A Cu(II) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium

Anup Paul,^{*,†} Ana P. C. Ribeiro,^{*,†} Anirban Karmakar,[†] M. Fátima C. Guedes da Silva,^{*,†} Armando J. L. Pombeiro^{*,†}

[†]*Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa. Portugal.*

Experimental procedures	Pages
Synthesis and characterization	2
Supplemeantary Figures	
Fig. S1	3
Fig. S2	3
Fig. S3	3
Fig. S4	4
Fig. S5	4
Tables S1-S2	5

*Corresponding author, E-mail: <u>kanupual@gmail.com</u>, <u>ana.paula.ribeiro@ist.utl.pt</u>, <u>fatima.guedes@tecnico.ulisboa.pt</u>, <u>pombeiro@tecnico.ulisboa.pt</u>.

Synthesis and characterization

4'-(4-methylphenyl)-2,2':6',2''-terpyridine (MTP)

2-acetylpyridine (4.84g; 40mmol) and 4-methylbenzaldehyde (2.40g; 20mmol) were added to 100 mL of ethanol while stirring. KOH pellets (3.08g; 85%; 40 mmol) were dissolved in an aqueous ammonia solution (60 mL; 30%) and this mixture was added to the previous one. The final mixture was then left under vigorous stirring for 24 h at 34 °C. The solution was cooled at room temperature, filtered and the solid was then washed with cold EtOH. The light yellow solid was recrystallized from EtOH to afford a white crystalline solid (4.76g; 74%). ¹H-NMR (δ , ppm, 300 MHz; CDCl₃): 2.6 (s, 3H), 7.35 (m, 4H), 7.90 (m, 4H), 8.70 (d, 2H), 8.77 (m, 4H).

4'-[4-(bromomethyl)phenyl]-2,2':6',2''-terpyridine (BMPT)

A mixture of MTP (4.76g; 14.7mmol), NBS (3.3g; 18.5mmol) and AIBN (0.2g; 1.2mmol) in dry CCl₄ was refluxed for 3h. The warm solution was filtered and the solvent was removed by distillation to dryness. The yellow solid thus obtained was then dissolved in CH₂Cl₂ and washed several times with water until neutral. The organic phase was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated to afford a light yellow solid (yield: 4.73g; 80%). ¹H-NMR (δ , ppm, 300 MHz; CDCl₃): 4.57 (s, 2H), 7.35 (dd, 2H), 7.55 (d), 7.88 (m, 4H), 8.68 (d), 8.74 (m, 4H).

*N-Bromosuccinimide (NBS) *Azobisisobutyronitrile (AIBN)

Scheme S1

Fig. S1. ¹H NMR of HL recorded in DMSO- d_6 .

Fig. S2. ¹³C NMR of **HL** recorded in DMSO- d_6 .

Fig. S3. FT-IR spectrum of HL.

Fig. S4. FT-IR spectrum of 1.

Fig. S5. Powder-XRD of 1.

Bond distances		Bond angles		
Cu1-N1	1.922(5)	<n1-cu1-o2< td=""><td>165.1(2)</td></n1-cu1-o2<>	165.1(2)	
Cu1-O2	1.918(4)	<n1-cu1-n3< td=""><td>80.0(2)</td></n1-cu1-n3<>	80.0(2)	
Cu1-N3	2.031(6)	<o2-cu1-n3< td=""><td>98.7(2)</td></o2-cu1-n3<>	98.7(2)	
Cu1-N2	2.037(6)	<n1-cu1-n2< td=""><td colspan="2">80.0(2)</td></n1-cu1-n2<>	80.0(2)	
Cu1-O4	2.282(6)	<02-Cu1-N2	100.1(2)	
Cu1-O3	1.967(3)	<n3-cu1-n2< td=""><td>159.9(2)</td></n3-cu1-n2<>	159.9(2)	
		<n1-cu1-o4< td=""><td>100.8(2)</td></n1-cu1-o4<>	100.8(2)	
		<02-Cu1-O4	94.1(2)	
		<n3-cu1-o4< td=""><td>90.6(2)</td></n3-cu1-o4<>	90.6(2)	
		<n2-cu1-o4< td=""><td>95.2(2)</td></n2-cu1-o4<>	95.2(2)	

 Table S1: Selected bond distances (Å) and angles (°) for 1.

 Table S2: Hydrogen bond geometry (Å, °) in compound 1.

1							
D-HA	D-H (Å)	H…A (Å)	D…A (Å)	<d-ha(°)< td=""><td>Symmetry</td></d-ha(°)<>	Symmetry		
С29-Н29····О6	0.93	2.61	3.310(13)	132.8	x, -y+1, z+1/2		
С6-Н6…О5	0.93	2.40	3.211(11)	145.7	-x+1/2, y-1/2, -z+1/2		
С16-Н16…ОЗ	0.93	2.64	3.487(8)	151.1	-x+1/2, -y+3/2, -z+1		
С22-Н22····О3	0.93	2.42	3.307(8)	159.6	-x+1/2, -y+3/2, -z+1		