Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Unexpected Reactivity of Alkylaluminum Complex of Non-Innocent 1,2-bis[(2,6diisopropylphenyl)imino]acenaphthene Ligand (dpp-bian)

Mikhail V. Moskalev, Anton N. Lukoyanov, Evgenii V. Baranov, and Igor L. Fedushkin*

G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603137 Nizhny Novgorod, Russian Federation

Contents of supplementary information:

1.	¹ H spectrum of compound 2	S-2
2.	¹ H, ¹³ C and COSY NMR spectra of compound 3	S-2 – S-4
3.	¹ H, ¹³ C and COSY NMR spectra of compound 4	S-5 – S-7
4.	¹ H, ¹³ C and COSY NMR spectra of compound 5	S-8 – S-10
5.	Table of crystallographic data of compounds 2 , 3 , and 5	S-11

Figure 1S. ¹H NMR spectrum of compound 2 at 298 K in C_6D_6 , 400 MHz.

Figure 2S. ¹H NMR spectrum of compound 3 at 298 K in C_6D_6 , 400 MHz.

Figure 3S. ¹³C NMR spectrum of compound 3 at 298 K in C_6D_6 , 50 MHz.

Figure 4S. COSY ${}^{1}H-{}^{1}H$ NMR spectrum of compound **3** at 298 K in C₆D₆.

Figure 5S. COSY $^{1}H-^{13}C$ HSQC NMR spectrum of compound **3** at 298 K in C₆D₆.

Figure 6S. COSY $^{1}H-^{13}C$ HMBC NMR spectrum of compound 3 at 298 K in C₆D₆.

Figure 7S. ¹H NMR spectrum of compound 4 at 298 K in C_6D_6 , 400 MHz.

Figure 8S. 13 C NMR spectrum of compound 4 at 298 K in C₆D₆, 50 MHz.

Figure 9S. COSY ${}^{1}H-{}^{1}H$ NMR spectrum of compound **4** at 298 K in C₆D₆.

Figure 10S. COSY ${}^{1}H-{}^{13}C$ HSQC NMR spectrum of compound **4** at 298 K in C₆D₆.

Figure 11S. COSY ${}^{1}H-{}^{13}C$ HMBC NMR spectrum of compound 4 at 298 K in C₆D₆.

Figure 12S. The upfiled region of the COSY ${}^{1}H-{}^{15}N$ HSQC NMR spectrum of compound 4 at 298 K in C₆D₆.

Figure 13S. ¹H NMR spectrum of compound 5 at 298 K in C_6D_6 , 400 MHz.

Figure 14S. ¹³C NMR spectrum of compound 5 at 298 K in C_6D_6 , 50 MHz.

Figure 15S. COSY ${}^{1}H-{}^{1}H$ NMR spectrum of compound **5** at 298 K in C₆D₆.

Figure 16S. COSY ${}^{1}H-{}^{13}C$ HSQC NMR spectrum of compound **5** at 298 K in C₆D₆.

Figure 175. COSY ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of compound 5 at 298 K in C₆D₆.

Figure 18S. The upfiled region of the COSY ${}^{1}H-{}^{15}N$ HSQC NMR spectrum of compound 5 at 298 K in C₆D₆.

	2	3	5
Empirical Formula	$C_{53}H_{59}AIN_2O_3$	$C_{53}H_{69}AIN_2O$	$C_{76}H_{92}Al_2N_4O$
М	799.00	777.08	1131.49
Τ/Κ	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Orthorhombic	Triclinic
Space group	<i>P</i> 2(1)/n	<i>P</i> bca	P-1
a/Å	10.6249(5)	14.8988(4)	12.1969(4)
b/Å	21.9891(11)	16.8722(5)	14.9121(5)
c/Å	19.0941(9)	36.5541(11)	19.8954(7)
lpha/deg	90	90	80.879(1)
β /deg	94.695(1)	90	76.976(1)
γ/deg	90	90	66.171(1)
V/Å ³	4446.0(4)	9188.8(5)	3215.73(19)
Ζ	4	8	2
$d_{calc}/Mg \bullet m^{-3}$	1.194	1.123	1.169
μ(Mo Kα) mm⁻¹	0.091	0.083	0.093
F(000)	1712	3376	1220
Crystal size/mm	$0.80 \times 0.63 \times 0.45$	$0.39 \times 0.28 \times 0.18$	$0.29 \times 0.14 \times 0.11$
hetarange/degree	2.12 to 27.00	1.91 to 26.00	1.764 to 25.999
	$-13 \le h \le 12$	$-18 \le h \le 18$	$-15 \le h \le 15$
h, k, l	$-28 \le k \le 14$	$-20 \le k \le 20$	$-18 \le k \le 18$
	$-24 \le l \le 24$	$-45 \le I \le 45$	$-24 \le I \le 24$
Reflections Collected	28544	75827	28185
Independent Reflections	9695	9011	12541
R _{int}	0.0276	0.0974	0.0361
Data/Restraints/Param	9695 / 2 / 541	9011 / 1 / 534	12541 / 1 / 783
GooF	1.052	1.003	0.997
R ₁ /wR ₂ [I>2 σ (I)]	0.0443/0.1150	0.0456/ 0.1015	0.0472/0.1123
R_1/wR_2 (all data)	0.0603/0.1223	0.0846/ 0.1119	0.0740/0.1225
Larg. Diff. Peak and Hole∕e • Å⁻³	0.396 / -0.213	0.355 and -0.274	0.340 and -0.279

Table 1S. Crystal structure data for 2, 3 and 5.