Electronic Supplementary information

An electron poor iridium pincer complex in catalytic alkane dehydrogenation

Oleksandr O. Kovalenko and Ola F. Wendt*

Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124,

S-221 00 Lund, Sweden. E-mail: <u>ola.wendt@chem.lu.se</u>

Contents

1. Tables	
2. NMR-spectra	

	4	5	6	8
Formula	$C_{24}H_{38}F_6O_2P_2\\$	$C_{24}H_{37}ClF_6IrO_2P_2$	C ₁₆ H ₃₁ ClIrOP	$C_{38}H_{57}F_6IrO_2P_2$
Fw	534.48	761.12	498.03	913.97
Space group	$P 2_1/c$	<i>P</i> 2 ₁ /c	$P 2_1/n$	<i>P</i> 2 ₁
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
<i>T</i> /K	293(2)	293(2)	293(2)	293(2)
$a\Box/ m \AA$	12.132(5)	8.318(5)	7.96730(10)	8.709(5)
<i>b</i> /Å	18.353(5)	31.333(5)	15.3786(2)	22.841(5)
c/Å	14.104(5)	12.075(5)	14.8875(3)	10.007(5)
β/deg	109.774(5)	109.444(5)	98.120(2)	92.394(5)
$V/Å^3$	2955.2(18)	2968(2)	1805.82(5)	1988.9(16)
Ζ	4	4	4	2
D_{calcd} /g cm ⁻³	1.201	1.704	1.832	1.526
μ /mm ⁻¹	0.202	4.754	7.625	3.496
θ -range /deg	2.935-28.838	2.904-28.719	2.902-28.869	2.943-28.803
No. reflns	33067	18421	19901	22511
collected				
No. of unique	7037	6622	4335	9107
reflns				
$R(F) (I > 2 \Box (I))^{a}$	0.0649	0.0374	0.0334	0.0550
$wR^2(F^2)$ (all data) ^b	0.1841	0.0867	0.0666	0.1082
Sc	1.018	1.033	1.054	1.018
R _{int}	0.0429	0.0279	0.0515	0.0783
CCDC	1478500	1478501	1478503	1478502
Flack param.				0.420(9)

Table S1.Crystal data and refinement details for compounds 4, 5, 6 and 8.

^a $R = \Sigma(|F_0| - |F_c|) / \Sigma |F_0|$. ^b $wR2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma (F_0^2)^2]^{1/2}$.

^c $S = [\Sigma w F_o^2 - F_c^2)^2 / (n-p)]^{1/2}.$

) -	precatalyst, ^t BuONa, T ^o C				→ () + ()		
<u> </u>	^							
00	4		IDC	- IB/	4	C	OE	COD
Entry ^a	t/h	TONs ^b		Entry ^a	t/h	TONs ^b		
		Ш				Ш		
1	0,17	1136		7	8	1621		
2	0,5	1346		8	15	1701		
3	1	1435		9	24	1730		
4	3	1499		10	40	1730		
5	4	1530						
6	6	1581						

Table S2. Catalytic activity of complex II in the transfer dehydrogenation of COA with TBE.

^a Average of three runs, using a 3030:3030:1 ratio of COA/TBE/precatalyst and 1.5 equiv of ^tBuONa at 200 °C. All reactions were performed under an argon atmosphere.

^b Determined by ¹H NMR, the sum of COE and COD double bonds equals TON of TBE within 2% difference.

Figure S1-1. ¹H NMR spectrum of **1,3-Dibromo-4,6-bis(trifluoromethyl)benzene (1)** Chloroform-d; 400 MHz

Figure S1-3. ¹³C NMR spectrum of **1,3-Dibromo-4,6-bis(trifluoromethyl)benzene (1)** Chloroform-d; 100 MHz

0

Figure S2-2. ¹⁹F NMR spectrum of **4,6-bis(trifluoromethyl)resorcinol dibenzyl ether (2)** Chloroform-d; **376 MHz**

120 115 Chemical Shift (ppm)

Figure S3-1. ¹H NMR spectrum of **4,6-bis(trifluoromethyl)resorcinol (3)** Chloroform-d; 400 MHz

Figure S3-3. ¹³C NMR spectrum of **4,6-bis(trifluoromethyl)resorcinol (3)** Chloroform-d; 100 MHz

Figure S4-2. ¹⁹F NMR spectrum of ((4,6-bis(trifluoromethyl)-1,3phenylene)bis(oxy))bis(di-*tert*-butylphosphine) (4) Benzene-d6; 376 MHz

-100

Figure S5-2. ¹⁹F NMR spectrum of CF₃(POCOP)IrHCl (5) Benzene-d6; 376 MHz

100 90 80 70 Chemical Shift (ppm) -10 -20 -30 -40 -50

Figure S5-4. ¹³C NMR spectrum of CF₃(POCOP)IrHCl (5) Benzene-d6; 100 MHz

Figure S6-2. ¹⁹F NMR spectrum of CF₃(POCOP)Ir (7) Benzene-d6; 376 MHz

Figure S6-4. ¹³C NMR spectrum of CF₃(POCOP)Ir (7) Benzene-d6; 100 MHz

Figure S7-2. ¹⁹F NMR spectrum of CF₃(POCOP)IrCOE (8) with 10-fold excess of COE Benzene-d6; 376 MHz

-70

Figure S7-4. ³¹P NMR spectrum of CF₃(POCOP)IrCOE (8) with 10-fold excess of COE Benzene-d6; 162 MHz

190 188 Chemical Shift (ppm)

Figure S8-1. ¹⁹F NMR spectrum of CF₃(POCOP)IrTBE (9) with 10-fold excess of TBE Benzene-d6; 376 MHz

0 -55 -60 -65 Chemical Shift (ppm) -5 -10 -70 -120 -15 -20 -25 -30 -35 -40 -45 -50 -75 -80 -85 -95 -100 -105 -110 -115 -90

100 90 80 Chemical Shift (ppm) -10 -20 -30