SUPPLEMENTARY INFORMATION

MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres

for high-performance supercapacitor

Guo-Chang Li,^a Peng-Fei Liu,^a Rui Liu,^b Minmin Liu,^b Kai Tao,^a Shuai-Ru Zhu,^a Meng-Ke Wu,^a Fei-Yan Yi^a and Lei Han^{*a,c}

^a State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China

^b Ministry of Education Key Laboratory of Advanced Civil Engineering Material, College of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai, 201804, , China

^c Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China

* Corresponding Author. Tel: +86-574-87600782; Email: hanlei@nbu.edu.cn

Fig. S1. FT-IRspectrum of MOF precursor

Fig. S2. XRD patterns of the MOF precursor

Fig. S3. SEM of MOF precursor. (a,b) 1.5h; (c,d) 6h; (e,f) 12h.

Fig. S4. The TGA curve of MOF precursor.

Fig. S5. CV curves of MOF precursor electrode at different scan rates; (b) GCD curves of MOF precursor electrode at different current densities; (c) The corresponding specific capacitance of MOF precursor electrode calculated by the GCD curves; (d) Cycle performance of MOF precursor electrode at the current density of 5.2 A g^{-1} for 400 cycles.