Electronic Supplementary Information for:

Magnetic Frustration in a Hexaazatrinaphthylene-Bridged Trimetallic Dysprosium Single-Molecule Magnet

General Synthetic Details. All manipulations were carried out under dry, oxygen-free argon using standard Schlenk-line and glove-box techniques. Toluene was dried by refluxing over potassium for at least 3 days prior to distillation. The solvent was then transferred onto 4 Å molecular sieves and degassed with three freeze-pump-thaw cycles. Dysprosium nitrate hydrate and 2,2,6,6-tetramethylheptanedione (Hthd) were purchased from Alfa Aesar and Sigma Aldrich, respectively, and used as received. Tris(2,2,6,6-tetramethylheptanedionato)dysprosium(III) and hexaazatrinapthalene were prepared according to literature procedures.^{1,2} Elemental analysis was carried out at London Metropolitan University, UK. IR spectroscopy was carried out on a solid sample using a Bruker Alpha Diamond ATR spectrometer. UV-vis-NIR spectroscopy was carried out on a PerkinElmer Lambda-1050 spectrometer in the range $\lambda = 300-1600$ nm. X-Ray diffraction data was obtained using an Oxford Instruments XCalibur2 diffractometer using MoKa radiation.

Synthesis of $[{(thd)_3Dy}_3HAN]$ ·3(toluene) [1·3(toluene)]. Toluene (10 mL) was added to a mixture of Dy(thd)₃ (1.00 g, 1.40 mmol) and HAN (0.18 g, 0.47 mmol) at room temperature. The solution immediately turned dark red, with a small amount of yellow solid remaining, and the reaction was stirred at room temperature for 40 minutes until all of the yellow solid had been consumed. The mixture was filtered and concentrated to approximately 5 mL. The resulting precipitate was re-dissolved with gentle heating. Dark red crystals formed overnight upon storage at 2.5°C. A second crop of crystals was isolated after concentrating the supernatant solution (total isolated yield: 1.01 g, 86 %). Elemental analysis (%): calculated, C 58.59, H 7.31, N 3.33; found, C 58.66, H 7.45, N 3.22.

Figure S1. UV-vis spectrum of 1.3(toluene) in toluene.

Figure S2. IR spectrum of solid sample of 1.3(toluene).

Figure S3. ORTEP structure of 1 with thermal ellipsoids set at 50% probability level. Dy = green, O = red, N = blue, C = black (hydrogen atoms and CH_3 groups omitted for clarity).

Empirical formula	$C_{144}H_{207}Dy_3N_6O_{18}$
Formula weight	2797.64
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	30.2821(16)
b/Å	13.7793(5)
c/Å	34.9863(9)
α/°	90
β/°	96.055(3)
γ/°	90
Volume/Å ³	14517.1(10)
Ζ	4
$\rho_{calc}g/cm^3$	1.280
μ/mm^{-1}	1.590
F(000)	5820.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.05
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.944 to 50.7
Reflections collected	54065
Independent reflections	26550
Data/restraints/parameters	26550/883/1699
Goodness-of-fit on F ²	1.075
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0633, wR_2 = 0.1408$
Largest diff. peak/hole / e Å-3	1.64/-1.02
CCDC ref. code	1478313

Table S1. Crystal data and structure refinement for 1.3(toluene).

Bond	Length
Dy1-O1	2.297(5)
Dy1–O2	2.307(5)
Dy1–O3	2.298(5)
Dy1–O4	2.256(5)
Dy1-O5	2.268(6)
Dy1-06	2.342(5)
Dy1-N1	2.669(5)
Dy1-N2	2.646(6)
Dy2–O7	2.292(5)
Dy2–O8	2.271(5)
Dy2–O9	2.315(6)
Dy2010	2.251(6)
Dy2011	2.300(6)
Dy2012	2.285(5)
Dy2–N3	2.694(6)
Dy2–N4	2.699(6)
Dy3013	2.308(5)
Dy3014	2.259(5)
Dy3015	2.291(5)
Dy3016	2.263(5)
Dy3017	2.318(5)
Dy3018	2.305(5)
Dy3–N5	2.696(6)
Dy3–N6	2.760(6)

Table S2. Selected bond lengths (Å) for 1.

Magnetic property measurements

The magnetic properties of 1.3(toluene) were measured on a Quantum Design MPMS-7 SQUID magnetometer in a temperature range 1.8-300 K. The sample was prepared by restraining a polycrystalline sample in eicosane and flame-sealed in an NMR tube under vacuum.

Figure S4. The product of the molar magnetic susceptibility with temperature ($\chi_M T$) against temperature (*T*) for 1·3(toluene).

Figure S5. Field dependence of the magnetization for 1.3(toluene). The solid lines are a guide for the eye.

Figure S6. Frequency dependence of the in-phase (χ') and the out-of-phase (χ'') magnetic susceptibility for 1·3(toluene) using an oscillating field of $H_{ac} = 1.55$ Oe and zero applied field.

Figure S7. Frequency dependence of the in-phase (χ') and the out-of-phase (χ'') magnetic susceptibility for 1.3(toluene) using an oscillating field of $H_{ac} = 1.55$ Oe and an applied field of $H_{dc} = 1$ kOe.

Figure S8. Argand diagram for 1.3(toluene) in zero d.c. field.

Figure S9. Argand diagram for 1.3(toluene) in an applied field of $H_{dc} = 1$ kOe.

Figure S10. Arrhenius plots of $\ln \tau$ vs. T^{-1} for 1.3(toluene) in zero d.c. field.

Figure S11. Arrhenius plots of ln τ vs. T^{-1} for 1.3(toluene) in an applied field of $H_{dc} = 1$ kOe.

Figure S12. Magnetization (*M*) vs. field (*H*) hysteresis loops for 1.3(toluene) at 1.8 K and 2.2 K, using an average sweep rate of 1.93 mT s⁻¹.

Computational details

All calculations were carried out with MOLCAS 8.0 and are of the CASSCF/RASSI/SINGLE_ANISO type. The Cholesky decomposition threshold was set to $5 \cdot 10^{-9}$ to save disk space. Each Dy centre was calculated by using the fragment shown in Figure S13.

Figure S13. Structure of the calculated [(thd)₃Dy(HAN)] fragments. The hydrogen atoms are not shown.

Two basis set approximations have been employed: Basis 1 - small, and Basis 2 - large. Table S3 shows the contractions of the employed basis sets for all elements.

Table S3. Contractions of the employed	d basis sets in comp	outational approximations	1 and 2.
--	----------------------	---------------------------	----------

Basis 1	Basis 2
Dy.ANO-RCC-VDZP.	Dy.ANO-RCC-VTZP
O.ANO-RCC-VDZ	O.ANO-RCC-VDZP
N.ANO-RCC-VDZ	N.ANO-RCC-VDZP (close)
C.ANO-RCC-VDZ	N.ANO-RCC-VDZ (distant)
H.ANO-RCC-VDZ	C.ANO-RCC-VDZ
	H.ANO-RCC-VDZ

The active space of the CASSCF method included 9 electrons in 7 orbitals (4*f* orbitals of Dy^{3+} ion). We have mixed 21 sextets, 128 quartet and 130 doublet states by spin-orbit coupling. On the basis of the resulting spin-orbital multiplets, the SINGLE_ANISO program computed the local magnetic properties (*g*-tensors, magnetic axes, local magnetic susceptibility, etc.).

Table S4. Energies of the lowest Kramers doub	lets (cm ⁻¹)) of the Dy	v centres in com	plex 1
Table 54. Lifergies of the lowest Realities doub		j or the D_{1}	y condes in com	pica I.

Spin-orbit energies, cm ⁻¹							
Dy1 basis1 Dy1 basis2 Dy2 basis1 Dy2 basis2 Dy3 basis1 Dy3 basis							
0	0	0	0	0	0		
91	121	107	152	38	64		
188	238	177	252	135	177		
239	314	249	336	230	279		
304	379	333	421	310	369		
371	446	412	505	401	470		
422	549	501	627	456	542		
641	710	665	794	556	621		

Table 55. The g-factors of the lowest Kramers doublets (KD) of Dy centres in complex 1.							
I		Dy1_basis1	Dy1_basis2	Dy2_basis1	Dy2_basis2	Dy3_basis1	Dy3_basis2
КD		g	g	g	g	g	g
1	g _X	0.031	0.016	0.0071	0.0019	0.0046	0.0093
	g _Y	0.067	0.030	0.016	0.0046	0.039	0.018
	g _Z	19.05	19.29	19.69	19.95	19.03	19.12
2	g _X	0.18	0.098	0.054	0.0027	0.044	0.024
	g _Y	0.22	0.11	0.056	0.011	0.12	0.038
	g _Z	16.46	16.53	16.52	16.69	16.71	16.75
3	gx	0.37	0.13	0.34	0.18	0.27	0.079
	g _Y	0.74	0.31	0.41	0.28	0.37	0.15
	gz	14.65	14.38	14.48	14.31	13.67	13.84
4	g _X	1.89	0.48	0.54	1.35	0.95	1.13
	g _Y	3.49	1.00	1.31	2.03	1.45	1.28
	g _Z	11.80	11.89	11.05	11.36	11.01	10.98

Table S5 The σ -factors of the lowest Kramers doublets (KD) of Dy centres in complex 1

Account of the total magnetic interactions

Dy1-Dy3 Dy2-Dy3

Only one exchange fitting parameter was used for all Dy-Dy interactions, by using the following Hamiltonian:

$$\hat{H} = -[(J_{12}^{dip} + J^{exch})\hat{S}_{0,z1}\hat{S}_{2,z2} + (J_{13}^{dip} + J^{exch})\hat{S}_{0,z3}\hat{S}_{3,z3} + (J_{23}^{dip} + J^{exch})\hat{S}_{2,z2}\hat{S}_{3,z3}]$$

The Ising exchange parameters were calculated from Lines parameters by the expression:

 $J_{ij}^{I \sin g} = 25 J_{Lines} \cos \varphi_{ij}$

where φ_{ij} is the angle between the main anisotropy axes of the interacting sites.

The Lines parameter has been determined by fitting the experimental magnetic susceptibility data (Figure S14). The dipolar parameters were calculated straightforwardly.

Table So. Exchange interactions between Dy fons in complex 1. Ising parameters					
Molecule/app	roximation	$\mathbf{J_{dip}}^{*}$	J _{exch}		
	Dy1-Dy2	-0.29	-2.3		
Basis2	Dy1-Dy3	-0.29	-2.3		
	Dy2-Dy3	-0.28	-2.5		

Table S6. Exch	ange interactions	between Dy	ions in com	plex 1. Ising	parameters ((cm ⁻¹)	
						/ ·	

*contribution only from the Ising terms ~ $\hat{\mathcal{G}}_{z}$ to the dipolar coupling. In the calculation of the exchange spectrum the dipolar interaction included all terms.

Table S7. Energies (cm⁻¹) of the lowest exchange states in 1, considering the total magnetic interaction.

Basis 2	
0.00000	
0.00000	
0.00175	
0.00175	
0.08040	
0.08040	
2.47372	
2 47372	

Figure S14. Experimental vs. calculated magnetic susceptibility for 1. zJ'=-0.01 cm⁻¹.

Figure S15. Experimental vs. calculated magnetization for 1. zJ'=-0.01 cm⁻¹.

References

- 1. K. J. Eisentraut, R. E. Sievers, D. Coucouvanis and J. P. Fackler, *Inorg. Synth.*, 2007, 11, 94.
- S. Barlow, Q. Zhang, B. R. Kaafarani, C. Risko, F. Amy, C. K. Chan, B. Domercq, Z. A. Starikova, M. Y. Antipin, T. V. Timofeeva, B. Kippelen, J-L. Brédas, A. Kahn and S. R. Marder, *Chem. Eur. J.*, 2007, 13, 3537.