(11)-C(12)-C(13)	176.9(3)
C(10)-C(11)-C(12)-C(13)	-1.5(4)
C(11)-C(12)-C(13)-C(14)	-0.3(5)
C(12)-C(13)-C(14)-C(15)	1.3(5)
C(13)-C(14)-C(15)-C(10)	-0.6(5)
C(11)-C(10)-C(15)-C(14)	-1.2(5)
N(1)-C(10)-C(15)-C(14)	-179.8(3)
Ti(1)-O(3)-C(16)-C(17)	65.7(4)
Ti(1)-O(3)-C(16)-C(18)	-58.7(4)
Ti(1)-O(4)-C(19)-C(24)	109.6(5)
Ti(1)-O(4)-C(19)-C(20)	-72.5(6)
O(4)-C(19)-C(20)-C(21)	-178.5(2)
C(24)-C(19)-C(20)-C(21)	-0.6(4)
O(4)-C(19)-C(20)-C(26)	0.7(4)
C(24)-C(19)-C(20)-C(26)	178.6(2)
C(19)-C(20)-C(21)-C(22)	1.8(4)
C(26)-C(20)-C(21)-C(22)	-177.4(3)
C(20)-C(21)-C(22)-C(23)	-1.3(4)
C(20)-C(21)-C(22)-C(25)	179.5(3)
C(21)-C(22)-C(23)-C(24)	-0.6(4)

C(25)-C(22)-C(23)-C(24)	178.7(3)
C(22)-C(23)-C(24)-C(19)	1.7(4)
C(22)-C(23)-C(24)-C(30)	-177.2(3)
O(4)-C(19)-C(24)-C(23)	176.8(2)
C(20)-C(19)-C(24)-C(23)	-1.1(4)
O(4)-C(19)-C(24)-C(30)	-4.3(4)
C(20)-C(19)-C(24)-C(30)	177.8(2)
C(21)-C(20)-C(26)-C(29)	-1.4(4)
C(19)-C(20)-C(26)-C(29)	179.4(3)
C(21)-C(20)-C(26)-C(28)	-120.1(3)
C(19)-C(20)-C(26)-C(28)	60.8(3)
C(21)-C(20)-C(26)-C(27)	117.1(3)
C(19)-C(20)-C(26)-C(27)	-62.1(3)
C(23)-C(24)-C(30)-C(32)	-122.6(3)
C(19)-C(24)-C(30)-C(32)	58.5(3)
C(23)-C(24)-C(30)-C(33)	114.0(3)
C(19)-C(24)-C(30)-C(33)	-64.8(3)
C(23)-C(24)-C(30)-C(31)	-3.8(4)
C(19)-C(24)-C(30)-C(31)	177.4(3)
C(43)-N(3)-C(34)-N(4)	-176.7(3)
C(35)-N(3)-C(34)-N(4)	0.5(3)
C(43)-N(3)-C(34)-Ti(2)	6.7(4)
C(35)-N(3)-C(34)-Ti(2)	-176.1(2)
C(37)-N(4)-C(34)-N(3)	-179.1(3)
C(36)-N(4)-C(34)-N(3)	-3.9(3)
C(37)-N(4)-C(34)-Ti(2)	-2.5(4)
C(36)-N(4)-C(34)-Ti(2)	172.68(19)
C(34)-N(3)-C(35)-C(36)	2.9(3)
C(43)-N(3)-C(35)-C(36)	-179.7(2)
C(34)-N(4)-C(36)-C(35)	5.6(3)
C(37)-N(4)-C(36)-C(35)	-178.9(2)
N(3)-C(35)-C(36)-N(4)	-4.7(3)
C(34)-N(4)-C(37)-C(38)	173.0(3)
C(36)-N(4)-C(37)-C(38)	-1.9(4)
C(34)-N(4)-C(37)-C(42)	-7.2(4)
C(36)-N(4)-C(37)-C(42)	1/8.0(3)
C(42)-C(37)-C(38)-C(39)	1.0(5)
N(4)-C(37)-C(38)-C(39)	-1/9.2(3)
C(37)-C(38)-C(39)-C(40)	0.2(5)
C(38)-C(39)-C(40)-C(41)	-1.2(5)
C(39)-C(40)-C(41)-C(42)	1.1(5)
H(2)-U(6)-U(42)-U(41)	-155.4(2)
H(2)-U(6)-U(42)-U(37)	23.8(4)
C(40)-C(41)-C(42)-O(6)	1/9.2(3)

C(40)-C(41)-C(42)-C(37)	0.0(4)
C(38)-C(37)-C(42)-O(6)	179.7(3)
N(4)-C(37)-C(42)-O(6)	-0.1(4)
C(38)-C(37)-C(42)-C(41)	-1.1(4)
N(4)-C(37)-C(42)-C(41)	179.1(3)
C(34)-N(3)-C(43)-C(44)	-5.2(4)
C(35)-N(3)-C(43)-C(44)	177.7(3)
C(34)-N(3)-C(43)-C(48)	174.5(3)
C(35)-N(3)-C(43)-C(48)	-2.5(4)
Ti(2)-O(5)-C(44)-C(45)	-176.0(2)
Ti(2)-O(5)-C(44)-C(43)	4.3(5)
C(48)-C(43)-C(44)-O(5)	-179.8(3)
N(3)-C(43)-C(44)-O(5)	0.0(4)
C(48)-C(43)-C(44)-C(45)	0.6(4)
N(3)-C(43)-C(44)-C(45)	-179.7(3)
O(5)-C(44)-C(45)-C(46)	-179.7(3)
C(43)-C(44)-C(45)-C(46)	-0.1(4)
C(44)-C(45)-C(46)-C(47)	-0.4(5)
C(45)-C(46)-C(47)-C(48)	0.3(5)
C(46)-C(47)-C(48)-C(43)	0.2(5)
C(44)-C(43)-C(48)-C(47)	-0.7(5)
N(3)-C(43)-C(48)-C(47)	179.6(3)
Ti(2)-O(7)-C(49)-C(51)	85.2(3)
Ti(2)-O(7)-C(49)-C(50)	-151.6(2)
Ti(2)-O(8)-C(52)-C(53)	67.6(6)
Ti(2)-O(8)-C(52)-C(57)	-114.0(5)
O(8)-C(52)-C(53)-C(54)	-179.4(2)
C(57)-C(52)-C(53)-C(54)	2.2(4)
O(8)-C(52)-C(53)-C(59)	4.2(4)
C(57)-C(52)-C(53)-C(59)	-174.1(2)
C(52)-C(53)-C(54)-C(55)	-1.7(4)
C(59)-C(53)-C(54)-C(55)	174.7(3)

C(53)-C(54)-C(55)-C(56)	0.4(4)
C(53)-C(54)-C(55)-C(58)	-179.7(3)
C(54)-C(55)-C(56)-C(57)	0.5(4)
C(58)-C(55)-C(56)-C(57)	-179.4(3)
C(55)-C(56)-C(57)-C(52)	0.0(4)
C(55)-C(56)-C(57)-C(63)	179.9(3)
O(8)-C(52)-C(57)-C(56)	-179.7(2)
C(53)-C(52)-C(57)-C(56)	-1.4(4)
O(8)-C(52)-C(57)-C(63)	0.4(4)
C(53)-C(52)-C(57)-C(63)	178.7(2)
C(54)-C(53)-C(59)-C(62)	5.4(4)
C(52)-C(53)-C(59)-C(62)	-178.4(3)
C(54)-C(53)-C(59)-C(60)	-112.3(3)
C(52)-C(53)-C(59)-C(60)	63.9(3)
C(54)-C(53)-C(59)-C(61)	124.2(3)
C(52)-C(53)-C(59)-C(61)	-59.6(3)
C(56)-C(57)-C(63)-C(64)	122.2(3)
C(52)-C(57)-C(63)-C(64)	-57.9(3)
C(56)-C(57)-C(63)-C(66)	-114.7(3)
C(52)-C(57)-C(63)-C(66)	65.2(3)
C(56)-C(57)-C(63)-C(65)	3.9(4)
C(52)-C(57)-C(63)-C(65)	-176.2(3)
C(1S)-C(2S)-C(3S)-C(3S)#	1 -64.7(19)
C(7S)-C(8S)-C(9S)-C(10S)	177.0(6)
C(8S)-C(9S)-C(10S)-C(11S	5) 178.0(6)
C(9S)-C(10S)-C(11S)-C(12	2S) 176.4(6)
C(13S)-C(14S)-C(15S)-C(1	L6S)-178.4(4)
C(14S)-C(15S)-C(16S)-C(1	L7S) -68.2(5)
C(15S)-C(16S)-C(17S)-C(1	L8S) -176.4(4)

#1 -x,-y+1,-z

comple	Xes					
Run	Complex/Cocat. (equiv.) ^b	Epoxide	Conv. ^c (%)	Carbonate linkage ^c (%)	Selectivity ^c cyclic carbonate (%)	TOF ^d (h⁻¹)
1	1 /[PPN]Cl (1)	PO	10	99	99	10
2	2 /[PPN]Cl (1)	PO	15	99	99	15
3	3 /[PPN]Cl (1)	PO	6	99	99	7
4	1 /[PPN]Cl (1)	SO	5	99	99	5
5	2 /[PPN]Cl (1)	SO	7	99	99	7
6	3 /[PPN]Cl (1)	SO	2	99	99	2

Table S10. Coupling of propylene oxide (PO) and styrene oxide (SO) with CO₂ catalyzed by NHC-Ti complexes^{*a*}

^{*a*} Polymerization procedure: 8 µmol of precursor, 20 mmol of monomer, $P_{CO2} < 1$ bar at 60 °C for 24 h. ^{*b*} Catalyst pre-formation 15 min in CH₂Cl₂ at 30 °C and dried 2 h under vacuum. ^{*c*} Determined by ¹H NMR spectroscopy of the crude product in chloroform-*d*. ^{*d*} Turnover frequency = mol_{CHO} mol_{Ti}⁻¹ h⁻¹.

Calculated absolute energies

Т = 298.15 К	Hartree									
	G _{corr} ^a	E _{solvent} b	ΔG ^{1atm→1M c}	G ^{nodisp d}	G ^e					
THF	8.53E-002	-232.2678682	0.003011906	-232.2586416	-232.1795762					
3	0.284436543	-1550.427047	0.003011906	-1550.36224	-1550.139598					
3-THF	0.393684118	-1782.711542	0.003011906	-1782.625587	-1782.314846					
3'-µ-Cl	0.597851299	-3100.875134	0.003011906	-3100.711724	-3100.27427					
3'-µ-O <i>i</i> Pr	0.599229402	-3100.879455	0.003011906	-3100.709639	-3100.277214					
3''-µ-CI/Cl	0.596663489	-3100.868752	0.003011906	-3100.71831	-3100.269076					
3''-µ-Cl/O <i>i</i> Pr	0.597831544	-3100.866494	0.003011906	-3100.710409	-3100.265651					
3''-μ-O <i>i</i> Pr/O <i>i</i> Pr	0.598431419	-3100.871029	0.003011906	-3100.711537	-3100.269585					

Table S11. Calculated absolute energies with the PBE-D3BJ functional.

^a Gas-phase-calculated thermochemical correction due to translation, rotation and vibration. ^b The SCF energy of the SMD SP calculation. ^c The correction to change standard state from 1 atm to 1 M infinitely diluted solution. ^d G^{nodisp} = G – E_{disp}, E_{disp} is the Grimme D3(BJ) dispersion correction, which is included in E_{solvent}. ^e The total Gibbs free energy, obtained as G = E_{solvent} + G_{corr} + $\Delta G^{1atm \rightarrow 1M}$.

Table S12. Calculated absolute energies with the M06-	-D3 functional.
---	-----------------

T = 298.15 K	Hartree									
	G _{corr} ^a	E _{solvent} ^b	ΔG ^{1atm→1M c}	G ^{nodisp d}	G ^e					
THF	8.53E-002	-232.3966389	0.003011906	-232.3959064	-232.308347					
3	0.284436543	-1551.053933	0.003011906	-1551.043895	-1550.766484					
3-THF	0.393684118	-1783.473523	0.003011906	-1783.458389	-1783.076827					
3'-µ-Cl	0.597851299	-3102.140236	0.003011906	-3102.107447	-3101.539373					
3'-µ-O <i>i</i> Pr	0.599229402	-3102.149996	0.003011906	-3102.114847	-3101.547754					
3"-µ-Cl/Cl	0.596663489	-3102.127979	0.003011906	-3102.099948	-3101.528304					
3''-μ-Cl/O <i>i</i> Pr	0.597831544	-3102.128357	0.003011906	-3101.497282	-3101.533475					
3"-µ-O <i>i</i> Pr/O <i>i</i> Pr	0.598431419	-3102.134318	0.003011906	-3101.501214	-3101.532875					

^a Gas-phase-calculated thermochemical correction due to translation, rotation and vibration. ^b The SCF energy of the SMD SP calculation. ^c The correction to change standard state from 1 atm to 1 M infinitely diluted solution. ^d G^{nodisp} = G – E_{disp}, E_{disp} is the Grimme D3 dispersion correction, which is included in E_{solvent}. ^e The total Gibbs free energy, obtained as G = E_{solvent} + G_{corr} + Δ G^{1atm→1M}.

T=298.15 K	Hartree								
	G _{corr} ^a	E _{solvent} ^b	ΔG ^{1atm→1M c}	G ^{nodisp d}	G ^e				
THF	8.53E-002	-232.520169	0.003011906	-232.431727	-232.431877				
3	0.284436543	-1551.701921	0.003011906	-1551.410375	-1551.414473				
3-THF	0.393684118	-1784.245791	0.003011906	-1783.842575	-1783.849095				
3'-μ-Cl	0.597851299	-3103.43535	0.003011906	-3102.819840	-3102.834494				
3'-μ-Ο <i>i</i> Pr	0.599229402	-3103.44417	0.003011906	-3102.826396	-3102.841929				
3''-µ-Cl/Cl	0.596663489	-3103.426907	0.003011906	-3102.814336	-3102.827232				
3''-µ-Cl/O <i>i</i> Pr	0.597831544	-3103.426813	0.003011906	-3102.812196	-3102.825969				
3''-µ-O <i>i</i> Pr/O <i>i</i> Pr	0.598431419	-3103.433617	0.003011906	-3102.817738	-3102.832174				

Table S13. Calculated absolute energies with the M06L-D3 functional:

^a Gas-phase-calculated thermochemical correction due to translation, rotation and vibration. ^b The SCF energy of the SMD SP calculation. ^c The correction to change standard state from 1 atm to 1 M infinitely diluted solution. ^d G^{nodisp} = G – E_{disp}, E_{disp} is the Grimme D3 dispersion correction, which is included in E_{solvent}. ^e The total Gibbs free energy, obtained as G = E_{solvent} + G_{corr} + Δ G^{1atm→1M}.

Table S14. Calculated absolute energies with the PBE-D3M(BJ) functio	nal:
--	------

Т=298.15 К		Hartree								
	G _{corr} ^a	E _{solvent} ^b	ΔG ^{1atm→1M c}	G ^d						
THF	8.53E-002	-232,269619	0.003011906	-232,181327						
3	0.284436543	-1550,454530	0.003011906	-1550,167081						
3-THF	0.393684118	-1782,743418	0.003011906	-1782,346722						
3'-µ-Cl	0.597851299	-3100,940091	0.003011906	-3100,339228						
3'-μ-Ο <i>i</i> Pr	0.599229402	-3100,944943	0.003011906	-3100,342702						
3''-µ-Cl/Cl	0.596663489	-3100,932594	0.003011906	-3100,332918						
3''-μ-Cl/O <i>i</i> Pr	0.597831544	-3100,932303	0.003011906	-3100,331459						
3''-µ-O <i>i</i> Pr/O <i>i</i> Pr	0.598431419	-3100,937430	0.003011906	-3100,335987						

^a Gas-phase-calculated thermochemical correction due to translation, rotation and vibration. ^b The SCF energy of the SMD SP calculation. ^c The correction to change standard state from 1 atm to 1 M infinitely diluted solution. ^d The total Gibbs free energy, obtained as $G = E_{solvent} + G_{corr} + \Delta G^{1atm \rightarrow 1M}$.

Т=298.15 К		Hartree									
	G _{corr} ^a	E _{solvent} ^b	ΔG ^{1atm→1M c}	G ^{nodisp d}	G ^e						
THF	8.53E-002	-232.581028	0.003011906	-232.481759	-232.492736						
3	0.284436543	-1551.959338	0.003011906	-1551.533936	-1551.671889						
3-THF	0.393684118	-1784.563781	0.003011906	-1783.989374	-1784.167085						
3'-µ-Cl	0.597851299	-3103.956119	0.003011906	-3103.020059	-3103.355255						
3'-μ-Ο <i>i</i> Pr	0.599229402	-3103.964905	0.003011906	-3103,017092	-3103.362664						
3''-µ-Cl/Cl	0.596663489	-3103.943344	0.003011906	-3103.028749	-3103.343669						
3''-µ-Cl/O <i>i</i> Pr	0.597831544	-3103.944785	0.003011906	-3103.018964	-3103.343941						
3''-µ-O <i>i</i> Pr/O <i>i</i> Pr	0.598431419	-3103.952879	0.003011906	-3103.021208	-3103.351436						

Table S15. Calculated absolute energies with the B3LYP-D3M(BJ) functional:

^a Gas-phase-calculated thermochemical correction due to translation, rotation and vibration. ^b The SCF energy of the SMD SP calculation. ^c The correction to change standard state from 1 atm to 1 M infinitely diluted solution. ^d G^{nodisp} = G – E_{disp}, E_{disp} is the Grimme D3 dispersion correction with the revised damping parameters, which is included in E_{solvent}. ^e The total Gibbs free energy, obtained as G = E_{solvent} + G_{corr} + Δ G^{1atm→1M}.

Calculated relatives energies:

Table S16. Calculated relative	Gibbs free energies	for the coordination	of THF to 3 .
--------------------------------	---------------------	----------------------	----------------------

kcal mol ⁻¹				Witho	ut E _{disp}					
	PBE-D3(BJ)	M06-D3	M06L-D3	PBE- D3M(BJ)	B3LYP- D3M(BJ)	PBE	M06	M06L	PBE- D3M(BJ)	B3LYP- D3M(BJ)
	,			. ,	. ,					. ,
$\Delta {\rm G_r}^{\rm a}$	2.7	-1.3	-1.7	1.1	-1.5	10.2	1.5	-0.3	5.1	16.5

 $^{a}\Delta G_{r} = G(3-THF) - G(3) - G(THF).$

kcal mol ⁻¹		, 3				$\Delta G_{r,3}$	c THF			
	PBE	M06	M06L	PBE	B3LYP	PBE	M06	M06L	PBE	B3LYP
	D3(BJ)	D3	D3	D3M(BJ)	D3M(BJ)	D3(BJ)	D3	D3	D3M(BJ)	D3M(BJ)
3'-µ-Cl	3.1	-4.0	-3.5	-3.2	-7.2	-2.3	-1.5	0.0	-5.3	-4.1
3'-µ-O <i>i</i> Pr	1.2	-9.3	-8.1	-5.4	-11.9	-4.2	-6.8	-4.7	-7,5	-8.8
3"-µ-Cl/Cl	6.4	2.9	1.1	0.8	0.1	0.9	5.4	4.5	-1,3	3.2
3"-µ-Cl/O <i>i</i> Pr	8.5	3.4	1.9	1.7	-0.1	3.1	5.9	5.3	-0,4	3.0
3''-µ-O <i>i</i> Pr/O <i>i</i> Pr	6.0	0.1	-2.0	-1.1	-4.8	0.6	2.6	1.4	-3,3	-1.7

Table S17. Calculated relative Gibbs free energies of dimerization, including Edisp.^a

^a E_{disp} is the Grimme D3(BJ) for PBE, D3M(BJ) for PBE and B3LYP, D3 for M06 and M06L dispersion correction, which is included in $E_{solvent}$. ^b $\Delta G_{r,3} = G(dimer) - 2 \cdot G(3)$, ^c $\Delta G_{r,3-THF} = G(dimer) + 2 \cdot G(THF) - 2 \cdot G(3-THF)$.

kcal mol ⁻¹		$\Delta G_{r,3}^{no}$	dispb			$\Delta G_{r,3}^{no}$	disp _c – THF			
	PBE	M06	M06L	B3LYP	PBE	M06	M06L	B3LYP		
3'-µ-Cl	24.3	4.0	0.6	30.0	3.9	1.0	1.2	-3.0		
3'-μ-Ο <i>i</i> Pr	26.5	0.2	-3.5	31.9	6.1	-2.8	-2.9	-1.2		
3''-µ-Cl/Cl	19.4	7.9	4.0	24.6	-1.0	4.9	4.6	-8.5		
3''-µ-Cl/O <i>i</i> Pr	25.1	9.8	5.4	30.7	4.7	6.8	6.0	-2.3		
3''-μ-Ο <i>i</i> Pr/OiPr	24.8	7.3	1.9	29.3	4.4	4.4	2.5	-3.8		

Table S18. Calculated relative Gibbs free energies of dimerization, excluding Edisp.^a

^a E_{disp} is the Grimme D3(BJ) for PBE, D3M(BJ) for PBE and B3LYP, D3 for M06 and M06L dispersion correction, which is included in E_{solvent}. ^b $\Delta G_{r,3}^{nodisp} = G^{nodisp}(dimer) - 2 G^{nodisp}(3)$, ^c $\Delta G_{r,3-THF}^{nodisp} = G^{nodisp}(dimer) + 2 \cdot G^{nodisp}(THF) - 2 \cdot G^{nodisp}(3 - THF)$.

Sample input files

 $C \quad 4.163581 \quad 6.169408 \quad 15.058370$

Inp	ut file for ge	ometry opt	imization of 3 :	Н	4.941963	6.248054	15.829713
%n	nem=25GB			С	2.815438	6.002728	15.417817
%с	hk=complex:	1_opt		Н	2.528959	5.945445	16.477781
# P	BEPBE/gen E	EmpiricalDis	persion=GD3BJ	С	1.832301	5.911245	14.428124
opt	=(calcfc,max	(cycle=180)		н	0.770709	5.779191	14.678289
# ir	nt=UltraFine	nosymm SC	F=(vshift=300)	С	2.170318	5.987704	13.058008
pse	eudo=read			С	3.390398	6.105901	7.801633
# g	finput gfprin	t freq		С	2.021972	6.393592	7.513016
				С	1.599295	6.408602	6.164881
Titl	e,			н	0.542182	6.636703	5.972232
				С	2.496656	6.138312	5.128651
01				н	2.145736	6.150815	4.086744
Ti	0.859375	6.366195	10.327120	С	3.841604	5.849033	5.417184
0	1.164549	6.666067	8.482577	н	4.551951	5.630503	4.608006
0	1.218627	5.924311	12.134462	С	4.284992	5.834844	6.745406
Cl	-0.678754	4.719852	10.042852	н	5.337043	5.600745	6.954550
Ν	3.835941	6.110401	9.139588	О	0.075516	7.955308	10.600900
Ν	3.906777	6.147376	11.337814	С	-0.906876	8.624808	11.400824
С	3.075180	6.202504	10.263064	н	-0.554031	9.679661	11.476472
С	5.269855	5.908553	9.439874	C	-1 018507	8 031045	12 804533
Н	5.885056	6.633781	8.875619	c	-2 234080	8 581394	10 642498
Н	5.570384	4.884667	9.136386	с ц	2.234000	0.022714	0 624272
С	5.333639	6.114082	10.951999	и П	2.120217	0 142095	11 100120
н	5.851965	5.288972	11.475178	п	-5.017951	9.142965	10 527054
Н	5.819497	7.069182	11.239254		-2.505129	7.526410	10.527954
С	3.543385	6.138214	12.697228	н	-0.047216	8.066708	13.334013
С	4.523923	6.232502	13.706605	н	-1.348355	6.973267	12./55153
н	5.581418	6.362074	13.441111	Н	-1./61791	8.606239	13.392023

Н 0		0.1596000	1.0000000
S 3 1.00		P 3 1.00	
13.0100000	0.0196850	9.4390000	0.0381090
1.9620000	0.1379770	2.0020000	0.2094800
0.4446000	0.4781480	0.5456000	0.5085570
S 1 1.00		P 1 1.00	
0.1220000	1.0000000	0.1517000	1.0000000
P 1 1.00		D 1 1.00	
0.7270000	1.000000	0.5500000	1.0000000
***		***	
C 0		N 0	
S 8 1.00		S 8 1.00	
6665.0000000	0.0006920	9046.0000000	0.0007000
1000.0000000	0.0053290	1357.0000000	0.0053890
228.0000000	0.0270770	309.3000000	0.0274060
64.7100000	0.1017180	87.7300000	0.1032070
21.0600000	0.2747400	28.5600000	0.2787230
7.4950000	0.4485640	10.2100000	0.4485400
2.7970000	0.2850740	3.8380000	0.2782380
0.5215000	0.0152040	0.7466000	0.0154400
S 8 1.00		S 8 1.00	
6665.0000000	-0.0001460	9046.0000000	-0.0001530
1000.0000000	-0.0011540	1357.0000000	-0.0012080
228.0000000	-0.0057250	309.3000000	-0.0059920
64.7100000	-0.0233120	87.7300000	-0.0245440
21.0600000	-0.0639550	28.5600000	-0.0674590
7.4950000	-0.1499810	10.2100000	-0.1580780
2.7970000	-0.1272620	3.8380000	-0.1218310
0.5215000	0.5445290	0.7466000	0.5490030
S 1 1.00		S 1 1.00	

0.2248000	1.0000000	0.3023000	1.0000000
P 3 1.00		P 3 1.00	
13.5500000	0.0399190	17.7000000	0.0430180
2.9170000	0.2171690	3.8540000	0.2289130
0.7973000	0.5103190	1.0460000	0.5087280
P 1 1.00		P 1 1.00	
0.2185000	1.0000000	0.2753000	1.0000000
D 1 1.00		D 1 1.00	
0.8170000	1.0000000	1.1850000	1.0000000
****		****	
O 0		CI 0	
S 8 1.00		S 11 1.00	
11720.0000000	0.0007100	127900.0000000	0.241153D-03
1759.0000000	0.0054700	19170.0000000	0.187095D-02
400.8000000	0.0278370	4363.0000000	0.970827D-02
113.7000000	0.1048000	1236.0000000	0.393153D-01
37.0300000	0.2830620	403.6000000	0.125932D+00
13.2700000	0.4487190	145.7000000	0.299341D+00
5.0250000	0.2709520	56.8100000	0.421886D+00
1.0130000	0.0154580	23.2300000	0.237201D+00
S 8 1.00		6.6440000	0.191531D-01
11720.0000000	-0.0001600	2.5750000	-0.334792D-02
1759.0000000	-0.0012630	0.5371000	0.929883D-03
400.8000000	-0.0062670	S 11 1.00	
113.7000000	-0.0257160	127900.0000000	-0.678922D-04
37.0300000	-0.0709240	19170.0000000	-0.521836D-03
13.2700000	-0.1654110	4363.0000000	-0.276513D-02
5.0250000	-0.1169550	1236.0000000	-0.111537D-01
1.0130000	0.5573680	403.6000000	-0.385919D-01
S 1 1.00		145.7000000	-0.994848D-01

56.8100000	-0.201392D+00	31.0400000	-0.470075D-01
23.2300000	-0.130313D+00	11.1900000	-0.111030D+00
6.6440000	0.509443D+00	4.2490000	-0.153275D+00
2.5750000	0.610725D+00	1.6240000	0.894609D-01
0.5371000	0.421549D-01	0.5322000	0.579444D+00
S 11 1.00		P 1 1.00	
127900.0000000	0.204986D-04	0.1620000	1.0000000
19170.0000000	0.158298D-03	D 1 1.00	
4363.0000000	0.833639D-03	0.6000000	1.0000000
1236.0000000	0.339880D-02	****	
403.6000000	0.116738D-01	Ti 0	
145.7000000	0.309622D-01	S 3 1.00	
56.8100000	0.629533D-01	10.7803650 1.783	38920
23.2300000	0.460257D-01	9.7170130 -2.000	6890
6.6440000	-0.219312D+00	4.5077550 -0.756	3330
2.5750000	-0.408773D+00	S 1 1.00	
0.5371000	0.638465D+00	1.2467080 1.0	
S 1 1.00		S 1 1.00	
0.1938000	1.0000000	0.5087070 1.0	
P 7 1.00		S 1 1.00	
417.6000000	0.525982D-02	0.0734380 1.0	
98.3300000	0.398332D-01	S 1 1.00	
31.0400000	0.164655D+00	0.0300480 1.0	
11.1900000	0.387322D+00	S 1 1.00	
4.2490000	0.457072D+00	0.0100000 1.0	
1.6240000	0.151636D+00	P 2 1.00	
0.5322000	0.181615D-02	17.5663810 0.088	36010
P 7 1.00		7.7058440 -1.070	7460
417.6000000	-0.143570D-02	P 2 1.00	
98.3300000	-0.107796D-01	3.3291380 0.2001	1090

1.3081040 0.8379860	2 5.217000 10.047856
P 1 1.00	D-F
0.4544820 1.0	2
P 1 1.00	2 15.350000 -17.568861
0.0717720 1.0	2 4.980000 -0.587256
P 1 1.00	
0.0237840 1.0	
D 4 1.00	Input file for SP calculation of 3 with PBEGD3BJ
19.5191940 0.0358140	functional:
5.8646130 0.1723730	%mem=25GB
1.9280380 0.4251360	%chk=complex3_SP
0.6065630 0.6025950	#P PBEPBE/gen EmpiricalDispersion=GD3BJ SP
D 1 1.00	guess=read geom=check
0.1639610 1.0	#P int=UltraFine nosymm SCF=(vshift=300.conver=5) pseudo=read
D 1 1.00	#P gfinput gforint
0.0500000 1.0	scrf=(solvent=TetraHydroFuran,smd)

	Title,
Ti 0	
ECP10MDF 3 10	01
F-Komponente	
1	Н 0
2 1.000000 0.000000	S 3 1.00
S-F	82.6400000 0.0020060
2	12.4100000 0.0153430
2 13.010000 158.241593	2.8240000 0.0755790
2 5.862000 17.511824	S 1 1.00
P-F	0.7977000 1.0000000
2	S 1 1.00
2 12.460000 95.235127	0.2581000 1.0000000

S 1 1.00		326.6000000	-0.0033240
0.0898900	1.0000000	106.1000000	-0.0115120
P 1 1.00		38.1100000	-0.0341600
2.2920000	1.0000000	14.7500000	-0.0771730
P 1 1.00		6.0350000	-0.1414930
0.8380000	1.0000000	2.5300000	-0.1180190
P 1 1.00		S 1 1.00	
0.2920000	1.0000000	0.7355000	1.0000000
D 1 1.00		S 1 1.00	
2.0620000	1.0000000	0.2905000	1.0000000
D 1 1.00		S 1 1.00	
0.6620000	1.0000000	0.1111000	1.0000000
F 1 1.00		P 3 1.00	
1.3970000	1.0000000	34.5100000	0.0053780
****		7.9150000	0.0361320
C 0		2.3680000	0.1424930
S 9 1.00		P 1 1.00	
33980.0000000	0.0000910	0.8132000	1.0000000
5089.0000000	0.0007040	P 1 1.00	
1157.0000000	0.0036930	0.2890000	1.0000000
326.6000000	0.0153600	P 1 1.00	
106.1000000	0.0529290	0.1007000	1.0000000
38.1100000	0.1470430	D 1 1.00	
14.7500000	0.3056310	1.8480000	1.0000000
6.0350000	0.3993450	D 1 1.00	
2.5300000	0.2170510	0.6490000	1.0000000
S 9 1.00		D 1 1.00	
33980.0000000	-0.0000190	0.2280000	1.0000000
5089.0000000	-0.0001510	F 1 1.00	
1157.0000000	-0.0007850	1.4190000	1.0000000

F 1 1.00		S 1 1.00	
0.4850000	1.0000000	0.1552000	1.0000000
G 1 1.00		S 1 1.00	
1.0110000	1.0000000	0.0546400	1.0000000
****		P 3 1.00	
N 0		49.3300000	0.0055330
S 9 1.00		11.3700000	0.0379620
45840.0000000	0.0000920	3.4350000	0.1490280
6868.0000000	0.0007170	P 1 1.00	
1563.0000000	0.0037490	1.1820000	1.0000000
442.4000000	0.0155320	P 1 1.00	
144.3000000	0.0531460	0.4173000	1.0000000
52.1800000	0.1467870	P 1 1.00	
20.3400000	0.3046630	0.1428000	1.0000000
8.3810000	0.3976840	P 1 1.00	
3.5290000	0.2176410	0.0440200	1.0000000
S 9 1.00		D 1 1.00	
45840.0000000	-0.0000200	2.8370000	1.0000000
6868.0000000	-0.0001590	D 1 1.00	
1563.0000000	-0.0008240	0.9680000	1.0000000
442.4000000	-0.0034780	D 1 1.00	
144.3000000	-0.0119660	0.3350000	1.0000000
52.1800000	-0.0353880	D 1 1.00	
20.3400000	-0.0800770	0.1110000	1.0000000
8.3810000	-0.1467220	F 1 1.00	
3.5290000	-0.1163600	2.0270000	1.0000000
S 1 1.00		F 1 1.00	
1.0540000	1.0000000	0.6850000	1.0000000
S 1 1.00		F 1 1.00	
0.4118000	1.0000000	0.2450000	1.0000000

G 1 1.00		S 1 1.00	
1.4270000	1.0000000	0.2067000	1.0000000
G 1 1.00		S 1 1.00	
0.5590000	1.0000000	0.0695900	1.0000000
****		P 3 1.00	
O 0		63.4200000	0.0060440
S 9 1.00		14.6600000	0.0417990
61420.0000000	0.0000900	4.4590000	0.1611430
9199.0000000	0.0006980	P 1 1.00	
2091.0000000	0.0036640	1.5310000	1.0000000
590.9000000	0.0152180	P 1 1.00	
192.3000000	0.0524230	0.5302000	1.0000000
69.3200000	0.1459210	P 1 1.00	
26.9700000	0.3052580	0.1750000	1.0000000
11.1000000	0.3985080	P 1 1.00	
4.6820000	0.2169800	0.0534800	1.0000000
S 9 1.00		D 1 1.00	
61420.0000000	-0.0000200	3.7750000	1.0000000
9199.0000000	-0.0001590	D 1 1.00	
2091.0000000	-0.0008290	1.3000000	1.0000000
590.9000000	-0.0035080	D 1 1.00	
192.3000000	-0.0121560	0.4440000	1.0000000
69.3200000	-0.0362610	D 1 1.00	
26.9700000	-0.0829920	0.1540000	1.0000000
11.1000000	-0.1520900	F 1 1.00	
4.6820000	-0.1153310	2.6660000	1.0000000
S 1 1.00		F 1 1.00	
1.4280000	1.0000000	0.8590000	1.0000000
S 1 1.00		F 1 1.00	
0.5547000	1.0000000	0.3240000	1.0000000

G 1 1.00		27.6000000	-0.174763D+00
1.8460000	1.0000000	11.0800000	0.114909D+00
G 1 1.00		5.0750000	0.563618D+00
0.7140000	1.0000000	2.2780000	0.441606D+00
****		S 13 1.00	
CI 0		834900.0000000	0.196645D-05
S 13 1.00		125000.0000000	0.152620D-04
834900.0000000	0.231688D-04	28430.0000000	0.806086D-04
125000.0000000	0.180154D-03	8033.0000000	0.339960D-03
28430.0000000	0.947782D-03	2608.0000000	0.124551D-02
8033.0000000	0.400139D-02	933.9000000	0.399612D-02
2608.0000000	0.144629D-01	360.0000000	0.114751D-01
933.9000000	0.456586D-01	147.0000000	0.275504D-01
360.0000000	0.123248D+00	62.8800000	0.532917D-01
147.0000000	0.264369D+00	27.6000000	0.571246D-01
62.8800000	0.382989D+00	11.0800000	-0.395201D-01
27.6000000	0.270934D+00	5.0750000	-0.264343D+00
11.0800000	0.471404D-01	2.2780000	-0.349291D+00
5.0750000	-0.371766D-02	S 1 1.00	
2.2780000	0.219158D-02	0.7775000	1.0000000
S 13 1.00		S 1 1.00	
834900.0000000	-0.649649D-05	0.3527000	1.0000000
125000.0000000	-0.504895D-04	S 1 1.00	
28430.0000000	-0.266113D-03	0.1431000	1.0000000
8033.0000000	-0.112499D-02	S 1 1.00	
2608.0000000	-0.410497D-02	0.0519000	1.0000000
933.9000000	-0.131987D-01	P 8 1.00	
360.0000000	-0.375342D-01	1703.0000000	0.474039D-03
147.0000000	-0.897233D-01	403.6000000	0.406412D-02
62.8800000	-0.167671D+00	130.3000000	0.213355D-01

49.0500000	0.794611D-01	F 1 1.00	
20.2600000	0.208927D+00	0.4230000	1.0000000
8.7870000	0.364945D+00	F 1 1.00	
3.9190000	0.371725D+00	1.0890000	1.0000000
1.7650000	0.146292D+00	F 1 1.00	
P 8 1.00		0.2170000	1.0000000
1703.0000000	-0.128266D-03	G 1 1.00	
403.6000000	-0.109356D-02	0.8270000	1.0000000
130.3000000	-0.583429D-02	G 1 1.00	
49.0500000	-0.219258D-01	0.3780000	1.0000000
20.2600000	-0.601385D-01	****	
8.7870000	-0.106929D+00	Ті 0	
3.9190000	-0.122454D+00	S 3 1.00	
1.7650000	0.383619D-01	10.7803650 1.7	838920
P 1 1.00		9.7170130 -2.0	006890
0.7207000	1.0000000	4.5077550 -0.7	563330
P 1 1.00		S 1 1.00	
0.2839000	1.0000000	1.2467080 1.0	
P 1 1.00		S 1 1.00	
0.1060000	1.0000000	0.5087070 1.0	
P 1 1.00		S 1 1.00	
0.0376000	1.0000000	0.0734380 1.0	
D 1 1.00		S 1 1.00	
0.2540000	1.0000000	0.0300480 1.0	
D 1 1.00		S 1 1.00	
0.6280000	1.0000000	0.0100000 1.0	
D 1 1.00		P 2 1.00	
1.5510000	1.0000000	17.5663810 0.0	886010
D 1 1.00		7.7058440 -1.0	707460
0.0952000	1.0000000	P 2 1.00	

3.3291380 0.2001090	G 1 1.00
1.3081040 0.8379860	0.6360000 1.0
P 1 1.00	****
0.4544820 1.0	
P 1 1.00	Ті 0
0.0717720 1.0	ECP10MDF 3 10
P 1 1.00	F-Komponente
0.0237840 1.0	1
D 4 1.00	2 1.000000 0.000000
19.5191940 0.0358140	S-F
5.8646130 0.1723730	2
1.9280380 0.4251360	2 13.010000 158.241593
0.6065630 0.6025950	2 5.862000 17.511824
D 1 1.00	P-F
0.1639610 1.0	2
D 1 1.00	2 12.460000 95.235127
0.0500000 1.0	2 5.217000 10.047856
F 1 1.00	D-F
1.2640000 1.0	2
F 1 1.00	2 15.350000 -17.568861
0.2850000 1.0	2 4.980000 -0.587256

Optimized Cartesian coordinates

_	
_	
_	

Ti	0.596783	6.076487	10.027413
0	1.027058	6.226433	8.196202
0	0.823737	5.614734	11.849987
Cl	-1.020195	4.496573	9.713868
Ν	3.679568	6.161374	9.114697
Ν	3.534293	6.129415	11.312474
С	2.808368	6.107196	10.159092
С	5.093063	6.178741	9.550256
Н	5.618055	7.041427	9.098197

Н	5.596706	5.250144	9.213309
С	4.985436	6.278076	11.070893
Н	5.540501	5.478246	11.596881
Н	5.330574	7.256225	11.462847
С	3.052819	6.028728	12.631590
С	3.922355	6.186303	13.731301
Н	4.981244	6.426232	13.570728
С	3.448291	6.046548	15.041250
Н	4.141584	6.176152	15.883304
С	2.096501	5.739736	15.269389

Н	1.720811	5.623911	16.295866
С	1.222966	5.583850	14.189259
Н	0.160242	5.346081	14.333835
С	1.676715	5.734143	12.859948
С	3.376019	6.140599	7.738178
С	2.015043	6.171092	7.314567
С	1.730402	6.154962	5.931118
Н	0.672644	6.177707	5.636358
С	2.759740	6.112004	4.987172
Н	2.516162	6.100376	3.915318
С	4.100149	6.083244	5.407467
Н	4.915786	6.047553	4.672633
С	4.404775	6.097959	6.773794
Н	5.457009	6.071091	7.084399
0	-0.011810	7.747428	10.272846
С	-0.649722	8.579207	11.250523
Н	-1.090548	9.422246	10.669944
С	0.400718	9.136098	12.212346
С	-1.770374	7.820745	11.959850
Н	-2.490755	7.412775	11.224434
н	-2.314162	8.497505	12.649684
Н	-1.355077	6.975134	12.543591
Н	1.213802	9.637008	11.650841
Н	0.840112	8.324871	12.827239
н	-0.060113	9.878745	12.895021

THF

С	-0.597061	-0.528449	0.023255
С	-0.156717	0.952062	0.025675
С	-2.148494	-0.433864	0.011371
С	-2.405272	1.088980	0.003429
0	-1.246623	1.679462	0.592014
Н	-0.242164	-1.045669	0.935829
Н	-0.193612	-1.076477	-0.850542
Н	0.041758	1.299918	-1.019794
Н	0.741978	1.159250	0.638087
Н	-3.284432	1.406166	0.596800
Н	-2.538132	1.455040	-1.046249
Н	-2.576993	-0.899494	0.920147
Н	-2.602696	-0.933016	-0.866791

3_THF

Ti	0.809107	10.726117	10.923360
0	0.756026	10.874054	9.037572
0	0.297308	10.755953	12.742916
Cl	1.801283	12.807795	11.179831

Ν	-1.840567	11.890233	9.542504
Ν	-1.886046	12.250263	11.713438
С	-1.165657	11.694838	10.703615
С	-3.140691	12.565216	9.747095
н	-3.967043	11.863853	9.510539
Н	-3.223951	13.441357	9.076640
С	-3.096866	12.947734	11.228027
н	-2.985655	14.039888	11.386009
н	-3.986522	12.602384	11.787840
С	-1.570756	12.234452	13.086548
С	-2.356726	12.960137	14.006134
н	-3.192325	13.576585	13.650425
С	-2.081665	12.915359	15.377705
Н	-2.705178	13.493325	16.073266
С	-1.013457	12.135968	15.853196
Н	-0.793085	12.096291	16.929408
С	-0.223508	11.413650	14.955839
Н	0.624571	10.801276	15.292013
С	-0.474833	11.451543	13.565629
С	-1.426214	11.510137	8.250634
С	-0.097833	11.028757	8.038728
С	0.305408	10.715319	6.720183
Н	1.338036	10.366587	6.585070
С	-0.576462	10.842158	5.643896
Н	-0.239250	10.587169	4.629028
С	-1.889390	11.293712	5.860935
Н	-2.593458	11.390913	5.023456
С	-2.305925	11.629644	7.154610
н	-3.333066	11.984968	7.309017
Ti	1.574208	7.646402	10.708566
0	1.837796	7.722136	8.848522
0	1.861726	7.369197	12.549904
Cl	0.498254	5.582382	10.464540
Ν	3.972535	5.943590	9.445201
Ν	4.124952	5.928188	11.640276
С	3.430581	6.439587	10.589307
С	5.065058	4.980692	9.702959
Н	5.973514	5.271868	9.142219
Н	4.753849	3.971020	9.366114
С	5.251602	5.069634	11.217868
Н	5.188371	4.085335	11.719625
Н	6.211660	5.546470	11.503050
С	3.894736	6.173472	13.008560
С	4.799461	5.699090	13.981231
н	5.695130	5.142689	13.676591
С	4.577638	5.934857	15.343242
н	5.297807	5.556532	16.081400

С	3.441804	6.652410	15.754784
Н	3.262809	6.840597	16.822942
С	2.535441	7.128471	14.804327
Н	1.637398	7.693354	15.090025
С	2.738016	6.901866	13.423743
С	3.527458	6.169693	8.127452
С	2.450623	7.072781	7.870301
С	2.036937	7.278678	6.534658
Н	1.195457	7.966146	6.374749
С	2.664070	6.620005	5.474748
Н	2.320155	6.791387	4.444782
С	3.726124	5.735973	5.729061
Н	4.226242	5.210209	4.904321
С	4.150746	5.514376	7.043993
Н	4.977393	4.815460	7.223598
0	-0.028665	8.833752	10.859081
0	2.415667	9.536130	10.899813
С	-1.389478	8.583490	11.316573
Н	-1.809880	9.582868	11.559832
С	-1.404991	7.749271	12.593069
С	-2.184789	7.987339	10.158818
Н	-2.146916	8.658069	9.277256
Н	-3.244680	7.850578	10.457472
Н	-1.770373	7.002438	9.867648
Н	-0.787771	8.235585	13.371751
Н	-1.013044	6.730036	12.413555
Н	-2.446832	7.668839	12.965311
С	3.769985	10.029399	10.686976
С	4.281958	9.670632	9.296438
С	4.664673	9.535717	11.819055
Н	3.692586	11.134616	10.756827
Н	4.464186	8.583068	9.192992
Н	5.238747	10.199771	9.110007
Н	3.552169	9.978475	8.524428
Н	4.802308	8.437588	11.773826
Н	4.225278	9.790337	12.802478
Н	5.663213	10.012908	11.745048
3'-1	μ-Cl		
ті	_0 101178	9 85/560	10 225722

Ti	-0.191178	9.854560	10.225722
Ti	-2.831090	8.265555	12.083313
0	-0.255406	10.288756	8.391201
0	-0.988003	9.628418	12.081006
0	0.998490	11.071044	10.780077
Cl	-2.391429	8.453288	9.709516
Cl	0.976763	7.870989	10.225162
0	-3.892729	9.862517	12.131672

0	-1.639577	6.912801	12.562876
0	-4.296811	7.212747	11.997589
Ν	-2.408998	11.929448	9.227252
Ν	-2.065990	12.137018	11.383784
Ν	-3.558550	9.519867	14.930676
Ν	-1.975181	8.004021	15.137983
С	-1.720519	11.434532	10.277243
С	-3.404151	12.944553	9.640972
н	-4.422374	12.505401	9.586003
н	-3.360531	13.825110	8.973793
С	-2.981216	13.256444	11.081198
н	-2.436697	14.221532	11.159515
н	-3.829186	13.259524	11.791282
С	-1.531477	11.914778	12.665316
С	-1.579007	12.916809	13.653075
н	-2.070145	13.874903	13.436443
С	-0.987993	12.709162	14.907621
н	-1.027165	13.505773	15.663349
С	-0.321457	11.501986	15.173625
н	0.193179	11.353228	16.134610
С	-0.293962	10.487410	14.204959
н	0.224343	9.534412	14.380501
С	-0.933153	10.656371	12.963062
С	-2.288265	11.494392	7.891592
С	-1.177908	10.681029	7.508196
С	-1.054927	10.301817	6.155283
н	-0.194514	9.674038	5.886769
С	-1.999079	10.702798	5.204115
Н	-1.883068	10.389123	4.156927
С	-3.092280	11.496084	5.587349
Н	-3.842797	11.809067	4.848756
С	-3.231812	11.889640	6.924340
Н	-4.094375	12.502089	7.219434
С	1.485256	12.407154	10.703174
н	0.596650	13.073939	10.581392
С	2.384087	12.540759	9.474757
н	2.730283	13.587902	9.359473
Н	1.834492	12.242166	8.560909
Н	3.271164	11.883774	9.578229
С	2.187563	12.749774	12.015579
Н	2.549185	13.798147	11.996803
Н	3.057570	12.079482	12.168044
Н	1.496094	12.628005	12.871938
С	-2.788850	8.630377	14.250512
С	-3.292273	9.507564	16.384487
Н	-4.194552	9.165827	16.930736
Н	-3.035428	10.529740	16.722486

С	-2.121104	8.533589	16.510055	
Н	-1.181828	9.042971	16.806022	
Н	-2.314685	7.707458	17.220301	
С	-0.935105	7.095489	14.844090	
С	-0.033153	6.690460	15.851026	
Н	-0.142845	7.064396	16.876924	
С	1.017034	5.813065	15.555452	
Н	1.710878	5.513923	16.352893	
С	1.181648	5.330124	14.246092	
Н	2.014092	4.653450	14.006774	
С	0.290642	5.712286	13.240253	
Н	0.397364	5.369535	12.203007	
С	-0.781928	6.584579	13.521418	
С	-4.513810	10.403945	14.394652	
С	-4.652698	10.540382	12.979016	
С	-5.635692	11.429472	12.483297	
Н	-5.750790	11.484577	11.391074	
С	-6.437778	12.187366	13.343512	
Н	-7.195922	12.867006	12.928509	
С	-6.277733	12.066879	14.733131	
Н	-6.899146	12.654834	15.421996	
С	-5.325891	11.178124	15.249126	
Н	-5.222492	11.084688	16.337661	
С	-5.663135	7.399185	11.619370	
Н	-5.773990	8.439750	11.234127	
С	-5.988720	6.409499	10.502687	
Н	-7.030368	6.553383	10.150195	
Н	-5.877079	5.367381	10.864753	
Н	-5.301663	6.559134	9.647418	
С	-6.541838	7.227017	12.857529	
Н	-7.610157	7.366950	12.595041	
Н	-6.274526	7.974254	13.631207	
Н	-6.412984	6.211351	13.284202	

3'-µ-O*i*Pr

Ti	-0.177865	9.858643	10.229403
Ti	-2.634108	8.240639	11.829220
0	-0.358578	10.296185	8.393821
0	-0.874006	9.616742	12.110893
0	0.982378	11.138929	10.735227
0	-1.834915	8.526269	10.070573
Cl	1.262369	8.032850	10.111780
0	-3.793323	9.740783	11.701545
0	-1.490525	6.919413	12.484468
Cl	-4.422682	6.822575	11.744818
Ν	-2.389622	12.029908	9.372958
Ν	-1.955818	12.165780	11.516525

Ν	-3.627097	9.641784	14.535380
Ν	-2.138384	8.082704	14.980936
С	-1.695488	11.467217	10.382447
С	-3.260937	13.139583	9.825755
н	-4.324462	12.837846	9.749637
н	-3.098428	14.032009	9.192365
С	-2.823742	13.339950	11.281609
н	-2.241872	14.274738	11.422431
н	-3.675297	13.331969	11.988372
С	-1.402174	11.884159	12.778672
С	-1.425973	12.848813	13.805237
н	-1.905787	13.820725	13.630597
С	-0.826719	12.588503	15.046097
н	-0.847157	13.359324	15.828963
С	-0.177428	11.362864	15.265484
н	0.337943	11.169307	16.217736
С	-0.171241	10.385541	14.259162
н	0.327804	9.416485	14.398471
С	-0.811680	10.611230	13.027302
С	-2.344420	11.625434	8.022030
С	-1.296546	10.765406	7.569715
С	-1.262894	10.409560	6.203890
н	-0.445933	9.750969	5.878352
С	-2.233533	10.872812	5.309022
н	-2.185361	10.574876	4.251965
С	-3.264045	11.711958	5.760966
н	-4.034030	12.077114	5.067938
С	-3.312696	12.087382	7.109949
н	-4.125001	12.738639	7.459402
С	1.453993	12.473296	10.801468
н	0.558302	13.139543	10.873617
С	2.212037	12.797515	9.513434
н	2.545564	13.855129	9.513016
Н	1.565831	12.625240	8.630617
н	3.103115	12.144259	9.422142
С	2.298122	12.646770	12.063600
н	2.654077	13.693597	12.150566
н	3.179916	11.975617	12.026237
н	1.705493	12.398004	12.965322
С	-2.021675	7.694696	8.877914
н	-1.241237	8.041083	8.168555
С	-1.766419	6.224400	9.196407
Н	-1.804913	5.636090	8.257123
Н	-2.532102	5.820631	9.888470
Н	-0.765427	6.102363	9.650245
С	-3.403029	7.965745	8.290250
Н	-3.525042	7.401270	7.343519

Н	-3.534109	9.042417	8.068811
Н	-4.198989	7.645316	8.992684
С	-2.825057	8.693888	13.983564
С	-3.500803	9.709081	16.007265
Н	-4.475124	9.473806	16.479616
Н	-3.193999	10.730504	16.304465
С	-2.428394	8.662916	16.309653
Н	-1.504319	9.116702	16.719487
Н	-2.774976	7.871592	17.001731
С	-1.135225	7.100459	14.849270
С	-0.413632	6.662193	15.980332
Н	-0.642172	7.068057	16.973811
С	0.604218	5.709627	15.854148
Н	1.153271	5.385228	16.748585
С	0.921325	5.182397	14.590544
Н	1.728911	4.444339	14.485347
С	0.212844	5.599644	13.461815
Н	0.441873	5.222310	12.456505
С	-0.826382	6.549575	13.569098
С	-4.530453	10.486942	13.866525
С	-4.609718	10.473559	12.440109
С	-5.580377	11.285498	11.807921
Н	-5.658573	11.202837	10.714667
С	-6.408230	12.138407	12.544903
Н	-7.155602	12.758271	12.029121
С	-6.285737	12.190685	13.943598
Н	-6.922730	12.860969	14.536508
С	-5.360795	11.364639	14.594861
Н	-5.294476	11.402821	15.689338
3''-	μ-Cl/Cl		
Ti	1.294059	11.015649	10.803504
0	0.957046	10.779399	8.962953
0	1.026007	11.163791	12.656361
0	2.241299	12.536787	10.634028
Ν	-1.488027	12.034509	9.635716
Ν	-1.522069	12.075040	11.839188
С	-0.753052	11.795761	10.754887
С	-2.837008	12.554247	9.943379
Н	-3.604248	11.922209	9.456499
Н	-2.939228	13.588061	9.555777
С	-2.893763	12.484848	11.469335
Н	-3.142093	13.457596	11.935084
Н	-3.614359	11.726703	11.837099
С	-1.209400	11.839285	13.195802
С	-2.172588	12.068934	14.200323
Н	-3.166431	12.452816	13.937454

С	-1.883089	11.807295	15.545251
н	-2.651665	11.990659	16.308414
С	-0.620617	11.308612	15.906438
н	-0.390721	11.094140	16.959938
С	0.348365	11.084863	14.924699
н	1.345976	10.694785	15.169099
С	0.079777	11.351653	13.564162
С	-1.129764	11.761634	8.299952
С	0.096179	11.091267	8.006286
С	0.400831	10.783199	6.661207
н	1.346627	10.257459	6.471098
С	-0.468479	11.137367	5.624913
н	-0.209068	10.889268	4.585697
С	-1.665202	11.813146	5.914174
н	-2.352959	12.103664	5.108359
С	-1.990409	12.120888	7.241446
н	-2.928114	12.652146	7.449133
С	2.868914	13.377976	9.663730
н	3.505630	14.078999	10.252320
С	1.808784	14.190544	8.917243
н	2.293766	14.943846	8.263558
н	1.153594	14.722331	9.635329
н	1.182175	13.532247	8.282644
С	3.760721	12.557438	8.731758
н	4.315337	13.228447	8.044547
Н	3.149880	11.854156	8.132235
н	4.491783	11.967019	9.317615
Ti	1.159614	7.107168	10.876180
0	1.304775	7.281357	9.003562
0	1.619026	7.021146	12.695238
0	0.200954	5.583947	10.856838
Ν	3.803083	6.033803	9.462217
Ν	4.068607	6.075196	11.649852
С	3.190137	6.317626	10.642612
С	5.175405	5.516644	9.645986
Н	5.888878	6.122767	9.055499
н	5.232350	4.467390	9.291900
С	5.393695	5.646277	11.153359
н	5.690756	4.691939	11.628472
н	6.148602	6.416022	11.412130
С	3.899817	6.361522	13.022115
С	4.963541	6.167069	13.927733
Н	5.925291	5.772600	13.576117
С	4.815919	6.477820	15.285206
Н	5.660647	6.321258	15.969803
С	3.597021	6.991065	15.758347
Н	3.478214	7.243854	16.821689

С	2.530007	7.180632	14.876086
Н	1.562636	7.580887	15.209411
С	2.655279	6.864433	13.505433
С	3.305869	6.257522	8.162286
С	2.058141	6.925734	7.974112
С	1.613793	7.183932	6.657708
Н	0.655213	7.709490	6.548147
С	2.366859	6.782854	5.549938
Н	1.999563	6.992628	4.535094
С	3.584831	6.109107	5.737121
Н	4.181978	5.781990	4.875057
С	4.047832	5.850468	7.033589
Н	5.000124	5.319985	7.161669
С	-0.522832	4.710299	9.987659
Н	-1.098789	4.035926	10.663516
С	0.455625	3.863687	9.170837
Н	-0.094439	3.092835	8.593624
Н	1.174654	3.350960	9.840034
Н	1.021136	4.494837	8.456308
С	-1.501933	5.499985	9.118807
Н	-2.122988	4.806645	8.515750
Н	-0.952979	6.177586	8.435749
Н	-2.170375	6.115334	9.751884
Cl	-0.492684	8.825698	11.093751
Cl	2.962345	9.301215	10.903147

3''-μ-Cl/O/Pr	
---------------	--

Ti	0.933372	10.623596	10.983239
0	0.868566	10.711495	9.083234
0	0.363492	10.596520	12.798470
0	1.806097	12.199109	11.177629
Ν	-1.684995	11.804687	9.590910
Ν	-1.651395	12.282449	11.740019
С	-0.990403	11.638074	10.744778
С	-2.953677	12.535163	9.797808
Н	-3.810089	11.845263	9.648549
Н	-3.041421	13.362998	9.069199
С	-2.832299	13.021330	11.244384
Н	-2.646897	14.113319	11.314025
Н	-3.720264	12.778901	11.857959
С	-1.304381	12.304695	13.108071
С	-1.978779	13.164030	13.999454
Н	-2.743958	13.856148	13.623600
С	-1.679941	13.154911	15.367369
Н	-2.214248	13.835956	16.043581
С	-0.701978	12.275596	15.861489
н	-0.463527	12.260609	16.934660

С	-0.023479	11.419059	14.989785
н	0.749948	10.724298	15.345177
С	-0.297776	11.418746	13.603602
С	-1.320668	11.335449	8.312109
С	-0.010914	10.806555	8.097737
С	0.345990	10.397495	6.793208
н	1.361092	10.002760	6.653950
С	-0.563673	10.481409	5.735121
н	-0.262100	10.150003	4.730925
С	-1.857423	10.983819	5.955422
н	-2.581570	11.047205	5.131946
С	-2.228460	11.412623	7.235840
н	-3.241701	11.803686	7.396915
С	2.420215	13.270034	10.466621
н	2.904071	13.914335	11.237618
С	1.344435	14.089312	9.747849
н	1.794823	14.982068	9.268685
н	0.574769	14.431286	10.468852
н	0.854051	13.478146	8.963541
С	3.491011	12.731780	9.516496
н	4.017737	13.570100	9.016528
н	3.027245	12.083223	8.747271
н	4.233250	12.128909	10.074596
Ti	1.188651	7.155106	10.598188
0	1.405296	7.404038	8.745771
0	1.503974	6.767831	12.409028
Cl	0.062244	5.200048	10.256176
Ν	3.839929	6.039531	9.231077
Ν	4.031235	5.971004	11.423303
С	3.201950	6.301038	10.400320
С	5.172791	5.434445	9.437222
н	5.938308	5.996401	8.869438
н	5.166188	4.386181	9.074702
С	5.362001	5.533691	10.951378
н	5.635396	4.566849	11.414423
н	6.121300	6.289247	11.239750
С	3.780456	6.116488	12.801510
С	4.797995	5.861164	13.744120
н	5.799821	5.564388	13.408530
С	4.552442	5.987987	15.116577
н	5.362503	5.786792	15.830788
С	3.279269	6.372148	15.569525
н	3.081597	6.473704	16.646098
С	2.260518	6.629485	14.648739
н	1.255378	6.937917	14.966903
С	2.487265	6.511060	13.259768
С	3.337350	6.228753	7.928933

С	2.104192	6.919854	7.727919
С	1.623770	7.084736	6.409242
Н	0.662003	7.600773	6.289488
С	2.343259	6.601076	5.313041
Н	1.947262	6.738399	4.296631
С	3.564893	5.937277	5.512974
Н	4.139617	5.553172	4.659170
С	4.053940	5.751736	6.811765
Н	5.002809	5.218229	6.951975
0	-0.030691	8.675740	10.852618
Cl	2.901014	9.179831	11.015450
С	-1.428616	8.548266	11.247522
Н	-1.744739	9.578323	11.520144
С	-1.587702	7.679701	12.492850
С	-2.258013	8.083666	10.052636
Н	-2.100800	8.753057	9.184133
Н	-3.336697	8.085827	10.313651
Н	-1.976750	7.054206	9.752791
Н	-0.944994	8.063953	13.307218
Н	-1.314569	6.624700	12.293689
Н	-2.644730	7.707061	12.828185
ייצ	u. OiPr /OiP	r	
Ti	0.809107	10.726117	10.923360
0	0.756026	10.874054	9.037572
0	0.297308	10.755953	12.742916
Cl	1.801283	12.807795	11.179831
Ν	-1.840567	11.890233	9.542504
Ν	-1.886046	12.250263	11.713438
С	-1.165657	11.694838	10.703615
С	-3.140691	12.565216	9.747095
н	-3.967043	11.863853	9.510539
н	-3.223951	13.441357	9.076640
С	-3.096866	12.947734	11.228027
Н	-2.985655	14.039888	11.386009
Н	-3.986522	12.602384	11.787840
С	-1.570756	12.234452	13.086548
С	-2.356726	12.960137	14.006134
Н	-3.192325	13.576585	13.650425
С	-2.081665	12.915359	15.377705
Н	-2.705178	13.493325	16.073266
С	-1.013457	12.135968	15.853196
Н	-0.793085	12.096291	16.929408
С	-0.223508	11.413650	14.955839
Н	0.624571	10.801276	15.292013
С	-0.474833	11.451543	13.565629
С	-1.426214	11.510137	8.250634

С	-0.097833	11.028757	8.038728
С	0.305408	10.715319	6.720183
Н	1.338036	10.366587	6.585070
С	-0.576462	10.842158	5.643896
Н	-0.239250	10.587169	4.629028
С	-1.889390	11.293712	5.860935
н	-2.593458	11.390913	5.023456
С	-2.305925	11.629644	7.154610
н	-3.333066	11.984968	7.309017
Ti	1.574208	7.646402	10.708566
0	1.837796	7.722136	8.848522
0	1.861726	7.369197	12.549904
Cl	0.498254	5.582382	10.464540
Ν	3.972535	5.943590	9.445201
Ν	4.124952	5.928188	11.640276
С	3.430581	6.439587	10.589307
С	5.065058	4.980692	9.702959
Н	5.973514	5.271868	9.142219
Н	4.753849	3.971020	9.366114
С	5.251602	5.069634	11.217868
Н	5.188371	4.085335	11.719625
Н	6.211660	5.546470	11.503050
С	3.894736	6.173472	13.008560
С	4.799461	5.699090	13.981231
Н	5.695130	5.142689	13.676591
С	4.577638	5.934857	15.343242
Н	5.297807	5.556532	16.081400
С	3.441804	6.652410	15.754784
н	3.262809	6.840597	16.822942
С	2.535441	7.128471	14.804327
н	1.637398	7.693354	15.090025
С	2.738016	6.901866	13.423743
С	3.527458	6.169693	8.127452
С	2.450623	7.072781	7.870301
С	2.036937	7.278678	6.534658
н	1.195457	7.966146	6.374749
С	2.664070	6.620005	5.474748
н	2.320155	6.791387	4.444782
С	3.726124	5.735973	5.729061
н	4.226242	5.210209	4.904321
С	4.150746	5.514376	7.043993
Н	4.977393	4.815460	7.223598
0	-0.028665	8.833752	10.859081
0	2.415667	9.536130	10.899813
С	-1.389478	8.583490	11.316573
Н	-1.809880	9.582868	11.559832
С	-1.404991	7.749271	12.593069

С	-2.184789	7.987339	10.158818
Н	-2.146916	8.658069	9.277256
Н	-3.244680	7.850578	10.457472
Н	-1.770373	7.002438	9.867648
Н	-0.787771	8.235585	13.371751
Н	-1.013044	6.730036	12.413555
Н	-2.446832	7.668839	12.965311
С	3.769985	10.029399	10.686976
С	4.281958	9.670632	9.296438

С	4.664673	9.535717	11.819055
Н	3.692586	11.134616	10.756827
Н	4.464186	8.583068	9.192992
Н	5.238747	10.199771	9.110007
Н	3.552169	9.978475	8.524428
Н	4.802308	8.437588	11.773826
Н	4.225278	9.790337	12.802478
Н	5.663213	10.012908	11.745048