Supporting Information

Double-decker bis(tetradiazepinoporphyrazinato) rare earth complexes: crucial role of intramolecular hydrogen bonding

Ekaterina N. Tarakanova,^{*a} Stanislav A. Trashin,^a Anton O. Simakov,^b Taniyuki Furuyama,^c Alexander V. Dzuban,^d Liana N. Inasaridze,^e Pavel A. Tarakanov,^a Pavel A. Troshin,^e Victor E. Pushkarev,^a Nagao Kobayashi^c and Larisa G. Tomilova^{a,d}

^a Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation

^b Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo, Norway

^c Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

^d Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russian Federation

^e Institute for Problems of Chemical Physics, Russian Academy of Sciences, 1 Semenov Prospect, 142432 Chernogolovka, Moscow region, Russian Federation

Table of Contents

Table S1. Yields and MALDI-TOF/TOF mass spectrometric data for compounds 2a-g	S2
Figs. S1–S7 High-resolution mass spectra	S 3
Figs. S8–S15 ¹ H NMR spectra	S 7
Figs. S16–S19 ¹³ C NMR spectra	S12
Figs. S20–S36 Two-dimensional NMR spectra	S14
Table S2. Data from DOSY NMR experiments in CD ₂ Cl ₂	S31
Figs. S37–S41 UV-vis and fluorescence data for ligand 1	S31
Fig. S42 UV-vis spectra of neutral forms of complexes ["BuPhDzPz]2Ln ^{III} in CH2Cl2	S34
Figs. S43 and S44 Results of DLS measurements for 2a and 2d	S35
Fig. S45 ESR changes observed for the neutral form of 2g in solid state	S36
Figs. S47 and S48 MALDI-TOF mass spectra of the neutral forms of $2g$ and $2a$ after storage in CH_2Cl_2	S37
Thermal analysis details	S38
Fig. S48 Ion current curves for 2a and 2g	S38
Fig. S49 Possible scheme of thermal degradation of the double-deckers based on TG-MS data	S39
Fig. S50 CV of 2b , 2c , 2e	S40
Fig. S51 SWVA of 2a-g	S40
DFT calculations (Tables S3-S6)	S41
NBO analysis (Table S7)	S61
References	S65

Corresponding Author *tarakanova.ek.nik@gmail.com

Con	npound	Yield, %	Mass [M+H] ⁺	
			calculated ^a	found
2a	$C_{216}H_{224}LuN_{32}$	85	3444.814	3444.775
2b	$C_{216}H_{224}ErN_{32}$	65	3436.805	3436.963
2c	$C_{216}H_{224}DyN_{32} \\$	69	3432.801	3433.047
2d	$C_{216}H_{224}EuN_{32}$	75	3422.793	3423.041
2e	$C_{216}H_{224}NdN_{32}$	80	3413.784	3414.124
2f	$C_{216}H_{224}CeN_{32}$	55	3408.771	3408.771
2g	C216H224LaN32	83	3408.779	3409.169

Table S1. Yields and MALDI-TOF/TOF mass spectrometric data for compounds 2a-g

^{*a*} The value corresponds to the most abundant isotopic peak of the protonated molecular ion $[M+H]^+$, $M = [^{^{tBuPh}}DzPz]_2LnH$ or $[^{^{tBuPh}}DzPz]_2Ln$ for 2a-e, 2g and 2f, respectively.

High-resolution mass spectra

Fig. S1 MALDI-TOF/TOF mass spectrum of $[^{rBuPh}DzPz]_2Lu$ (2a). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).

Fig. S2 MALDI-TOF/TOF mass spectrum of $[^{BuPh}DzPz]_2Er$ (**2b**). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).

Fig. S3 MALDI-TOF/TOF mass spectrum of $[^{tBuPh}DzPz]_2Dy$ (2c). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).

Intens.·10²

Fig. S4 MALDI-TOF/TOF mass spectrum of $[^{tBuPh}DzPz]_2Eu$ (2d). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).

Fig. S5 MALDI-TOF/TOF mass spectrum of $[^{tBuPh}DzPz]_2Nd$ (**2e**). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).¹

Intens. 10°

Fig. S6 MALDI-TOF/TOF mass spectrum of $[^{tBuPh}DzPz]_2Ce$ (**2f**). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).²

Fig. S7 MALDI-TOF/TOF mass spectrum of $[^{rBuPh}DzPz]_2La$ (**2g**). Inset: isotopic pattern for the molecular ion (A) and simulated MS pattern of the molecular ion (B).¹

¹H NMR spectra

Fig. S8 ¹H NMR spectrum of $\mathbf{1}$ in CD₂Cl₂.

Fig. S9 ¹H NMR spectrum of 2a in CD_2Cl_2 .

Fig. S10 ¹H NMR spectrum of **2b** in CD_2Cl_2 .

Fig. S11 ¹H NMR spectrum of 2c in CD_2Cl_2 .

Fig. S12 ¹H NMR spectrum of **2d** in CD_2Cl_2 .

Fig. S13 ¹H NMR spectrum of 2e in CD₂Cl₂.¹

Fig. S14 ¹H NMR spectrum of 2f in CD₂Cl₂.²

Fig. S15 ¹H NMR spectrum of 2g in CD_2Cl_2 .¹

Fig. S16¹³C NMR spectrum of **1** in CDCl₃.

¹³C NMR spectra

Fig. S17 13 C NMR spectrum of 2a in CD₂Cl₂.

Fig. S18 ¹³C NMR spectrum of 2f in CD₂Cl₂.²

Fig. S19 ¹³C NMR spectrum of 2g in CD₂Cl₂.¹

Two-dimensional NMR spectra

Fig. S20 1 H- 1 H COSY of **1** in CD₂Cl₂.

Fig. S21 1 H- 13 C HSQC of 1 in CD₂Cl₂.

Fig. S22 1 H- 1 H NOESY of **1** in CD₂Cl₂.

Fig. S23 1 H- 13 C HMQC of 2a in CD₂Cl₂.

Fig. S24 1 H- 1 H NOESY of 2a in CD₂Cl₂.

Fig. S25 ¹H-¹H COSY NMR spectrum of **2c** in CD₂Cl₂.

Fig. S26 ¹H-¹H COSY NMR spectrum of 2d in CD₂Cl₂.

Fig. S27 ¹H-¹H NOESY NMR spectrum of 2d in CD₂Cl₂.

Fig. S28 1 H- 1 H COSY NMR spectrum of **2e** in CD₂Cl₂.¹

Fig. S29 ¹H-¹³C HMQC spectrum of 2e in CD₂Cl₂.

Fig. S30 ¹H-¹H NOESY NMR spectrum of 2e in CD₂Cl₂.¹

Fig. S32 1 H- 13 C HSQC spectrum of 2f in CD₂Cl₂.²

Fig. S33 ¹H-¹H NOESY NMR spectrum of 2f in CD₂Cl₂.

Fig. S34 1 H- 1 H COSY NMR spectrum of **2g** in CD₂Cl₂.¹

Fig. S35 1 H- 13 C HSQC NMR spectrum of 2g in CD₂Cl₂.¹

Fig. S36 1 H- 1 H NOESY NMR spectrum of 2g in CD₂Cl₂.¹

Table S2. Data from DOSY NMR experiments in CD₂Cl₂

Compound	Self-diffusion coefficients $(m^2 \cdot s^{-1})$
1	8.8.10-10
2f	$7.8 \cdot 10^{-10}$
2g	$8.1 \cdot 10^{-10}$
2a	7.6.10-10

UV-vis and fluorescence data for ligand 1

Fig. S37 The absorption spectra of ligand 1 at different concentrations (for NMR and UV-Vis, respectively) in CH₂Cl₂.

Fig. S38 The absorption spectra of ligand 1 at different concentrations (for NMR and UV-Vis, respectively) in pyridine.

Fig. S39 The absorption (black) and excitation (red) spectra of ligand 1 in THF and sulfuric acid.

As shown in Figure 39 the spectrum in THF (DCM, Py) corresponds to H-type dimer, while the spectrum in sulfuric acid can be regarded as that of monomer. The diazepine moieties are protonated by the action of sulfuric acid, becoming planar, which results in the dissociation of the dimer to the monomers (Scheme S1). Taking into account that excitation spectrum is of the same nature as that in sulfuric acid a very weak observed fluorescence is due to a small admixture of monomer. Thus, the ligand predominantly (>95%) exists as H-type dimer even at concentration of 10^{-6} mol L⁻¹.

Fig. S40 Absorbance at 684 nm vs. concentration plot for the ligand in pyridine. Line corresponds to the theoretical values, squares are experimental results.

Fig. S41 Absorbance at 636 nm vs. concentration plot for the ligand in pyridine. Line corresponds to the theoretical values, squares are experimental results.

Since during the transition from monomer to dimer the decrease in the Q_x -band and increase in the Q_y -band should be observed, the deviation from the Lambert-Beer law at concentration above $5 \cdot 10^{-5}$ mol L⁻¹ (Figs. S40 and S41) can be interpreted as an aggregation which is not associated with the dimer-monomer equilibrium.

Fig. S42 UV-vis spectra of neutral forms of complexes $[^{rBuPh}DzPz]_2Ln^{III}$ in CH_2Cl_2 .

Fig. S43 Results of DLS measurements for 2a in CH₂Cl₂ at 296 K; $R_h = 21$ nm.

Fig. S44 Results of DLS measurements for 2d in CH_2Cl_2 at 296 K; R_h = 22 nm.

Fig. S45 ESR changes observed for the neutral form of 2g in solid state.

Fig. S46 MALDI-TOF mass spectrum of the neutral form of 2g after storage in CH_2Cl_2 .

Fig. S47 MALDI-TOF mass spectrum of the neutral form of 2a after storage in CH₂Cl₂.

Thermal analysis details

According to evolved gas analysis (mass-spectrometry) the removal of physically adsorbed water takes place until 100 °C (m/z 17 and 18) and thereafter the dehydration of crystalline water occurs (Fig. S48). The smooth mass loss in the range of 200–350 °C under inert atmosphere presumably relates to recyclization of diazepine into pyrazine and imidazole with emission of CH₂ (at C6 atom in diazepine cycle) forming CH₂=CH₂ (m/z 28) (Fig. S49). According to quantum chemical calculations water is most likely confined between nitrogen atoms of neighboring diazepine fragments of one deck. Situated closely (less than 3.5 Å) to C6 atom it is able to interact with evolved radical resulting in CO formation (m/z 28) (Figs. S48 and S49). The presence of particles with m/z 106 and 119 in MS above 350 °C can be considered as the confirmation of suggested recyclization process. The decomposition of the macrocycle proceeds in two steps: in 350–450 °C elimination of *tert*-butylphenyl substituents occurs (m/z 133 μ 134, fragmented into *tert*-butyl, m/z 57 and 58, and benzene, m/z 77 and 78) and in 450–650 °C porphyrazine ring cracks. Degradation products, containing carbon and nitrogen, react with metal forming presumably the mixture of carbon and nitrogen containing lanthanide compounds as evidenced by a residual weight of ca. 40%.

Under oxidation atmosphere complex decomposition begins already at ca. 250 °C followed by active elimination and combustion of *tert*-butylphenyl substituents (m/z 27, 28, 44, 57, 58). Next are the destruction of macrocycle (m/z 13, 15, 16, 26–29) and gradual oxidation of diazepine and porphyrazine nitrogen atoms together with the elimination of water (360–460 °C, m/z 18 and 44). Within 420–520 °C one can see clearly two-stepped oxidation of carbon skeleton residues (m/z 12, 44). Finally, lanthanide oxide stable up to end temperature (1000 °C) is formed.

Fig. S48 Ion current curves for 2a heated in an argon atmosphere (top) and 2g heated in an air atmosphere (bottom).

Fig. S50 CV of 2b, 2c, 2e (0.5-1.0 mM, o-DCB, 0.15 M TBABF₄, scan rate of 0.1 V/s). E_{1/2}(Fc⁺/Fc) = 0.64 V.

Fig. S51 SWVA of **2a–g** (0.5-1.0 mM, *o*-DCB, 0.15 M TBABF₄, frequency of 10 Hz; amplitude of 50 mV; step potential of 5 mV). $E_{1/2}(Fc^+/Fc) = 0.64$ V. Designations: *- peak of background; ** - irregular weakly reversible peaks, probably, owing to traces of contaminants in the samples.

DFT calculations

Table S3. Cartesian coordinates (Angstrom) of ligand 1 without H_2O

Ν	-0.743662	1.787163	1.636945
Ν	0.743284	-1.787166	1.636989
Ν	-0.743217	-1.787291	-1.636903
Ν	0.743770	1.786982	-1.636945
Ν	-1.870985	-0.772191	1.653054
N	1 870628	0 772222	1 652909
N	-1 870578	0 772039	-1 652886
N	1.871093	-0 772326	-1 653032
N	-3 128203	1 303992	1.595604
N	3 127843	-1 303961	1.595561
N	-3 127788	-1.303701	-1 595/81
N	3 128317	1 303851	1 505601
N	1 287277	2 1 20085	1 628974
IN NI	1.20/3//	3.129065	1.020074
IN NI	-1.207/43	-3.129009	1.020970
IN N	1.28/819	-3.129189	-1.028911
N	-1.28/293	3.128896	-1.628891
N	-3.429834	4.243464	1.488459
N	3.429532	-4.243320	1.488546
N	-3.429470	-4.243410	-1.488416
Ν	3.429893	4.243369	-1.488586
Ν	-0.570273	5.424949	1.514601
Ν	0.570136	-5.425024	1.514553
Ν	-0.570092	-5.425159	-1.514451
Ν	0.570286	5.424752	-1.514682
Ν	-5.449450	-0.586002	1.515256
Ν	5.449106	0.586037	1.515495
Ν	-5.449068	0.585904	-1.515436
Ν	5.449555	-0.586129	-1.515222
Ν	-4.257414	3.442219	-1.546469
Ν	4.258002	-3.442465	-1.546301
Ν	-4.257873	-3.442333	1.546448
Ν	4.257525	3.442364	1.546462
С	-2.073791	2.127209	1.597653
С	2.073406	-2.127161	1.597666
Ċ	-2.073334	-2.127296	-1.597558
Ċ	2.073902	2.127056	-1.597675
C	-0.039418	2 967030	1 615004
C	0.039057	-2 967069	1 615069
C	-0.038981	-2 967192	-1 614974
C	0.039507	2 966834	-1 615028
C	-3 026654	-0.012874	1.612303
C	3.026094	0.012074	1.612244
C	-3.026256	0.012702	-1.612244
C	3.026761	0.012733	1 612282
C	2 147271	-0.013014	-1.012282
C	-2.147271	2.127334	-1.031830
C	2.14/797	-2.127011	-1.031099
C	-2.14/093	-2.12/4/0	1.031942
C	2.14/34/	2.12/518	1.031847
C	-2.249110	3.388141	1.403030
C	2.248775	-5.588084	1.405099
C	-2.248/02	-5.588203	-1.4649/1
C	2.249195	3.587995	-1.465134
C	-0.943295	4.127049	1.478070

С	0.942991	-4.127069	1.478094
С	-0.942914	-4.127194	-1.477964
С	0.943367	4.126870	-1.478146
С	-4.145122	-0.947871	1.496542
С	4.144782	0.947903	1.496619
Ċ	-4.144737	0.947750	-1.496595
Ċ	4 145226	-0 948003	-1 496494
Č	-3 598196	2.261825	-1 510556
C	3 598709	-2 262095	-1 510457
C	-3 598603	-2 261959	1 510539
C	3 598267	2.201939	1 510554
C C	2 448447	5.046831	0.026824
C	-2.440447	5.046526	0.020824
C	2.440340	-3.940330	0.020047
C	-2.448550	-3.940098	-0.020389
C	2.448439	3.940099	-0.020938
C	-5.941080	2.48/8/0	-0.046680
C	5.942053	-2.488020	-0.046347
C	-5.942015	-2.488003	0.046509
C	5.941747	2.487937	0.046665
C	-3.548211	5.432478	0.940487
С	3.548023	-5.432299	0.940508
С	-3.547968	-5.432430	-0.940473
С	3.548200	5.432410	-0.940657
С	-1.318024	6.351217	0.957247
С	1.317962	-6.351128	0.957016
С	-1.317978	-6.351259	-0.956987
С	1.317990	6.351050	-0.957317
С	-6.361483	1.345247	-0.955299
С	6.361929	-1.345430	-0.954968
С	-6.361829	-1.345329	0.955045
С	6.361543	1.345343	0.955341
С	-5.432461	3.575147	-0.979134
Ċ	5.433015	-3.575308	-0.978879
Ċ	-5.432934	-3.575208	0.979135
Č	5 432574	3 575233	0.979112
C	-4 747992	6 227004	1 271512
C	4 747793	-6 226808	1.271512
C C	-1 717665	-6.220000	-1 271679
C C	4.747828	6 227088	1 271860
C	4.747828	7 761210	1 202086
C	1.026200	7.701319	1.293980
C	1.030290	7 761407	1.293755
C C	1.026029	-7.701407	-1.293632
C	1.030038	1.071625	-1.294034
C	-/.//815/	-1.0/1625	1.274196
C	/.///831	1.0/1/20	1.2/4/12
C	-7.777789	1.0/1568	-1.274558
C	7.778261	-1.0/180/	-1.274154
С	-6.224301	4.777988	-1.306551
С	6.225109	-4.777949	-1.306413
С	-6.225060	-4.777763	1.306912
С	6.224566	4.777931	1.306697
С	-0.110518	8.046894	2.330063
С	0.111462	-8.046948	2.330515
С	-0.111493	-8.047082	-2.330505
С	0.110319	8.046685	-2.330037
С	-5.629547	5.750045	2.275257
С	5.629123	-5.750000	2.275599
С	-5.629132	-5.750028	-2.275500

С	5.629300	5.750237	-2.275738
С	-5.749433	5.654803	-2.315062
С	5.750452	-5.654777	-2.315011
С	-5.750377	-5.654439	2.315631
С	5.749850	5.654616	2.315390
С	-8.081415	-0.172835	2.328281
С	8.080973	0.173181	2.329043
С	-8.080985	0.172872	-2.328739
С	8.081544	-0.172924	-2.328152
С	-5.065189	7.439699	0.619489
С	5.065205	-7.439332	0.619348
С	-5.064593	-7.439983	-0.620095
С	5.064906	7.439881	-0.619973
С	-8.847804	1.663594	-0.565945
С	8.848216	-1.664254	-0.565807
С	-8.848131	-1.663893	0.565726
С	8.847879	1.663497	0.565941
Ċ	-1.638178	8.844283	0.613803
С	1.637336	-8.844196	0.612616
С	-1.638021	-8.844316	-0.613177
С	1.638036	8.844122	-0.613847
С	-7.432189	5.099137	-0.648251
С	7.433175	-5.098769	-0.648284
С	-7.433291	-5.098532	0.649062
С	7.432376	5.099146	0.648287
С	0.187853	9.367930	2.679798
С	-0.186870	-9.368013	2.680178
С	0.186577	-9.368148	-2.680391
С	-0.188136	9.367714	-2.679733
С	-6.778374	6.468846	2.619565
С	6.777938	-6.468793	2.619967
С	-6.777746	-6.469012	-2.620144
С	6.777955	6.469212	-2.620254
С	-6.467173	6.804212	-2.658878
С	6.468512	-6.803936	-2.659001
С	-6.468566	-6.803407	2.659996
С	6.467715	6.803906	2.659350
С	-9.408460	0.108665	2.669248
С	9.407983	-0.108388	2.670093
С	-9.408011	-0.108688	-2.669733
С	9.408597	0.108546	-2.669114
С	-6.217958	8.158374	0.965691
С	6.217956	-8.158000	0.965617
С	-6.217123	-8.158857	-0.966662
С	6.217504	8.158729	-0.966382
С	-10.177186	1.378782	-0.907744
С	10.177629	-1.379587	-0.907621
С	-10.177535	-1.379162	0.907518
С	10.177245	1.378668	0.907792
С	-1.337483	10.167597	0.965166
С	1.336645	-10.167544	0.963869
С	-1.337597	-10.167664	-0.964658
С	1.337241	10.167427	-0.965157
С	-8.149479	6.252871	-0.993794
С	8.150791	-6.252246	-0.994006
С	-8.151039	-6.251809	0.995170
С	8.149777	6.252773	0.993954
С	-7.075956	7.681513	1.969365

С	7.075691	-7.681331	1.969606
С	-7.075128	-7.681911	-1.970287
С	7.075428	7.681965	-1.970165
Ċ	-0.430171	10.436396	2.002562
Ċ	0.430310	-10.436428	2.002097
Č	-0 430949	-10 436555	-2.002612
$\hat{\mathbf{C}}$	0.429880	10.436197	-2.002518
c	-7 675399	7 106197	-2 002583
C C	7 676878	-7 105627	-2.002305
C	7.070878	7 105055	2.002820
C	7 675032	7 105884	2.004082
C	10 16 10 20	7.103884	2.003030
C	-10.464089	-0.499229	1.963640
C	10.403080	0.499214	1.964347
C	-10.463680	0.499049	-1.964051
C	10.464207	-0.4995/3	-1.9636/1
H	-0.920456	-0.376979	1.648227
Н	0.920093	0.377023	1.647940
Н	-0.920055	0.376813	-1.647880
Η	0.920563	-0.377117	-1.648194
Η	-5.092811	2.147371	0.593212
Η	5.093047	-2.147563	0.593388
Η	-5.093031	-2.147641	-0.593331
Η	5.092862	2.147362	-0.593182
Η	-2.100671	5.102008	-0.614138
Η	2.100621	-5.101603	-0.614199
Η	-2.100624	-5.101770	0.614295
Η	2.100687	5.101868	0.614029
Н	-6.755448	2.830610	0.613116
Н	6.755745	-2.830699	0.613573
Н	-6.755755	-2.830744	-0.613319
Н	6.755498	2.830629	-0.613174
Н	-2.776819	6.768528	-0.631024
Н	2.776805	-6 768127	-0.631282
н	-2 776802	-6 768322	0.631294
н	2 776828	6 768398	0.630910
н	0.357663	7 1961/1	2 847626
и П	0.356262	7 106245	2.847020
п п	-0.356262	7 106287	2.040373
п u	0.330300	7 105019	-2.040401
п	-0.337879	1.193910	-2.04/339
п	-3.3/3114	4.801224	2.772933
п	5.574557	-4.801282	2.112822
H	-5.3/4685	-4.801184	-2.112544
H	5.374935	4.801370	-2.772780
H	-4.802752	5.39/849	-2.814801
H	4.803703	-5.398021	-2.814/27
Н	-4.803608	-5.397609	2.815269
Н	4.803134	5.397723	2.815096
Η	-7.240518	0.286409	2.869339
Η	7.240021	-0.286007	2.870064
Η	-7.240058	-0.286343	-2.869778
Η	7.240661	0.286541	-2.869044
Η	-8.649131	2.330382	0.285494
Η	8.649485	-2.331427	0.285321
Η	-8.649416	-2.330986	-0.285466
Η	8.649243	2.329933	-0.285781
Η	-4.422431	7.821072	-0.185762
Н	4.422691	-7.820514	-0.186183
Н	-4.421652	-7.821592	0.184896

Η	4.422184	7.821205	0.185331
Η	-2.325449	8.660280	-0.224083
Η	2.323601	-8.660147	-0.226081
Η	-2.324746	-8.660272	0.225150
Η	2.325329	8.660137	0.224026
Н	-7.811357	4.460121	0.160811
Н	7.812298	-4.459620	0.160698
Н	-7.812520	-4.459428	-0.159903
Н	7 811281	4 460380	-0 161096
Н	0 903994	9 571274	3 493976
Н	-0.902303	-9 571418	3 494963
н	0.902294	-9 571559	-3 494924
н	-0 904328	9 571038	-3 493872
н	-7 448695	6.086461	3 407998
н	7 448014	-6.086600	3 408700
н	-7 448027	-6.086610	-3 408600
п Ц	7 448200	6 086020	3 408706
п u	6.086773	0.080920	-3.408790
п u	-0.080775	7.472107	-3.430155
п u	6.080200	7 471032	-3.430314
п	-0.000272	-7.471234	2 450945
п	0.08/303	7.4/1020	3.430843
H	-9.020329	0.802295	3.498/98
H	9.625763	-0.80161/	3.500002
H	-9.625833	-0.802153	-3.499433
H	9.626483	0.802159	-3.4986/3
H	-6.451085	9.09/188	0.438244
H	6.451217	-9.096/17	0.438057
H	-6.450086	-9.097874	-0.439508
H	6.450540	9.097619	-0.439031
Н	-10.996099	1.841295	-0.334276
H	10.996497	-1.842423	-0.334351
Η	-10.996415	-1.841779	0.334088
Η	10.996187	1.841108	0.334308
Η	-1.808743	10.996018	0.412738
Η	1.807169	-10.995917	0.410740
Η	-1.808380	-10.996036	-0.411748
Η	1.808510	10.995863	-0.412759
Η	-9.084297	6.490643	-0.461578
Η	9.085732	-6.489777	-0.461898
Η	-9.086110	-6.489308	0.463278
Η	9.084621	6.490506	0.461766
Η	-7.979733	8.251613	2.242094
Η	7.979501	-8.251385	2.242325
Η	-7.978764	-8.252125	-2.243245
Η	7.979080	8.252192	-2.243044
Η	-0.198629	11.478333	2.279794
Η	0.198781	-11.478393	2.279240
Η	-0.199730	-11.478517	-2.280024
Η	0.198252	11.478129	-2.279703
Н	-8.243763	8.011523	-2.273678
Н	8.245489	-8.010761	-2.274045
Н	-8.245781	-8.010048	2.275585
Н	0.044246	8 011165	2 274172
	8.244340	0.011105	2.2/41/2
Η	8.244346 -11.510783	-0.281402	2.234017
H H	8.244346 -11.510783 11.510353	-0.281402 0.281217	2.234017 2.234688
H H H	8.244346 -11.510783 11.510353 -11.510359	-0.281402 0.281217 0.281130	2.234017 2.234688 -2.234407

Table S4. Cartesian coordinates (Angstrom) of ligand 1 with $\mathrm{H_2O}$

0	-5.392710	2.735877	2.506967
0	-5.594001	-2.760558	-2.832725
0	5.592942	2.762933	-2.832860
0	5.393339	-2.734898	2.506107
0	2.660276	5.408880	2.534161
õ	2 791645	-5 597099	-2.971508
õ	-2 792636	5 598014	-2 973068
õ	-2 658457	-5 407687	2.575000
N	-0.702754	1 798561	0.947603
N	-0.674370	-1 802301	-2 283200
N	0.673828	1 803049	-2.283200
N	0.073828	1.803049	-2.265129
N	1 886544	-1.799119	0.947302
IN NI	-1.000344	-0.737773	0.940007
IN N	-1.8/9900	0.725829	-2.293789
IN N	1.8/9338	-0.725108	-2.294955
IN N	1.886480	0./3/261	0.940813
N	-3.086814	1.369219	1.048918
N	-3.063517	-1.393297	-2.202421
N	3.062980	1.394010	-2.201797
Ν	3.086825	-1.369751	1.048865
Ν	1.357569	3.090605	1.068642
Ν	1.389718	-3.091444	-2.231152
Ν	-1.390296	3.092148	-2.231628
Ν	-1.357487	-3.091102	1.068174
Ν	-3.336717	4.321480	1.200555
Ν	-3.304427	-4.310488	-1.912246
Ν	3.303623	4.311237	-1.910926
Ν	3.336715	-4.321924	1.201744
Ν	-0.399583	5.399453	1.342749
Ν	-0.345347	-5.421949	-2.081700
Ν	0.344484	5.422602	-2.082011
Ν	0.399676	-5.400096	1.342256
Ν	-5.420711	-0.403984	1.358816
Ν	-5.431114	0.343309	-2.055090
N	5.430628	-0.342679	-2.055696
N	5.420581	0.403192	1.358622
N	-4.348796	3.315476	-1.961337
N	-4 333741	-3 348664	1 273936
N	4 333936	3 347937	1 274134
N	4 348154	-3 314894	-1.961113
C	-2.021815	2 176488	1 008863
C	-1 989652	-2 188004	-2 211775
C	1 989089	2.100004	-2 211319
C	2 021829	-2 177042	1 008920
C	0.027494	2 954029	1.000920
C	0.027494	-2 959167	-2 230801
C	0.059994	2.959107	2 230002
C	0.000304	2.757019	-2.237772
C	-0.027438	-2.734378	1.0304/9
C	-3.013/22 2.000856	0.047870	1.027/32
C C	-2.777830	-0.075056	-2.229903
C C	2.777332	0.073930	-2.229380
C	3.013020	-0.030439	1.029/11
C	-2.218824	2.064490	-2.235108

С	-2.205034	-2.080444	1.023391
С	2.205049	2.079931	1.023648
Ĉ	2 218233	-2 063761	-2 234436
c	-2 165018	3 647735	1 0/8175
C	2.100018	3.640320	2.042202
C	-2.119933	-3.049330	-2.043393
C	2.119217	3.030003	-2.042873
C	2.165080	-3.648276	1.048492
C	-0.844375	4.144234	1.094999
С	-0.803151	-4.144443	-2.085788
С	0.802421	4.145093	-2.085709
С	0.844433	-4.144827	1.094731
С	-4.165453	-0.848046	1.103879
С	-4.154247	0.806648	-2.085408
С	4.153739	-0.805982	-2.085249
С	4.165392	0.847449	1.103826
С	-3.667752	2.139238	-2.070257
С	-3.663646	-2.179986	1.079460
Ĉ	3 663677	2 179403	1 079534
c	3 667234	-2 138555	-2 069906
C C	-2 301027	6 232666	0.055684
C C	-2.301927	5.025603	0.055084
C	-2.129720	-3.923003	-0.491144
C	2.127994	5.926255	-0.490445
C	2.302910	-6.233207	0.056297
C	-5.931844	2.154752	-0.492700
С	-6.296061	-2.358218	0.171878
С	6.295930	2.357300	0.171624
С	5.932691	-2.154368	-0.493845
С	-3.413742	5.593190	0.861803
С	-3.344263	-5.455250	-1.261889
С	3.343082	5.455802	-1.260226
С	3.414123	-5.593693	0.863277
С	-1.118909	6.440994	0.986504
С	-1.019497	-6.347455	-1.440605
Ċ	1.018266	6.348095	-1.440588
Ĉ	1 119313	-6 441553	0.986386
c	-6 351000	1.018296	-1 410208
C	-0.331707 6 /67066	1.010200	1.055674
C C	-0.407900	1 124401	1.055207
C	6 25 1925	1.134401	1.055507
C	0.331833	-1.01/803	-1.411008
C	-5.483804	3.355830	-1.299072
C	-5.613242	-3.443224	0.981135
C	5.613482	3.442199	0.981352
С	5.483513	-3.355538	-1.299480
С	-4.566022	6.391818	1.319806
С	-4.595663	-6.234432	-1.260542
С	4.594619	6.234750	-1.257417
С	4.566353	-6.391903	1.322059
С	-0.735787	7.777001	1.476191
С	-0.615952	-7.756517	-1.577603
С	0.615356	7.757288	-1.578168
С	0.736180	-7.777496	1.476260
С	-7.788018	-0.722756	1.566938
Ĉ	-7 756965	0 589889	-1 508704
č	7 756815	-0 589305	-1 511049
\tilde{c}	7 787007	0.701///2	1 566273
C	-6 781112	1 5016Q1	1.300273
C	-0.201143 6 277702	4.574001	1 107270
C	-0.3///92	-4.398222	1.48/3/8
C	0.378433	4.3963/2	1.48834/

С	6.280118	-4.594890	-1.327521
С	0.495680	7.950935	2.161842
Ċ	0.604958	-8.078679	-2.226395
Ċ	-0.606156	8 080148	-2.225509
\tilde{c}	-0.495514	-7 951573	2 161508
C	-5 29/03/	5 001874	2.101500
C	5 566015	6.022592	2.408000
C	-3.300013	-0.023382	-2.2/1011
C	5.565467	6.024872	-2.208198
C	5.294013	-5.991056	2.4/0/69
C	-6.093119	5.532493	-2.373258
С	-5.905718	-5.318706	2.613948
С	5.906779	5.315961	2.615786
С	6.090657	-5.533712	-2.372119
С	-7.928069	0.537671	2.206320
С	-8.070875	-0.654223	-2.115707
С	8.070014	0.654851	-2.118296
С	7.928056	-0.539409	2.204857
Ċ	-4.960941	7.570187	0.642077
\tilde{c}	-4 871716	-7 177512	-0 238728
C	4.870192	7 176607	-0.234/30
C	4.070172	7.570347	0.644805
C	4.901976	1 264765	0.044693
C	-8.803882	1.504/05	-0.937007
C	-8.932286	-1.543520	1.430588
C	8.932249	1.542256	1.430157
C	8.806272	-1.363788	-0.959817
С	-1.558529	8.909023	1.266683
С	-1.389588	-8.804540	-1.022496
С	1.390968	8.805065	-1.025320
С	1.559481	-8.909277	1.267703
С	-7.218980	4.888711	-0.306260
С	-7.589306	-5.006957	0.879536
С	7.589867	5.005631	0.880592
Ċ	7 219004	-4 888273	-0 307039
\tilde{c}	0.885970	9 218348	2 606023
C	1.037062	-9 407793	-2 294756
C	1.037002	0.400846	2.204730
C	-1.030367	9.409640	-2.295190
C	-0.883197	-9.218899	2.000321
C	-0.30/440	6.761529	2.932172
C	-6./60141	-6./55132	-2.2/4155
C	6.759588	6.756430	-2.269439
С	6.367879	-6.759808	2.934734
С	-6.846367	6.712135	-2.411542
С	-6.635853	-6.398622	3.122906
С	6.637207	6.395244	3.125649
С	6.843577	-6.713578	-2.410091
С	-9.174808	0.958043	2.679337
С	-9.394028	-1.108248	-2.145370
С	9.392946	1.109469	-2.148486
Ċ	9.174888	-0.960088	2.677356
\tilde{c}	-6.036798	8 335451	1 109181
C	-6.066908	-7 907549	-0.246812
\tilde{c}	6 065/120	7 906687	-0.240012
C	6 020210	1.700001	1 110466
C	0.038219	-0.334/99	1.112400
C	-10.129667	0.909745	-1.003111
C	-10.177157	-1.120990	1.917873
C	10.177197	1.119373	1.916937
С	10.129838	-0.908180	-1.006406
С	-1.166669	10.174233	1.725304

С	-0.956792	-10.134028	-1.106458
С	0.959880	10.135033	-1.110468
Ĉ	1 168194	-10 174364	1 727172
c	-7 968765	6 070834	-0.3/9218
C	-7.908703 8 216424	6.089204	1 202277
C	-0.310434 9.217227	-0.086304	1.393277
C	8.31/32/	0.080310	1.393271
C	7.968376	-6.0/0666	-0.349612
С	-6.736899	7.941484	2.261414
С	-7.010296	-7.707760	-1.269341
С	7.009293	7.707969	-1.263487
С	6.738110	-7.939821	2.264480
С	0.058045	10.336530	2.392508
С	0.260874	-10.440694	-1.736464
С	-0.258002	10.442541	-1.739631
С	-0.056609	-10.336810	2.394155
Ċ	-7.794607	6.979935	-1.406996
Ċ	-7 848890	-6 781799	2 521790
c	7 850152	6 778794	2.521750
C	7.000102	6.080660	1 406402
C	10.205860	-0.980000	2 520461
C	-10.303809	0.131304	2.339401
C	-10.427994	-0.331381	-1.390013
C	10.427435	0.333054	-1.593466
C	10.305953	-0.133501	2.537763
Н	-0.925121	-0.377403	0.868836
Η	-0.909575	0.384535	-2.324761
Η	0.909093	-0.383565	-2.323730
Η	0.924971	0.377102	0.869048
Η	-5.049599	1.799469	0.085359
Η	-5.651536	-2.104058	-0.700302
Η	5.650850	2.103205	-0.700151
Н	5.051365	-1.799359	0.085785
Н	-2.000291	5.536426	-0.757791
Н	-1 749638	-5.051520	0.082752
Н	1 747363	5 052161	0.083089
н	2 002176	-5 536347	-0 756940
и П	5.075407	1 822077	2 310122
п п	-5.075407	1.022977	2.510122
п	-3.220400	1 947269	-2.704102
п	5.223431	1.847208	-2./83830
H	5.074893	-1.822445	2.308841
H	-3.329683	4.849728	-2.592837
H	-3.231240	-4.769520	2.026466
H	3.232084	4.769713	2.026061
Н	3.328367	-4.847870	-2.592632
Η	-4.743592	3.293009	1.989714
Η	-4.822549	-3.304996	-2.504837
Η	4.821392	3.307127	-2.504720
Η	4.744138	-3.292824	1.989809
Η	1.750569	5.110979	2.291970
Η	1.874402	-5.238380	-2.894280
Н	-1.875424	5.239108	-2.896935
Н	-1.749353	-5.108548	2.291800
H	-6.715722	2.403076	0.235338
н	-7 254323	-2 694984	-0.250375
н	7 254047	2.074704	-0.251006
ц	6717951	2.074045	0.2231000
п u	0./1/031	-2.402033	0.232601
п	-2.020430	/.10/182	-0.42941/
H	-2.3686/3	-0./13831	0.235654
Н	2.366458	6./14550	0.236397

Η	2.621593	-7.167582	-0.429011
Η	1.162906	7.091157	2.324786
Η	1.239150	-7.275230	-2.630374
Η	-1.243235	7.277475	-2.626604
Η	-1.163602	-7.092223	2.323536
Η	-5.005749	5.073486	3.002073
Н	-5.370180	-5.282347	-3.060708
Н	5.370036	5.284403	-3.058107
Н	5.004926	-5.072659	3.003794
Н	-5.352397	5.320928	-3.158931
Н	-4 960824	-5 020455	3 091862
н	4 961990	5 017118	3 093541
н	5 348924	-5 323080	-3 157066
н	-7.054428	1 108028	2 300863
п Ц	7 264666	1.190920	2.507605
п ц	-7.204000	-1.267003	-2.510015
п	7.205552	1.200939	-2.319403
п	7.034309	-1.200725	2.308032
H	-8.591007	2.339587	-0.496395
H	-8.855270	-2.533128	0.959853
H	8.855172	2.532085	0.959892
H	8.592016	-2.338627	-0.498941
Н	-4.458559	7.865940	-0.291143
Η	-4.173058	-7.302573	0.602992
Η	4.171147	7.300917	0.607107
Η	4.459977	-7.866800	-0.288297
Η	-2.524903	8.805634	0.755059
Η	-2.346951	-8.583981	-0.528994
Η	2.348619	8.583923	-0.532610
Η	2.525977	-8.805723	0.756357
Η	-7.323693	4.217223	0.560121
Η	-7.943971	-4.512381	-0.036815
Η	7.944253	4.511793	-0.036263
Η	7.324942	-4.215930	0.558522
Η	1.851217	9.333245	3.126446
Н	1.996670	-9.639412	-2.786043
Н	-1.996389	9.642079	-2.785431
Н	-1.850609	-9.333968	3.126604
Н	-6.914987	6.440736	3.833400
Н	-7.500179	-6.583799	-3.073696
Н	7 500019	6 585880	-3 068787
Н	6 91 52 62	-6 438261	3 835791
н	-6 693938	7 427668	-3 236570
н	-6 256672	-6 9/1272	4 004028
н	6 2583/8	6 937105	4.007391
п Ц	6 600130	7 120708	3 23/336
П Ц	0.090130	1 044140	-3.234330
П	-9.202039	1.944149	3.104229
п	-9.019843	-2.083291	-2.003033
H	9.0181/1	2.086510	-2.607042
H	9.263018	-1.946502	3.161607
H	-6.338293	9.242324	0.560553
H	-6.2/1904	-8.622811	0.565691
H	6.270171	8.620903	0.572299
Н	6.340304	-9.241753	0.564300
Η	-10.931670	1.524503	-0.564847
Η	-11.054756	-1.778811	1.807268
Η	11.054818	1.777209	1.806606
Η	10.932289	-1.522684	-0.568610
Η	-1.825880	11.040986	1.554503

Η	-1.571061	-10.934416	-0.664440
Η	1.575936	10.935174	-0.670480
Η	1.827896	-11.040900	1.557133
Η	-8.679471	6.293316	0.462567
Η	-9.250137	-6.400267	0.898602
Η	9.250952	6.398638	0.900671
Η	8.679923	-6.292546	0.461602
Η	-7.578058	8.550522	2.632876
Η	-7.949536	-8.285594	-1.275082
Η	7.948524	8.285829	-1.268204
Η	7.579556	-8.548238	2.636305
Η	0.367733	11.333720	2.746707
Η	0.608288	-11.486234	-1.787898
Η	-0.604090	11.488470	-1.792106
Η	-0.365803	-11.333861	2.749179
Η	-8.388556	7.908431	-1.439887
Η	-8.426245	-7.628541	2.929065
Η	8.427788	7.625003	2.932556
Η	8.386421	-7.909457	-1.438961
Η	-11.287352	0.463631	2.916476
Η	-11.468652	-0.696249	-1.610423
Η	11.467918	0.698408	-1.614156
Η	11.287493	-0.465888	2.914402

Table S5. Cartesian coordinates (Angstrom) of La complex $\mathbf{2g}$

N	1 /08110	1 408342	1 645706	
N	-1.408119	1.408342	1.045790	
IN N	1.406277	-1.406301	1.043092	
IN NI	-0.000030	-1.993263	-1.403640	
IN N	-0.000004	1.995518	-1.403911	
N	-1.408198	-1.408383	1.645/28	
N	1.408357	1.408394	1.645719	
Ν	-1.993329	-0.000193	-1.463754	
Ν	1.993265	0.000215	-1.463968	
Ν	-3.390209	0.000027	1.668433	
Ν	3.390364	-0.000008	1.668489	
Ν	-2.396366	-2.396566	-1.506460	
Ν	2.396322	2.396596	-1.506503	
Ν	0.000137	3.390493	1.668146	
Ν	0.000052	-3.390468	1.668084	
Ν	2.396392	-2.396161	-1.506720	
Ν	-2.396429	2.396182	-1.506720	
Ν	-4.818475	2.631290	1.591802	
Ν	4.818622	-2.631210	1.592209	
Ν	-1.544021	-5.270080	-1.485145	
Ν	1.544056	5.270036	-1.485156	
Ν	-2.631156	4.818622	1.591352	
Ν	2.631262	-4.818602	1.591602	
Ν	1.544840	-5.269455	-1.486003	
Ν	-1.544798	5.269567	-1.485884	
Ν	-4.818567	-2.631200	1.591748	
Ν	4.818736	2.631114	1.592003	
N	-5.269871	-1.544623	-1.485421	
N	5.269801	1.544593	-1.485421	
N	-5.269746	1.544365	-1.485609	
÷ ,	2.207710	1.0 1 10 00	1.102.007	

Ν	5.269683	-1.544265	-1.485463
Ν	-2.631545	-4.818637	1.591041
Ν	2.631694	4.818660	1.591368
С	-2.764314	1.183320	1.668331
С	2.764466	-1.183287	1.668348
С	-1.117583	-2.791789	-1.500454
С	1.117539	2.791814	-1.500496
Č	-1.183137	2.764548	1.668144
Č	1.183311	-2.764501	1.668140
Ĉ	1.117649	-2.791501	-1.500700
Č	-1.117696	2.791544	-1.500690
C	-2.764370	-1 183302	1 668283
C	2.764522	1 183309	1 668333
Č	-2.791694	-1.117810	-1.500492
Č	2.791627	1.117840	-1.500575
C	-2.791687	1 117415	-1 500627
C	2 791635	-1 117396	-1 500656
c	-1 183266	-2 764607	1.668025
c	1 183448	2 764614	1.668125
c	-3 477646	2.704014	1 580433
c	3 477808	-2 475661	1.580622
c	-0 709142	-4 211524	-1 435976
c	0 709120	4 211524	-1.435968
c	-2 475560	3 477813	1 580273
C	2 475735	-3 477777	1.580275
C	0.709576	-4 211281	-1 /36269
C C	0.709570	4 211236	1 436206
C	-0.709001	4.211330	-1.430200
C	-3.477010	-2.475636	1.580524
C	<i>J</i> .477919 <i>A</i> 211467	0.700532	1.380301
C	-4.211407	-0.709332	1 426058
C	4.211362	0.709308	1 426106
C	-4.211437	0.709173	-1.430190
C	4.211304	-0.709134	-1.430109
C	-2.475720	-3.477041	1.500000
C	2.4/3914	3.477643	1.360266
C	-4.549472	4.349324	0.08/9/0
C	4.5499/1	-4.549481	0.088070
C	0.001115	-0.482733	-0.019830
C	-0.000932	0.482740	-0.019732
C	-0.482411	0.000033	-0.019308
C	0.482348	0.000071	-0.019557
C	-4.349038	-4.348839	0.08/430
C	4.550053	4.549040	0.088041
C	-5.3/8/28	3.666619	1.007664
C	5.3/905/	-3.666599	1.008382
C	-1.2038/6	-6.418//8	-0.944044
C	1.204013	6.418/4/	-0.944021
C	-3.666590	5.378783	1.007318
C	3.666/35	-5.3/888/	1.007757
C	1.205512	-6.418315	-0.9447/97
C	-1.205334	6.418413	-0.944713
C	-6.418533	-1.204678	-0.944104
C	6.418477	1.204820	-0.944082
C	-5.378833	-3.666435	1.007437
C	5.379139	3.666377	1.007905
С	-6.418435	1.204691	-0.944202
С	6.418382	-1.204744	-0.944032
С	-3.667071	-5.378525	1.006864

С	3.667225	5.378655	1.007316
С	-6.801898	3.934267	1.297254
С	6.802231	-3.933960	1.298211
С	-1.999851	-7.611543	-1.295214
С	2.000018	7.611466	-1.295288
С	-3.933913	6.802109	1.296414
С	3.933712	-6.802283	1.296807
Ċ	2.001792	-7.610665	-1.296707
Ĉ	-2.001512	7.610842	-1.296580
C	-6 801863	-3 934437	1 297394
c	6 802271	3 933952	1 297743
c	-7 611214	-2 000835	-1 295134
c	7.611013	2.0000000	-1 295161
c	-7 610988	2.001100	-1.295761
C	7 610776	-2.001021	-1.295168
C	2 025222	-2.001288 6 801638	1 206247
C	-3.933223	-0.801038	1.290247
C	3.933112	0.801823	1.290037
C	-3.16/904	7.452757	2.297620
C	3.16/433	-7.452804	2.297874
C	2.980696	-7.502751	-2.31/866
C	-2.980124	7.503148	-2.318042
С	-7.452018	3.169289	2.299569
С	7.452389	-3.167917	2.299702
С	-2.977503	-7.505038	-2.317709
С	2.977718	7.504821	-2.317721
С	-7.503895	2.979496	-2.316908
С	7.503295	-2.980176	-2.316385
С	-3.171120	-7.451964	2.299091
С	3.170749	7.452096	2.299337
С	-7.451872	-3.169753	2.300002
С	7.452456	3.168208	2.299439
С	-7.504381	-2.979142	-2.316966
С	7.503851	2.979811	-2.316660
С	-7.553039	4.912462	0.606220
С	7.553416	-4.912671	0.607974
С	-1.839045	-8.857520	-0.647677
Č	1.839140	8.857543	-0.647964
C	-8 857403	-1 839591	-0.648129
c	8 857339	1 839939	-0.648420
c	-7 552997	-4 912658	0.606394
c	7 553350	4 912691	0.000374
C	-4 912704	7 552026	0.007428
C	4.912704	7.552342	0.005885
C	4.912243	-7.333343	0.000170
C	1.840009	-0.03/3/3	-0.031213
C	-1.839984	8.85/606	-0.650758
C	-8.85/293	1.839/91	-0.648474
C	8.857204	-1.840113	-0.648609
C	-4.913055	-7.552544	0.604447
C	4.912847	7.552870	0.604867
C	-3.387979	8.798948	2.605786
С	3.387137	-8.799102	2.605928
С	3.756384	-8.606362	-2.686678
С	-3.755744	8.606823	-2.686813
С	-8.797991	3.389895	2.608416
С	8.798434	-3.388023	2.608543
С	-3.752816	-8.609131	-2.685900
С	3.752969	8.608894	-2.686100
С	-8.607720	3.755249	-2.684967

С	8.606908	-3.756281	-2.684319
С	-3.392152	-8.797935	2.607652
Ĉ	3 391521	8 798126	2 607829
č	-8 797721	-3 390671	2 609173
C	8 708/1/	3 388575	2.007175
C	8 608242	2 754724	2.000500
C	-0.000342	-3.734724	-2.06496J
C	8.007033	5.755074	-2.084014
C	-8.902534	5.131499	0.916229
C	8.902985	-5.131230	0.918008
C	-2.61/558	-9.963220	-1.01//40
C	2.61/624	9.963211	-1.018183
С	-9.962978	-2.618364	-1.018027
С	9.962732	2.619001	-1.018246
С	-8.902370	-5.132002	0.916720
С	8.902865	5.131492	0.917527
С	-5.131263	8.902641	0.915272
С	5.130381	-8.903163	0.915391
С	2.618969	-9.962795	-1.021898
С	-2.618807	9.962893	-1.021411
С	-9.962720	2.618768	-1.018385
С	9.962422	-2.619440	-1.018403
С	-5.132536	-8.902029	0.914188
С	5.132023	8.902429	0.914494
C	-9.529313	4.378391	1.922125
C	9.529731	-4.377246	1.923258
C	-3.571673	-9.847910	-2.041269
Ċ	3 571850	9 847738	-2.041589
Č	-4.377190	9.529912	1.920134
Č	4.376108	-9.530303	1.920185
Ĉ	3.574484	-9.846027	-2.043948
Č	-3 573993	9 846359	-2.043794
Ċ	-9 846771	3 573867	-2.040920
Č	9 846154	-3 574783	-2.040670
c	-4 380433	-9 528962	1 920736
c	4 379695	9 529297	1 920917
c	-9 529012	-4 379247	1 922966
C	9 529663	4 377742	1.922900
C	-9 847300	-3 573255	-2 040790
C	9 846741	3 574169	-2.040711
н	-5 575898	0.000083	0.633428
н	5 576131	0.000003	0.633566
н	-3 895773	-3 895038	-0 538855
н	3 896136	3 805345	-0.538332
и П	3 805721	3 805/71	0.538/32
и П	3 806274	3 805667	0 537708
11 11	0.001008	-3.893007	-0.537790
п	0.001008	-3.370403	0.033369
п	-0.000799	0.000127	0.033433
п u	-1.570925	0.000137	0.020927
п u	5 169006	5 167707	0.020700
п u	-3.108990	-3.10//9/	-0.383083
п u	J.107400 5 160716	J.10/900 5 160/20	-0.302903
П U	-3.100/10	J.100430	-0.3830/9
П U	J.1093/U	-3.108383	-0.382240
П U	0.001683	-1.3/1330	0.020203
П U	-0.001431	1.3/131/	0.020303
п u	-2.400880	0.002027	2.8218/1
H	2.400541	-0.801929	2.822122
н	3.104390	-0.323288	-2.808333

Η	-3.103887	6.525786	-2.808948
Н	-6.861016	2.402908	2.824426
Н	6.861454	-2.400791	2.823542
Н	-3.100854	-6.528232	-2.809836
Н	3.100987	6.527988	-2.809817
н	-6 526904	3 102998	-2 808629
н	6 526124	-3 103850	-2 807693
н	-2 404826	-6 861238	2.807695
н Ц	2 404507	6 861265	2.824580
н Ц	6 860028	0.001205	2.824385
п u	-0.800928 6 861578	-2.403277	2.824785
п ц	6 5 27 4 67	2.401160	2.023494
п u	-0.32/40/	-5.102725	-2.000010
п u	0.320817	3.103413	-2.606239
п ц	-0.900010	-1.119363	0.173200
п	8.908933 7.002296	1.119033	0.1/4091
п	-7.092380	-3.49/813	-0.201448
H	7.092557	5.498588	-0.199/69
H	-7.092264	5.497893	-0.201332
H	7.092639	-5.498639	-0.1991/8
H	-1.119655	-8.968562	0.1/6324
H	1.119642	8.968/20	0.1/5916
H	-5.498909	7.091710	-0.200853
H	5.498449	-7.092249	-0.200636
H	1.119325	-8.969823	0.171412
Н	-1.119544	8.969672	0.172159
Н	-8.968897	1.119583	0.174710
Н	8.968985	-1.119701	0.174382
Η	-5.497561	-7.091723	-0.203757
Η	5.497440	7.092111	-0.203310
Η	-2.788622	9.285923	3.393332
Η	2.787516	-9.286032	3.393301
Η	4.507017	-8.504230	-3.488607
Η	-4.506066	8.504891	-3.489056
Η	-9.284657	2.791096	3.396573
Η	9.285028	-2.788663	3.396322
Η	-4.502233	-8.508190	-3.489112
Η	4.502603	8.507786	-3.489089
Η	-8.506228	4.505560	-3.487276
Η	8.505172	-4.506759	-3.486444
Η	-2.794337	-9.284625	3.396538
Η	2.793455	9.284807	3.396530
Η	-9.284257	-2.792169	3.397636
Η	9.285077	2.789376	3.396243
Η	-8.507089	-4.504808	-3.487535
Η	8.506130	4.505976	-3.486931
Η	-9.471175	5.892540	0.357983
Η	9.471554	-5.892999	0.360682
Η	-2.481595	-10.922536	-0.492998
Η	2.481721	10.922567	-0.493498
Η	-10.922442	-2.482088	-0.493640
Η	10.922313	2.482689	-0.494086
Н	-9.470956	-5.893187	0.358614
Н	9.471368	5.893239	0.360102
Н	-5.892987	9.470960	0.357632
Н	5.891898	-9.471670	0.357659
Н	2.482333	-10.922833	-0.498660
Н	-2.482259	10.922846	-0.497991
Н	-10.922253	2.482574	-0.494101

Η	10.922115	-2.483111	-0.494453
Η	-5.893496	-9.470416	0.355569
Η	5.892885	9.470935	0.355864
Η	-10.589233	4.556800	2.168153
Η	10.589799	-4.555054	2.169080
Η	-4.179318	-10.720542	-2.332804
Η	4.179330	10.720395	-2.333395
Η	-4.554988	10.590106	2.165427
Η	4.553652	-10.590546	2.165457
Η	4.182347	-10.718303	-2.336092
Η	-4.181869	10.718666	-2.335818
Η	-10.719256	4.181684	-2.332538
Η	10.718403	-4.183064	-2.332024
Η	-4.559000	-10.588959	2.166319
Η	4.558092	10.589324	2.166500
Η	-10.588870	-4.557812	2.169150
Η	10.589676	4.555780	2.168820
Η	-10.719860	-4.181015	-2.332299
Η	10.719134	4.182227	-2.332100
La	0.000054	0.000038	0.087626

Table S6. Cartesian coordinates (Angstrom) of Lu complex 2a

N	-1.387755	1.387765	1.350093	
Ν	1.387573	-1.387763	1.350150	
Ν	-0.000008	-1.964770	-1.358027	
Ν	0.000011	1.964806	-1.358100	
Ν	-1.387776	-1.387753	1.350127	
Ν	1.387580	1.387731	1.350177	
Ν	-1.964748	-0.000037	-1.358104	
Ν	1.964803	0.000059	-1.357981	
Ν	-3.377944	0.000010	1.512827	
Ν	3.377759	-0.000050	1.513014	
Ν	-2.388730	-2.388808	-1.524311	
Ν	2.388774	2.388803	-1.524324	
Ν	-0.000091	3.377992	1.512764	
Ν	-0.000139	-3.377992	1.512841	
Ν	2.388782	-2.388665	-1.524354	
Ν	-2.388722	2.388731	-1.524522	
Ν	-4.800865	2.605839	1.544202	
Ν	4.800632	-2.606120	1.544325	
Ν	-1.549953	-5.239831	-1.560071	
Ν	1.550263	5.239634	-1.560398	
Ν	-2.606417	4.800811	1.543845	
Ν	2.605909	-4.800808	1.544329	
Ν	1.550462	-5.239428	-1.560510	
Ν	-1.550159	5.239722	-1.560423	
Ν	-4.800888	-2.605881	1.544181	
Ν	4.800667	2.605841	1.544654	
Ν	-5.239662	-1.550186	-1.560444	
Ν	5.239647	1.550278	-1.560253	
Ν	-5.239543	1.550247	-1.560586	
Ν	5.239692	-1.550113	-1.560288	
Ν	-2.606376	-4.800807	1.543952	
Ν	2.606135	4.800749	1.544299	

С	-2.743832	1.171282	1.468514
С	2.743675	-1.171332	1.468638
С	-1.111724	-2.769042	-1.480485
С	1.111755	2.769000	-1.480589
C	-1.171380	2,743901	1.468436
Č	1 171132	-2 743861	1 468579
\tilde{c}	1 111774	-2 768886	-1 480582
C	-1 111734	2.769005	-1 480674
C C	-2 7/3850	-1.171273	1 /68583
C C	2.743650	1 171273	1.400505
C	2.743057	1.171234	1.400729
C C	-2.708934	-1.111/90	-1.460300
C	2.708998	1.111716	-1.480440
C	-2.768927	1.111/10	-1.480677
C	2.769018	-1.1116/8	-1.480455
C	-1.1/1410	-2.743881	1.468548
C	1.171188	2.743852	1.468583
С	-3.460498	2.461748	1.477028
С	3.460275	-2.461854	1.477210
С	-0.706026	-4.188766	-1.491956
С	0.706164	4.188729	-1.492155
С	-2.461965	3.460452	1.476892
С	2.461654	-3.460457	1.477174
С	0.706272	-4.188625	-1.492109
С	-0.706129	4.188747	-1.492187
С	-3.460516	-2.461750	1.477151
С	3.460304	2.461715	1.477402
С	-4.188693	-0.706163	-1.492135
С	4.188735	0.706217	-1.491882
С	-4.188654	0.706132	-1.492204
С	4.188753	-0.706079	-1.491910
С	-2.461975	-3.460434	1.477071
С	2.461756	3.460393	1.477246
С	-4.592659	4.591824	0.118479
С	4.592148	-4.592379	0.118929
С	0.000682	-6.489318	-0.129193
С	0.000103	6.489291	-0.129258
С	-6.489456	0.000160	-0.129570
С	6.489641	0.000096	-0.129386
С	-4.592405	-4.591740	0.118313
С	4.592503	4.591977	0.119097
С	-5.387060	3.659124	1.022953
С	5.386662	-3.659550	1.023175
С	-1.219339	-6.397236	-1.034724
С	1.219989	6.397079	-1.034960
Ċ	-3.659996	5.386590	1.022673
C	3.659344	-5.386879	1.023242
Č	1.220388	-6.396944	-1.035118
Č	-1.219779	6.397134	-1.034959
Č	-6.397164	-1.219783	-1.035198
Č	6.397216	1.219962	-1.035104
Ĉ	-5.386978	-3.659140	1.022756
Ĉ	5.386870	3.659159	1.023487
Ĉ	-6.397061	1.220019	-1.035278
Č	6.397240	-1.219768	-1.035105
č	-3.659828	-5.386583	1.022531
č	3.659675	5.386652	1.023221
Ĉ	-6.809734	3,884021	1.350055
č	6.809360	-3.884517	1.350135
-			

С	-2.067803	-7.562626	-1.355303
С	2.068888	7.562199	-1.355359
С	-3.885268	6.809290	1.349396
С	3.884316	-6.809538	1.350364
С	2.069288	-7.561950	-1.355938
Ċ	-2.068495	7.562374	-1.355427
C	-6 809726	-3 884044	1 349508
C	6 809576	3 883948	1 350534
c	-7 562329	-2.068521	-1 355866
C	7 56228	2.068753	1 355005
C C	7.562133	2.000755	1 356033
C	7.562270	2.008803	-1.330033
C	2 995176	-2.008449	-1.550050
C	-5.005170	-0.009204	1.349196
C	3.884/20	0.809372	1.550005
C	-3.013822	7.442811	2.274810
C	3.014348	-7.442080	2.275555
C	3.129392	-/.39///8	-2.284782
C	-3.128289	7.398880	-2.284/35
C	-7.442726	3.014288	2.275570
C	7.442390	-3.015080	2.275897
С	-3.12/4/8	-7.399346	-2.284784
С	3.129182	7.398364	-2.284042
С	-7.398213	3.128647	-2.285283
С	7.398605	-3.127905	-2.285700
С	-3.016133	-7.442720	2.275046
С	3.014807	7.442866	2.275000
С	-7.443133	-3.014050	2.274497
С	7.442570	3.014118	2.275956
С	-7.398452	-3.128763	-2.284599
С	7.398205	3.128779	-2.284946
С	-7.578202	4.916148	0.765415
С	7.577847	-4.916375	0.765033
С	-1.889493	-8.830731	-0.757250
С	1.890466	8.830526	-0.757825
С	-8.830721	-1.890052	-0.758481
С	8.830782	1.890476	-0.758774
С	-7.577953	-4.916301	0.764782
С	7.578122	4.915970	0.765807
С	-4.917547	7.577291	0.764400
С	4.916694	-7.577873	0.765992
С	1.890998	-8.830482	-0.758802
С	-1.890328	8.830520	-0.757424
С	-8.830471	1.890879	-0.758388
С	8.830648	-1.890625	-0.758206
C	-4.917045	-7.577406	0.763630
C	4.917109	7.577477	0.765334
Č	-3.186458	8.788893	2.611441
Č	3.184654	-8.788675	2.612698
Č	3.969212	-8.467436	-2.609570
C	-3 967946	8 468812	-2.609076
č	-8.788698	3.184601	2.612788
č	8.788405	-3.185436	2.612929
č	-3 966888	-8 469438	-2.609237
č	3 969085	8 468147	-2 608226
č	-8 467943	3 968403	-2 610024
č	8 468474	-3 967453	-2 610684
č	-3 186870	_8 788812	2.611613
C	3 1850029	8 789000	2.011013
\sim	5.105070	0.,0,00	2.011330

C	0 700205	2 10/16/	2 611007
C	-8./89305	-3.184104	2.011007
С	8.788608	3.184238	2.613004
С	-8.468252	-3.968554	-2.608997
С	8.467931	3.968484	-2.609814
Ċ	-8 927871	5 085705	1 105216
C	8 927569	-5.085950	1 10/608
C	0.927309	-3.083930	1.104008
Č	-2.732035	-9.902742	-1.084246
C	2.733515	9.902225	-1.084553
С	-9.902446	-2.732983	-1.085429
С	9.902431	2.733340	-1.086179
С	-8.927807	-5.085685	1.103910
С	8.927866	5.085316	1.105410
Ĉ	-5 087435	8 927055	1 103615
C	5 086243	8 027562	1.105015
C	2 722052	-0.927302	1.105720
C	2.755955	-9.902073	-1.080130
C	-2./3312/	9.902368	-1.084295
С	-9.902129	2.733774	-1.085674
С	9.902382	-2.733344	-1.085700
С	-5.086986	-8.927181	1.102770
С	5.086637	8.927310	1.104467
C	-9 537720	4 227140	2.033845
C	0 537/38	1.227110	2.033525
C	2 760657	-4.227707	2.033323
C	-3.709037	-9.750404	-2.014130
C	3.//1/95	9.729386	-2.013602
C	-4.229044	9.537474	2.032012
С	4.227435	-9.537563	2.034024
С	3.771964	-9.728933	-2.015470
С	-3.770907	9.729864	-2.013968
С	-9.729257	3.771422	-2.015446
С	9.729670	-3.770621	-2.015913
Ĉ	-4 229063	-9 537488	2 031674
c	1 227794	9 537693	2.032468
C	4.227794	9.557095	2.032408
C	-9.338099	-4.220787	2.031919
C	9.537706	4.226669	2.033971
С	-9.729582	-3.771162	-2.014587
С	9.729399	3.771224	-2.015654
Η	-5.598594	0.000138	0.546109
Η	5.598831	0.000102	0.546364
Н	-3.966005	-3.965334	-0.562559
н	3.966239	3.965728	-0.562047
н	-3 966331	3 965522	-0 562544
н	3 965865	-3.966158	-0 562230
11 11	0.000702	-5.700150	-0.502250
п	0.000702	-3.398370	0.346389
H	0.000101	5.598322	0.546286
Н	-7.398293	0.000222	0.496659
Н	7.398562	0.000126	0.496724
Η	-5.239118	-5.238208	-0.498606
Η	5.239349	5.238587	-0.497535
Н	-5.239484	5.238350	-0.498263
н	5 238866	-5 239142	-0 497677
н	0.000943	-7 398094	0 497125
ц	0.000743	7 308022	0.407120
п	0.000138	1.370023	0.47/120
H	-2.206/13	6.838292	2./128/5
H	2.205106	-6.837/934	2.713048
Η	3.266215	-6.402981	-2.735272
Η	-3.264955	6.404435	-2.736050
Н	-6.837854	2.205263	2.713303
Н	6.837526	-2.206213	2.713934

Η	-3.264325	-6.404907	-2.736058
Η	3.266078	6.403748	-2.734911
Η	-6.403562	3.265271	-2.736156
Η	6.404006	-3.264425	-2.736718
Η	-2.207256	-6.838144	2.713458
Н	2.205559	6.838297	2.712736
Н	-6.838482	-2.204861	2.712230
Н	6.837659	2.205136	2.713712
Н	-6.403753	-3.265782	-2.735248
Н	6.403429	3.265627	-2.735474
Н	-8.987964	-1.100122	-0.010013
Н	8.988147	1.100776	-0.010080
Н	-7.128715	-5.587869	0.020159
Н	7.129233	5.587325	0.020768
Н	-7.129287	5.587488	0.020386
Н	7 128939	-5 587381	0.019689
н	-1 100024	-8 987493	-0.008182
н	1 100440	8 987748	-0.009451
н	-5 588670	7 127954	0.019431
н	5 588237	-7 128852	0.021206
н	1 101106	-8 987971	-0.010336
н	-1 100726	8 987466	-0.008538
н	-8.987710	1 101375	-0.000336
н	8 087737	-1 101/65	-0.009430
н Н	-5 587748	-7.128158	0.018228
п ц	5 588507	7 128185	0.018228
п u	2 502006	0.262028	2 226056
п u	-2.303900	9.203038	2 2 2 2 9 0 5 0
п ц	2.301703	8 320083	3.337608
п u	4.783109	-0.320903	-3.337098
п u	-4.763096	0.322030	2 2 2 2 2 4 0 0
п ц	-9.202397	2.501840	3.336400
п u	9.202122	-2.302942	2.227961
п u	-4.782405	-0.323000	-3.337604
п u	4.703211	0.321937 4 794025	-3.330146
п	-0.321000	4.764023	-3.330499
п	8.522289	-4.782803	-3.339484
H	-2.504642	-9.2628//	3.337524
H	2.502167	9.203110	3.330/43
H	-9.263337	-2.501202	3.336212
H	9.262302	2.501405	3.338551
H	-8.322037	-4./845/5	-3.33/034
H	8.321555	4./8429/	-3.338051
H	-9.509549	5.892888	0.631473
H	9.509260	-5.892910	0.630504
H	-2.580078	-10.880062	-0.598/90
H	2.581474	10.8/9/26	-0.599485
H	-10.880024	-2.580847	-0.600548
H	10.880109	2.581357	-0.601447
H	-9.509267	-5.893003	0.630134
H	9.509590	5.892439	0.631621
H	-5.894689	9.508370	0.629553
H	5.893642	-9.509124	0.632204
H	2.581981	-10.8/9772	-0.601464
H	-2.581318	10.8/9704	-0.598824
H	-10.879663	2.582037	-0.600577
H	10.879865	-2.581734	-0.600459
H	-5.893946	-9.508575	0.628305
Н	5.894029	9.508683	0.630708

Η	-10.598013	4.365533	2.302858
Η	10.597767	-4.366131	2.302386
Η	-4.429099	-10.575999	-2.271319
Η	4.431591	10.574693	-2.270628
Η	-4.367660	10.597858	2.300555
Η	4.365815	-10.597874	2.302973
Η	4.431692	-10.574153	-2.272951
Η	-4.430493	10.575295	-2.271126
Η	-10.574531	4.431100	-2.272878
Η	10.575014	-4.430133	-2.273537
Η	-4.367691	-10.597895	2.300124
Η	4.366105	10.598142	2.300914
Η	-10.598582	-4.364946	2.300313
Η	10.598056	4.364903	2.302844
Η	-10.574877	-4.430940	-2.271696
Η	10.574672	4.430859	-2.273193
Lu	-0.000047	0.000008	-0.004192

NBO analysis

Table S7. Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

Threshold for printing: 0.50 kcal/mol (Intermolecular threshold: 0.05 kcal/mol)

(intermolecular unconord, 0.05 keal/mor)								
		E(2) $E(j)$ - $E(i)$ $F(i,j)$						
Donor NBO (i)	Acceptor NBO (j)	kcal/mol a.u. a.u.						

S7-A Ligand 1 without H₂O (see Table S3 and Figs. 1A,B)

from unit 1 to unit 2

595. LP (1) N ^{meso}	9	/***. RY*(1) H ^{ax} 189	0.11	0.97	0.009
595. LP (1) N ^{meso}	9	/***. BD*(1) C 69 - H ^{ax} 189	4.28	0.66	0.049
596. LP (1) N ^{meso}	10	/***. RY*(1) H ^{ax} 190	0.11	0.97	0.009
596. LP (1) N ^{meso}	10	/***. BD*(1) C 70 - H ^{ax} 190	4.28	0.66	0.049
599. LP (1) N ^{meso}	13	/***. RY*(1) H ^{ax} 196	0.11	0.97	0.010
599. LP (1) N ^{meso}	13	/***. BD*(1) C 68 - H ^{ax} 196	4.17	0.66	0.048
600. LP (1) N ^{meso}	14	/***. RY*(1) H ^{ax} 195	0.11	0.97	0.010
600. LP (1) N ^{meso}	14	/***. BD*(1) C 67 - H ^{ax} 195	4.17	0.66	0.048
from unit 2	2 to unit	1					
597. LP (1) N ^{meso}	11	/***. RY*(1) H ^{ax} 191	0.11	0.97	0.009
597. LP (1) N^{meso}	11	/***. BD*(1) C 71 - H ^{ax} 191	4.28	0.66	0.049
598. LP (1) N ^{meso}	12	/***. RY*(1) H ^{ax} 192	0.11	0.97	0.009
598. LP (1) N^{meso}	12	/***. BD*(1) C 72 - H ^{ax} 192	4.28	0.66	0.049
601. LP (1) N ^{meso}	15	/***. RY*(1) H ^{ax} 194	0.11	0.97	0.010
601. LP (1) N ^{meso}	15	/***. BD*(1) C 66 - H ^{ax} 194	4.17	0.66	0.048
602. LP (1) N ^{meso}	16	/***. RY*(1) H ^{ax} 193	0.11	0.97	0.010
602. LP (1) N ^{meso}	16	/***. BD*(1) C 65 - H ^{ax} 193	4.16	0.66	0.048

Notes to S7-A: units 1,2 denote $^{^{rBuPh}}DzPzH_2$ subunits in ligand dimer 1.

from unit 1 to unit 9

615. LP (1) O 1 615. LP (1) O 1 615. LP (1) O 1	/***. RY*(1) H ^{o-Ar} 233 /***. RY*(1) H ^{o-Ar} 241 /***. BD*(1) C 117 - H ^{o-Ar} 233	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
615. LP (1) O 1 616. LP (2) O 1 616. LP (2) O 1	/***. BD*(1) C 125 - H ^{o-Ar} 241 /***. BD*(1) C 117 - H ^{o-Ar} 233 /***. BD*(1) C 125 - H ^{o-Ar} 241	0.630.880.0210.070.660.0062.150.680.034
from unit 9 to unit 1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/***. BD*(1) O 1 - H 205 /***. BD*(1) O 1 - H 213 /***. RY*(1) H 213 /***. BD*(1) O 1 - H 213 /***. BD*(1) O 1 - H 205	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
from unit 1 to unit 10		
616. LP (2) O 1 616. LP (2) O 1	/***. RY*(1) H ^{ax} 197 /***. RY*(1) H ^{o-Ar} 257 /***. BD*(1) C 77 – H ^{eq} 221 /***. BD*(1) C 141 - H ^{o-Ar} 257	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
from unit 4 to unit 9		
621. LP (1) O 4 621. LP (1) O 4 621. LP (1) O 4 621. LP (1) O 4 622. LP (1) O 4 622. LP (2) O 4	/***. RY*(1) H ^{o-Ar} 236 /***. RY*(1) H ^{o-Ar} 244 /***. BD*(1) C 120 - H ^{o-Ar} 236 /***. BD*(1) C 128 - H ^{o-Ar} 244 /***. BD*(1) C 120 - H ^{o-Ar} 236 /***. BD*(1) C 128 - H ^{o-Ar} 244	$\begin{array}{cccccccc} 0.23 & 0.85 & 0.013 \\ 0.09 & 1.02 & 0.008 \\ 0.60 & 0.86 & 0.020 \\ 0.63 & 0.88 & 0.021 \\ 0.07 & 0.66 & 0.006 \\ 2.17 & 0.68 & 0.034 \end{array}$
from unit 9 to unit 4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/***. BD*(1) O 4 - H 208 /***. BD*(1) O 4 - H 216 /***. RY*(1) H 216 /***. BD*(1) O 4 - H 216 /***. BD*(1) O 4 - H 208	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
from unit 4 to unit 10		
621. LP (1) O 4 621. LP (1) O 4 622. LP (2) O 4	/***. RY*(1) H ^{ax} 200 /***. BD*(1) C 80 - H ^{ax} 200 /***. RY*(1) H ^{ax} 200 /***. RY*(1) H ^{o-Ar} 260 /***. BD*(1) C 80 - H ^{eq} 224 /***. BD*(1) C 144 - H ^{o-Ar} 260	$\begin{array}{cccccc} 0.06 & 1.24 & 0.008 \\ 0.10 & 0.83 & 0.008 \\ 0.10 & 1.05 & 0.009 \\ 0.15 & 0.71 & 0.009 \\ 0.41 & 0.65 & 0.014 \\ 0.12 & 0.65 & 0.008 \end{array}$
from unit 5 to unit 9		
623. LP (1) O 5 623. LP (1) O 5 624. LP (2) O 5 624. LP (2) O 5	/***. RY*(1) H ^{o-Ar} 229 /***. RY*(1) H ^{o-Ar} 239 /***. BD*(1) C 113 - H ^{o-Ar} 229 /***. BD*(1) C 123 - H ^{o-Ar} 239 /***. BD*(1) C 113 - H ^{o-Ar} 229 /***. BD*(1) C 123 - H ^{o-Ar} 239	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$\begin{array}{cccc} 639. \ LP \left(\begin{array}{c} 1 \right) N^{meso} \ 21 \\ 639. \ LP \left(\begin{array}{c} 1 \right) N^{meso} \ 21 \\ 647. \ LP \left(\begin{array}{c} 1 \right) N^{Dz} \ 29 \\ 657. \ LP \left(\begin{array}{c} 1 \right) N^{Dz} \ 39 \\ 657. \ LP \left(\begin{array}{c} 1 \right) N^{Dz} \ 39 \end{array}$	/***. BD*(1) O 5 - H 211 /***. BD*(1) O 5 - H 217 /***. BD*(1) O 5 - H 217 /***. BD*(1) O 5 - H 217 /***. RY*(1) H 211 /***. BD*(1) O 5 - H 211	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
from unit 5 to unit 10		
623. LP (1) O 5 624. LP (2) O 5	/***. BD*(1) C 75 - H ^{ax} 203 /***. RY*(1) H ^{ax} 203 /***. RY*(1) H ^{o-Ar} 251 /***. BD*(1) C 75 - H ^{eq} 227 /***. BD*(1) C 131 - H ^{o-Ar} 251	$\begin{array}{ccccccc} 0.09 & 0.84 & 0.008 \\ 0.09 & 1.06 & 0.009 \\ 0.16 & 0.72 & 0.010 \\ 0.39 & 0.65 & 0.014 \\ 0.14 & 0.65 & 0.009 \end{array}$
from unit 8 to unit 9		
629. LP (1) O 8 629. LP (1) O 8 630. LP (2) O 8 630. LP (2) O 8	/***. RY*(1) H ^{o-Ar} 232 /***. RY*(1) H ^{o-Ar} 238 /***. BD*(1) C 116 - H ^{o-Ar} 232 /***. BD*(1) C 122 - H ^{o-Ar} 238 /***. BD*(1) C 116 - H ^{o-Ar} 232 /***. BD*(1) C 122 - H ^{o-Ar} 238	$\begin{array}{cccccc} 0.10 & 1.01 & 0.009 \\ 0.23 & 0.85 & 0.013 \\ 0.64 & 0.88 & 0.021 \\ 0.67 & 0.85 & 0.021 \\ 2.20 & 0.68 & 0.035 \\ 0.06 & 0.66 & 0.006 \end{array}$
from unit 9 to unit 8		
$\begin{array}{cccc} 642. \ LP \left(\begin{array}{c} 1 \right) N^{meso} \ 24 \\ 642. \ LP \left(\begin{array}{c} 1 \right) N^{meso} \ 24 \\ 650. \ LP \left(\begin{array}{c} 1 \right) N^{Dz} \ 32 \\ 656. \ LP \left(\begin{array}{c} 1 \right) N^{Dz} \ 38 \\ 656. \ LP \left(\begin{array}{c} 1 \right) N^{Dz} \ 38 \end{array}$	/***. BD*(1) O 8 - H 210 /***. BD*(1) O 8 - H 220 /***. BD*(1) O 8 - H 220 /***. BD*(1) O 8 - H 220 /***. RY*(1) H 210 /***. BD*(1) O 8 - H 210	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
from unit 8 to unit 10		
629. LP (1) O 8 629. LP (1) O 8 630. LP (2) O 8	/***. RY*(1) H ^{ax} 202 /***. BD*(1) C 74 - H ^{ax} 202 /***. RY*(1) H ^{ax} 202 /***. RY*(1) H ^{o-Ar} 250 /***. BD*(1) C 74 - H ^{eq} 226 /***. BD*(1) C 130 - H ^{o-Ar} 250	$\begin{array}{ccccccc} 0.06 & 1.25 & 0.008 \\ 0.09 & 0.84 & 0.008 \\ 0.09 & 1.06 & 0.009 \\ 0.16 & 0.72 & 0.010 \\ 0.39 & 0.65 & 0.014 \\ 0.14 & 0.65 & 0.008 \end{array}$
from unit 2 to unit 10		
617. LP (1) O 2 617. LP (1) O 2 618. LP (2) O 2 618. LP (2) O 2	/***. RY*(1) H ^{o-Ar} 234 /***. RY*(1) H ^{o-Ar} 242 /***. BD*(1) C 118 - H ^{o-Ar} 234 /***. BD*(1) C 126 - H ^{o-Ar} 242 /***. BD*(1) C 118 - H ^{o-Ar} 234 /***. BD*(1) C 126 - H ^{o-Ar} 242	$\begin{array}{ccccccc} 0.16 & 0.87 & 0.011 \\ 0.14 & 1.01 & 0.011 \\ 0.22 & 0.88 & 0.013 \\ 1.58 & 0.90 & 0.034 \\ 0.10 & 0.62 & 0.007 \\ 1.06 & 0.64 & 0.023 \end{array}$
from unit 10 to unit 2		
$\begin{array}{cccc} 636. \ LP \ (& 1 \) \ N^{meso} & 18 \\ 636. \ LP \ (& 1 \) \ N^{meso} & 18 \\ 644. \ LP \ (& 1 \) \ N^{Dz} & 26 \\ 644. \ LP \ (& 1 \) \ N^{Dz} & 26 \\ 652. \ LP \ (& 1 \) \ N^{Dz} & 34 \\ \end{array}$	/***. BD*(1) O 2 - H 206 /***. BD*(1) O 2 - H 214 /***. RY*(1) H 214 /***. BD*(1) O 2 - H 214 /***. BD*(1) O 2 - H 214 /***. BD*(1) O 2 - H 206	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

from unit 2 to unit 9

618. LP (2) ()	2	/***. RY*(1) H ^{ax} 198	0.13	0.88	0.010
618. LP (2	0 (2	/***. BD*(1) C 78 - H ^{ax} 198	2.79	0.59	0.036

from unit 3 to unit 10

619. LP (1) O 3 619. LP (1) O 3 620. LP (2) O 3 620. LP (2) O 3	/***. RY*(1) H ^{o-Ar} 235 /***. RY*(1) H ^{o-Ar} 243 /***. BD*(1) C 119 - H ^{o-Ar} 235 /***. BD*(1) C 127 - H ^{o-Ar} 243 /***. BD*(1) C 119 - H ^{o-Ar} 235 /***. BD*(1) C 127 - H ^{o-Ar} 243	$\begin{array}{ccccccc} 0.16 & 0.87 & 0.011 \\ 0.14 & 1.01 & 0.011 \\ 0.22 & 0.88 & 0.013 \\ 1.57 & 0.90 & 0.034 \\ 0.10 & 0.62 & 0.007 \\ 1.05 & 0.64 & 0.023 \end{array}$
from unit 10 to unit 3		
$\begin{array}{cccc} 637. \ LP \ (& 1) \ N^{meso} & 19 \\ 637. \ LP \ (& 1) \ N^{meso} & 19 \\ 645. \ LP \ (& 1) \ N^{Dz} & 27 \\ 645. \ LP \ (& 1) \ N^{Dz} & 27 \\ 653. \ LP \ (& 1) \ N^{Dz} & 35 \\ \end{array}$	/***. BD*(1) O 3 - H 207 /***. BD*(1) O 3 - H 215 /***. RY*(1) H 215 /***. BD*(1) O 3 - H 215 /***. BD*(1) O 3 - H 207	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
from unit 3 to unit 9		
620. LP (2) O 3 620. LP (2) O 3	/***. RY*(1) H ^{ax} 199 /***. BD*(1) C 79 - H ^{ax} 199	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
from unit 6 to unit 10		
625. LP (1) O 6 625. LP (1) O 6 625. LP (1) O 6 625. LP (1) O 6 626. LP (2) O 6 626. LP (2) O 6	/***. RY*(1) H ^{o-Ar} 230 /***. RY*(1) H ^{o-Ar} 240 /***. BD*(1) C 114 - H ^{o-Ar} 230 /***. BD*(1) C 124 - H ^{o-Ar} 240 /***. BD*(1) C 114 - H ^{o-Ar} 230 /***. BD*(1) C 124 - H ^{o-Ar} 240	$\begin{array}{cccccc} 0.14 & 1.01 & 0.011 \\ 0.17 & 0.87 & 0.011 \\ 1.11 & 0.90 & 0.028 \\ 0.20 & 0.88 & 0.012 \\ 1.07 & 0.64 & 0.023 \\ 0.08 & 0.61 & 0.006 \end{array}$
from unit 10 to unit 6		
$\begin{array}{c} 640.\ LP\ (\ 1)\ N^{meso}\ 22\\ 640.\ LP\ (\ 1)\ N^{meso}\ 22\\ 640.\ LP\ (\ 1)\ N^{meso}\ 22\\ 648.\ LP\ (\ 1)\ N^{Dz}\ 30\\ 658.\ LP\ (\ 1)\ N^{Dz}\ 40\\ 658.\ LP\ (\ 1)\ N^{Dz}\ 40\\ \end{array}$	/***. RY*(1) H 218 /***. BD*(1) O 6 - H 212 /***. BD*(1) O 6 - H 218 /***. BD*(1) O 6 - H 218 /***. RY*(1) H 212 /***. BD*(1) O 6 - H 212	$\begin{array}{cccccc} 0.06 & 0.97 & 0.007 \\ 0.53 & 0.65 & 0.017 \\ 2.81 & 0.65 & 0.039 \\ 3.00 & 0.65 & 0.041 \\ 0.17 & 1.01 & 0.012 \\ 14.10 & 0.66 & 0.089 \end{array}$
from unit 6 to unit 9		
626. LP (2) O 6 626. LP (2) O 6	/***. RY*(1) H ^{ax} 204 /***. BD*(1) C 76 - H ^{ax} 204	$\begin{array}{cccc} 0.17 & 0.90 & 0.011 \\ 1.30 & 0.59 & 0.025 \end{array}$
from unit 7 to unit 10		
627. LP (1) O 7 627. LP (1) O 7 627. LP (1) O 7 627. LP (1) O 7 628. LP (2) O 7 628. LP (2) O 7	/***. RY*(1) H ^{o-Ar} 231 /***. RY*(1) H ^{o-Ar} 237 /***. BD*(1) C 115 - H ^{o-Ar} 231 /***. BD*(1) C 121 - H ^{o-Ar} 237 /***. BD*(1) C 115 - H ^{o-Ar} 231 /***. BD*(1) C 121 - H ^{o-Ar} 237	$\begin{array}{cccccc} 0.14 & 1.01 & 0.011 \\ 0.17 & 0.87 & 0.011 \\ 1.11 & 0.90 & 0.028 \\ 0.20 & 0.88 & 0.012 \\ 1.10 & 0.64 & 0.024 \\ 0.08 & 0.61 & 0.006 \end{array}$

641. LP (1) N ^{meso} 23	/***. RY	·*(1) H 219		0.06	0.97	0.00	7
641. LP (1) N^{meso} 23	/***. BD	*(1) O 7 - H 20)9	0.52	0.65	0.01	7
641. LP (1) N^{meso} 23	/***. BD)*(l) O 7 - H 2	19	2.80	0.65	0.03	9
649. LP (1	$) N^{D_z} 31$	/***. BD*	(1)	0 7 - H 219)	2.99	0.65	0.04	-1
655. LP (1	$) N^{DZ} 3/$	/***. RY*	$\begin{pmatrix} 1 \end{pmatrix}$	H 209	、 、	0.17	1.01	0.01	2
655. LP (1	$) N^{22} 3/$	/***. BD*	(1)	O 7 - H 209)	14.06	0.66	0.08	9
from unit 7 t	to unit 9								
627. LP (1)07	***. BD*(1) C	73 - H ^{ax} 201	0	.06	0.86	0.006	
628. LP (2) 0 7 /	***. RY*(1)H	^{ax} 201	0	.17	0.90	0.011	
628. LP (2)07 /	****. BD*(1) C	73 - H ^{ax} 201	1	.29	0.59	0.025	
from unit 9 to	o unit 10								
635. LP (1) N ^{meso} 17	/***. RY	·*(1) H ^{ax} 197		0.23	1.08	8 0.01	5
635. LP (1) N ^{meso} 17	/***. BD	*($(1) C 77 - H^{ax}$	197	5.38	0.67	0.05	5
638. LP (1) N ^{meso} 20	/***. RY	`*(`	$1) H^{ax} 200$		0.23	1.08	0.01	5
638. LP (1	$) N^{meso} 20$	/***. BD	*(1) C 80 - H^{ax}	200	5.36	0.67	0.05	5
639. LP (1) N ^{meso} 21	/***. RY	*(1) H ^{ax} 203		0.24	1.09	0.01	5
639. LP (1) N ^{meso} 21	/***. BD	*(1) C 75 - H ^{ax}	203	5.26	0.67	0.05	5
642. LP (1) N ^{meso} 24	/***. RY	*(1	1) H ^{ax} 202		0.24	1.09	0.01	5
642. LP (1) N ^{meso} 24	/***. BD	*(1	1) C 74 - H^{ax}	202	5.27	0.67	0.05	5
647. LP (1) N ^{Dz} 29	/***. BD*	(1)	C 75 - H ^{ax} 2	03	0.48	0.68	0.01	7
650. LP (1) N ^{Dz} 32	/***. BD*	(1)	C 74 - H ^{ax} 2	02	0.47	0.68	0.017	
651. LP (1) N ^{Dz} 33	/***. BD*	(1)	C 77 - H ^{ax} 1	97	0.42	0.68	0.016	
654. LP (1) N ^{Dz} 36	/***. BD*	(1)	C 80 - H ^{ax} 2	00	0.42	0.68	0.016	
from unit 10	to unit 9								
636. LP (1) N ^{meso} 18	/***. BD	*(1) C 78 - H ^{ax}	198	0.3	0 0.6	6 0.0	13
637. LP (1) N ^{meso} 19	/***. BD	*(1	1) C 79 - H^{ax}	199	0.3	1 0.6	66 0.0	13
640. LP (1) N ^{meso} 22	/***. BD	*(1	1) C 76 - H^{ax}	204	0.6	0 0.6	66 0.0	18
641. LP (1) N ^{meso} 23	/***. BD	*(1	1) C 73 - H^{ax}	201	0.6	0 0.6	66 0.0	18
648. LP (1) N ^{Dz} 30	/***. BD*	(1)	C 76 - H ^{ax} 2	04	0.3	8 0.6	0.0	15
649. LP (1) N ^{Dz} 31	/***. BD*	(1)	C 73 - H ^{ax} 2	01	0.3	8 0.6	0.0	15
652. LP (1	$) N_{p}^{Dz} 34$	/***. BD*	(1)	C 78 - H ^{ax} 1	98	0.2	7 0.6	0.0	12
653. LP (1	$) N^{Dz} 35$	/***. BD*	(1)	C 79 - H ^{ax} 1	99	0.2	7 0.6	0.0	12

Notes to **S7-B**: units 1,4,5,8 denote H₂O near unit 9 ($^{tBuPh}DzPzH_2$ subunit in the ligand dimer 1); units 2,3,6,7 – H₂O near unit 10 ($^{tBuPh}DzPzH_2$ subunit in the ligand dimer 1).

References

from unit 10 to unit 7

- 1. E. N. Tarakanova, S. A. Trashin, P. A. Tarakanov, V. E. Pushkarev and L. G. Tomilova, Dyes Pigm., 2015, 117, 61-63.
- E. N. Tarakanova, O. A. Levitskiy, T. V. Magdesieva, P. A. Tarakanov, V. E. Pushkarev and L. G. Tomilova, New J. Chem., 2. 2015, **39**, 5797-5804.