Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material

Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high removal efficiency on copper ions from aqueous solutions

Yujie Zhang,^{a,†} Zhiqiang Xie,^{b,†} Zhuqing Wang,^{a,c} Xuhui Feng,^d Ying Wang,^{b,*} Aiguo Wu ^{a,*}

^a Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

b Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

^c Department of Chemistry, Anging Normal College, Anging, China.

d Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.

*Corresponding author. Tel.: +86-574-86685039, Fax: +86-574-86685163, E-mail: aiguo@nimte.ac.cn, ywang@lsu.edu.

† These authors contributed equally to this work.

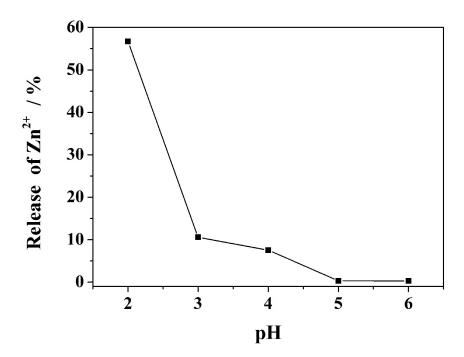


Fig. S1 The stability of ZIF-8 in the aqueous solutions with the pH values ranging from 2 to 6.

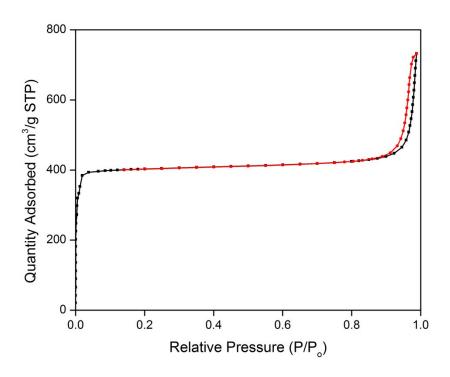
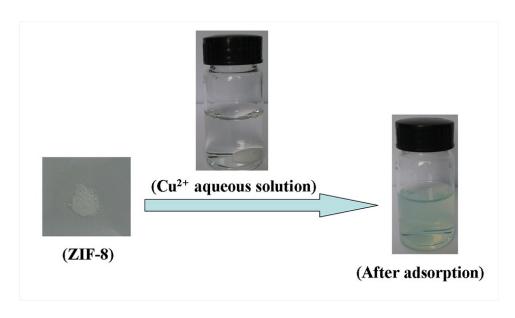
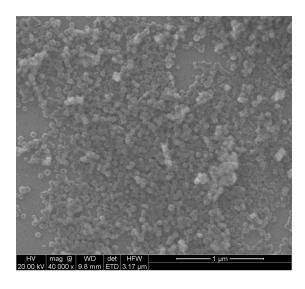




Fig. S2 N_2 adsorption-desorption isotherms of ZIF-8.

Fig. S3 Color change in the process of Cu²⁺ adsorption.

Fig. S4 Typical SEM image of ZIF-8 nanoparticles.