Cationic 5-Phosphonio Substituted N-heterocyclic Carbenes

Kai Schwedtmann,^a Robin Schoemaker,^a Felix Hennersdorf,^a Antonio Bauzá,^b Antonio Frontera,^b Robert Weiss^c and Jan J. Weigand^{*,a}

^aDepartment of Chemistry and Food Chemistry, University of Technology Dresden, 01062 Dresden, Germany; [*] E-mail: jan.weigand@tu-dresden.de

^bDepartment of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain

^cDepartment of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen, 91054 Erlangen, Germany

Supporting Information

This PDF file includes:

S1 General remarks	1
S2 NMR spectra and additional figures	2
S3 Experimental Details	9
S4 Crystallographic Details	36
S5 Computational methods	41
S6 References	49

S1 General remarks

General Considerations: All manipulations were performed in a Glovebox MB Unilab or using Schlenk techniques under an atmosphere of purified Argon. Dry, oxygen-free solvents (CH₂Cl₂, CH₃CN, C₆H₅F, C₆H₄F₂, distilled from CaH₂), Et₂O, THF, benzene (distilled from potassium/benzophenone), n-hexane (distilled from potassium) were employed. Deuterated benzene (C_6D_6) was purchased from Sigma-Aldrich and distilled from potassium. Anhydrous deuterated acetonitrile (CD₃CN), dichloromethane (CD₂Cl₂) and tetrahydrofurane (THF-d₈) were purchased from Sigma-Aldrich. All distilled and deuterated solvents were stored over molecular sieves (4 Å: CH₂Cl₂, CD₂Cl₂, C₆H₅F, C₆H₄F₂, benzene, C₆D₆, toluene, *n*-hexane, Et₂O, THF, THF-d₈; 3 Å: CH₃CN, CD₃CN). All glassware was oven-dried at 160 °C prior to use. NHC 8¹, Ph₂PCl², Cy₂PCl², AuCl(tht)³, CuBr(tht)³ were prepared according to procedures given by literature. Reagents Me₃SiOTf, and MeOTf were purchased from Sigma Aldrich and degased and distilled for purification. PPh₃ and Cy₃P were purchased from Sigma Aldrich and sublimed for purification. LDA, XeF₂, AgOTf, [RhCl(cod)]₂, Ph₂PH, Cy₂PH, *i*Bu₂PH, *t*Bu₂PH, were purchased form Apollo Scientific, Sigma Aldrich or abcr and used as received. NMR spectra were measured on a Bruker AVANCE III HD Nanobay (¹H (400.13 MHz), ¹³C (100.61 MHz), ³¹P (161.98 MHz) ¹⁹F (376.50 MHz)), 400 MHz UltraSield or on a Bruker AVANCE III HDX, 500 MHz Ascend (¹H (500.13 MHz), ¹³C (125.75 MHz), ³¹P (202.45 MHz) ¹⁹F (470.59 MHz)). All ¹³C NMR spectra were exclusively recorded with composite pulse decoupling. Reported numbers assigning atoms in the ¹³C spectra were indirectly deduced from the cross-peaks in 2D correlation experiments (HMBC, HSQC). Chemical shifts were referenced to $\delta_{\text{TMS}} = 0.00$ ppm $({}^{1}\text{H}, {}^{13}\text{C})$ and $\delta_{\text{H3PO4(85\%)}} = 0.00 \text{ ppm} ({}^{31}\text{P}, \text{ externally})$. Chemical shifts (δ) are reported in ppm. Coupling constants (J) are reported in Hz. Melting points were recorded on an electrothermal melting point apparatus (Büchi Switzerland, Melting point M-560) in sealed capillaries under Argon atmosphere and are uncorrected. Infrared (IR) and Raman spectra were recorded at ambient temperature using a Bruker Vertex 70 instrument equipped with a RAM II module (Nd-YAG laser, 1064 nm). The Raman intensities are reported in percent relative to the most intense peak and are given in parenthesis. An ATR unit (diamond) was used for recording IR spectra. The intensities are reported relative to the most intense peak and are given in parenthesis using 1

the following abbreviations: vw = very weak, w = weak, m = medium, s = strong, vs = very strong. Elemental analyses were performed on a Vario MICRO cube Elemental Analyzer by Elementar Analysatorsysteme GmbH in CHNS modus.

S2 NMR spectra and additional figures

Figure S2.1. ¹H NMR spectra of $9b^+$ and $10b^+$ (CD₂Cl₂, 300 K).

Figure S2.2. ¹³C NMR spectrum of **17bH**²⁺; Zoom in shows a doublet carbene C atom (δ (C) = 144.3 ppm; ¹*J*_{CH} = 233 Hz, CD₂Cl₂, 300 K).

Figure S2.3. ³¹P NMR spectrum of 25[OTf] (CD₃CN, 300 K).

Figure S2.4. ¹³C{H} NMR spectrum of **25**[OTf]; Zoom in shows a doublet of doublets for the carbene C atom (δ (C) = 184.3 ppm; ¹*J*_{C-Ag109} = 232 Hz, ¹*J*_{C-Ag107} = 200 Hz; CD₃CN, 300 K).

Figure S2.5. ³¹P NMR spectrum for the reaction of **17b**[OTf] with 2eq. Ph₂PH after 30 h (1,2-dichloroethane, C_6D_6 -capillary, 300 K). Small amounts of not identified sideproducts are marked with asterisks; isolated **30**²⁺ (top).

Figure S2.6. ³¹P NMR spectrum of the isolated colorless precipitate from the reaction of **17b**[OTf] with 2eq. Cy₂PH after 12 h (C_6D_6 , 300 K).

Figure S2.7. ³¹P NMR spectrum for the reaction of 2 eq. ${}^{i}Bu_{2}PH$ with **17b**[OTf] after 12 h (C₆D₆, 300 K).

Figure S2.8. ³¹P NMR spectrum for the reaction of **17b**[OTf] with 1eq. PhPH₂ after 24 h (1,2-dichloroethane, C_6D_6 -capillary, 300 K). Dicationic **30**²⁺, Ph₃P₃, Ph₄P₄, Ph₅P₅ and Ph₆P₆ are identified next to small amounts of of not identified sideproducts.

Figure S2.9. ³¹P NMR spectrum of the isolated colorless precipitate from the reaction of **17b**[OTf] with 1eq. CyPH₂ after 24 h (C₆D₆, 300 K).

Figure S2.10. IR spectrum of 24[OTf] (neat, ATR, ambient temperature).

Figure S2.11. ¹H NMR spectra of **35**[OTf] (CD₂Cl₂, 300 K, top) and **36**[OTf] (CD₃CN, 300 K, bottom); zoom in displays the resonances which can be attributed to the CH₂-group attached to C1.

S3 Experimental Details

S3.1 Reaction of 9b[OTf] with 0.3 eq. of NHC 8

A solution of NHC 8 (18.0 mg, 0.039mmol) in o-C₆H₄F₂ (1 ml) was added to a solution of **9b**[OTf] (103 mg, 0.13 mmol) in o-C₆H₄F₂ (2 ml). The reaction mixture was stirred for 30 h. During this time the reaction mixture was investigated using multinuclear NMR spectroscopy. After removing of all volatiles *in vacuo* the residue was again dissolved in CH₂Cl₂. The collected NMR spectroscopical data revealed a quantitative formation to cation **10b**⁺. ³¹P{¹H} NMR (CH₂Cl₂, C₆D₆-capillary, in ppm): $\delta = -29.12$ (s).

S3.2 Reaction of 17b[OTf] with trifluoromethanesulfonic acid

HOTf (6 mg, 0.04 mmol) was added to a stirred solution of 17b[OTf] (30 mg, 0.04 mmol) in C₆H₅F (2 ml). After 1 h the solvent was removed *in vacuo* and the crude material again dissolved in CD₂Cl₂ for NMR spectroscopic analysis. For the determination of the CH coupling constant see ¹³C NMR spectrum in figure S2.2.

³¹**P**{¹**H**} **NMR** (CH₂Cl₂, C₆D₆-capillary, in ppm): $\delta = 14.6$ (s).

S3.3 Reaction of 18b[OTf] with silver fluoride in a 1:1 stoichiometry

Silver fluoride was added (10 mg, 0.07 mmol) to a stirred solution of NHC **18b**[OTf] (60 mg, 0.07 mmol) in C_6H_5F (1 ml). After 10 h the solvent was removed *in vacuo* and the residue again dissolved in CD₃CN. The multinuclear NMR spectroscopy revealed quantitative formation to **25**[OTf] (figures S2.3 and S2.4). Due to decomposition in solution, a full characterization could not be performed.

³¹P{¹H} NMR (CD₃CN, in ppm): $\delta = -65.26$ (t, ¹*J*_{PF} = 703 Hz).

S3.4 Reaction of 17b[OTf] with diphenylphosphane (Ph₂PH) in a 1:2 stoichiometry

A solution of **17b**[OTf] (38 mg, 0.05 mmol) in 1,2-dichloroethane (2 ml) was added dropwise to a stirred solution of diphenylphosphane (Ph₂PH, 20 mg, 0.11 mmol) in 1,2-dichloroethane (1 ml). The reaction mixture was stirred for 30 h at ambient temperature. The collected NMR spectroscopical data revealed a quantitative conversion of **17b**⁺ (figure S2.5). ³¹**P** NMR (C₂H₄Cl₂, C₆D₆-capillary, in ppm): $\delta = -16.23$ (s, Ph₄P₂), 12.10 (s, **30**²⁺).

S3.5 Reaction of 17b[OTf] with dicyclohexylphosphane (Cy₂PH) in a 1:2 stoichiometry

A solution of **17b**[OTf] (100 mg, 0.13 mmol) in CH₃CN (1.5 ml) was added to a stirred solution of dicyclohexylphosphane (Cy₂PH, 52 mg, 0.26 mmol) in CH₃CN (1.5 ml). The reaction mixture was stirred for 12 h at ambient temperature accompanied by the formation of a colorless precipitate. After filtration and drying *in vacuo*, Cy₄P₂ was isolated as colorless powder in quantitative yield (see figure S2.6).

³¹**P** NMR (C₆D₆, in ppm): $\delta = -21.31$ (s, Cy₄P₂).

S3.6 Reaction of 17b[OTf] with diisobutylphosphane ('Bu₂PH) in a 1:2 stoichiometry

A solution of **17b**[OTf] (107 mg, 0.14 mmol) in CH₃CN (1.5 ml) was added to a solution of di*iso*butylphosphane (^{*i*}Bu₂PH, 42 mg, 0.28 mmol) in CH₃CN (1.5 ml). The reaction mixture was stirred for 10 h at ambient temperature. The collected NMR spectroscopical data revealed a quantitative formation of ^{*i*}Bu₄P₂ (figure S2.7).

³¹**P** NMR (CH₃CN, C₆D₆-capillary, in ppm): $\delta = -83.73$ (d, ¹*J*_{PH} = -199 Hz, ^{*i*}Bu₂PH), -52.41 (s, ^{*i*}Bu₄P₂), 13.53(s, **30**²⁺).

S3.7 Reaction of 17b[OTf] with phenylphosphane (PhPH₂) in a 1:1 stoichiometry

A solution of **17b**[OTf] (38 mg, 0.05 mmol) in 1,2-dichloroethane (2 ml) was added dropwise to a stirred solution of phenylphosphane (PhPH₂, 5.5 mg, 0.05 mmol) in 1,2-dichloroethane (1 ml). The reaction mixture was stirred for 24 h at ambient temperature. The collected NMR spectroscopical data revealed a quantitative conversion of **17b**⁺ (figure S2.8).

³¹**P** NMR (C₂H₄Cl₂, C₆D₆-capillary, in ppm): $\delta = -147.2$ (t, Ph₃P₃), -131.2 (d, Ph₃P₃), -49.0 (s, Ph₄P₄), -27.1 (s(br), unassigned), -25.7 (m, Ph₆P₆), -5.0 (m, Ph₅P₅), -1.1 (m, unassigned), -12.1 (s, **30**²⁺), 28.72 (m, unassigned), 52.7 (m, unassigned).

S3.8 Reaction of 17b[OTf] with cyclohexylphosphane (CyPH₂) in a 1:1 stoichiometry

A solution of **17b**[OTf] (38 mg, 0.13 mmol) in 1,2-dichloroethane (1.5 ml) was added to a stirred solution of cyclohexylphosphane (CyPH₂, 5.5 mg, 0.13 mmol) in CH₃CN (1.5 ml). The reaction mixture was stirred for 24 h at ambient temperature, accompanied by the formation of a colorless precipitate. The precipitate was filtered and washed with CH₃CN (2 ml) and dried *in vacuo*. The collected NMR spectroscopical data revealed a clean and quantitative formation of Cy₅P₅ and Cy₄P₄ (figure S2.9).

³¹**P** NMR (C₆D₆, in ppm): $\delta = -68.88$ (s, Cy₄P₄), 7.66 (s, Cy₅P₅).

S3.9 General procedure for the preparation of compounds [2-PR₂(4,5-Cl-Im^{Dipp})][OTf] (R = Ph, Cy)

A solution of NHC **46** in C₆H₅F was added dropwise to a stirred C₆H₅F solution of R₂PCl (R = Ph, Cy) and Me₃SiOTf at ambient temperature. *n*-Hexane was added after 3 h which afforded a colorless precipitate. After filtration and washing with *n*-hexane the solid was dried *in vacuo*. Compounds **9a,b**[OTf] were obtained as colorless, moisture sensitive powders.

S3.10 Characterization data of 9a[OTf]

8: 1.48 g, 3.22 mmol (C₆H₅F: 12 ml); Cy₂PCl: 749 mg, 3.22 mmol; Me₃SiOTf: 716 mg, 3.22 mmol, (C₆H₅F: 12 ml); *n*hexane: 35 ml; **yield**: 4.59 g (91%); **mp**: 262-264 °C, **Raman** (60 mW, in cm⁻¹): v = 3081(7), 3067(20), 2974(45), 2942(100), 2909(9), 2858(67), 2723(7), 1590(20), 1467(16), 1446(31), 1344(33), 1316(13), 1288(31), 1237(9), 1183(7), 1098(9), 1031(33), 985(13), 885(18), 851(7), 811(9), 754(13), 709(11),

606(13); **IR** (ATR, in cm⁻¹): v = 2968(vw), 2931(w), 1573(vw), 1505(vw), 1465(w), 1387(vw), 1358(vw), 1309(vw), 1256(vs), 1223(w), 1178(vw), 1150(s), 1059(vw), 1029(vs), 994(vw), 933(vw), 850(w), 803(m), 762(w), 636(vs), 572(w), 543(vw), 516(m), 461(w), 434(vw); **¹H NMR** (CD₂Cl₂, in ppm): $\delta = 0.87$ -0.91 (2H, m (br), H11a), 0.90-0.92 (2H, m, (br), H12a),

S3.11 Characterization data of 9b[OTf]

8: 1.84 g, 4.00 mmol (C₆H₅F: 8 ml); Ph₂PCl: 889 mg, 4.00 mmol; Me₃SiOTf: 882 mg, 4.00 mmol, (C₆H₅F: 8 ml); *n*hexane: 32 ml; **yield**: 3.15 g (99%); **mp**: 224-226 °C; **Raman** (60 mW, in cm⁻¹): v = 3061(100), 2971(32), 2940(50), 2914(21), 2870(31), 2771(7), 2722(11), 1585(46), 1562(21), 1468(18), 1443(21), 1368(7), 1346(57), 1317(25), 1280(46), 1240(14), 1186(7), 1164(14), 1102(10), 1049(10), 1031(50),

1000(39), 957(7), 886(18), 754(10), 735(7), 607(7), 573(7), 452(10); **IR** (ATR, in cm⁻¹): v = 2968(vw), 2932(vw), 1560(w), 1463(w), 1436(vw), 1389(vw), 1365(w), 1313(vw), 1265(vs), 1224(w), 1180(vw), 1146(s), 1112(vw), 1087(vw), 1059(vw), 1030(s), 998(vw), 936(vw), 811(m), 766(vw), 754(vw), 743(m), 699(m), 654(vw), 636(vs), 571(w), 544(vw), 516(m), 498(w), 472(w), 454(m); ¹**H NMR** (CD₂Cl₂, in ppm): $\delta = 1.02$ (12H, d, ³*J*_{HH} = 6.71 Hz, H8), 1.21 (12H, d, ³*J*_{HH} = 6.71 Hz, H9), 2.42 (4H, *pseudo* sept, ³*J*_{HH} = 6.71 Hz, H7), 7.04 (2H, t, ³*J*_{HH} = 7.79 Hz, H12), 7.04 (2H, t, ³*J*_{HH} = 7.79 Hz, H14), 7.18 (2H, t, ³*J*_{HH} = 7.79 Hz, H11), 7.19 (2H, t, ³*J*_{HH} = 7.71 Hz, H15), 7.25 (4H, d, ³*J*_{HH} = 7.69 Hz, H5), 7.34 (2H, t, ³*J*_{HH} = 7.71 Hz, H13), 7.56 (2H, t, ${}^{3}J_{\text{HH}} = 7.69$ Hz, H6); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, in ppm): $\delta = 23.47$ (4C, s, C8), 25.58 (4C, s, C9), 30.29 (4C, s, C7), 121.72 (1C, q, ${}^{1}J_{\text{CF}} = 321$ Hz, -CF₃), 126.43 (4C, s, C5), 126.64 (2C, d, ${}^{3}J_{\text{CP}} = 3$ Hz, C2), 128.23 (2C, d, ${}^{1}J_{\text{CP}} = 9$ Hz, C10), 128.96 (2C, s, C3), 130.04 (2C, s, C11), 30.14 (2C, s, C15), 132.23 (2C, s, C13), 134.00 (2C, s, C6), 135.13 (2C, s, C14), 135.37 (2C, s, C12), 145.30 (2C, s, C3), 151.23 (2C, d, ${}^{1}J_{\text{CP}} = 80$ Hz, C1); ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, in ppm): $\delta = -5.04$ (s); ${}^{19}\text{F}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, in ppm): $\delta = -78.72$ (s); elemental analysis: calcd. for C₄₀H₄₄Cl₂F₃N₂O₃PS: C: 60.7, H: 5.6, N: 3.5, S: 4.0; found: C: 60.6, H: 5.4, N: 3.2, S: 4.0.

S3.12 General procedure for the preparation of compounds [5-PR₂(2,4-Cl-Im^{Dipp})][OTf] (R = Ph, Cy)

A solution of NHC **8** in o-C₆H₄F₂ was added dropwise to a stirred o-C₆H₄F₂ solution of R₂PCl (R = Ph, Cy, *i*Pr) and Me₃SiOTf at ambient temperature. After 12 h - 14 h *n*-hexane was added accompanied by the formation of a colorless precipitate. The precipitate was filtered, washed with *n*-hexane and dried in *vacuo*. Compounds **10a,b**[OTf] were obtained as colorless and moisture sensitive powders.

S3.13 Characterization data of 10a[OTf]

8: 3.51 g, 7.62 mmol (*o*-C₆H₄F₂: 12 ml); Cy₂PCl: 1.48 g, 6.35 mmol; Me₃SiOTf: 1.42 g, 6.35 mmol, (*o*-C₆H₄F₂: 8 ml); *n*-hexane: 40 ml; **yield**: 4.71 g (92%); **mp**: 273-275 °C; **Raman** (60 mW, in cm⁻¹): v = 3081(6), 3067(17), 3027(6), 2977(39), 2941(100), 2909(6), 2857(39), 2722(6), 2284(6), 1590(27), 1575(6), 1467(22), 1446(50), 1386(6), 1344(56), 1316(22), 1287(56), 1267(6), 1237(17), 1182(17), 1098(17), 1047(11), 1030(56), 985(22), 957(11), 884(33), 851(17),

810(22), 754(28), 734(11), 709(22), 663(6), 606(28), 573(6), 518(6), 459(11); **IR** (ATR, in cm⁻¹): *v* = 2965(vw) 2928(w), 2852(vw), 1505(w), 1467(m), 1389(vw), 1367(vw), 1325(vw),

1262(vs), 1222(w), 1183(vw), 1145(w), 1059(vw), 1030(s), 936(vw), 850(vw), 808(w), 763(m), 679(vw), 654(vw), 636(vs), 570(vw), 516(m), 432(vw); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 1.21$ (6H, d, ${}^{3}J_{\text{HH}}$ = 6.83 Hz, H9), 1.23-1.25 (2H, m (br), H21a), 1.26-1.28 (2H, m (br), H22a), 1.26 (6H, d, ${}^{3}J_{\text{HH}}$ = 6.89 Hz, H16), 1.31 (6H, d, ${}^{3}J_{\text{HH}}$ = 6.89 Hz, H17), 1.32-1.34 (2H, m (br), H19a), 1.32-1.34 (2H, m (br), H20a), 1.32-1.34 (2H, m (br), H23a), 1.40 (6H, d, ${}^{3}J_{HH} = 6.83$ Hz), 1.54-1.56 (2H, m (br), H22b), 1.73-1.75 (2H, m (br), H21b), 1.81-1.83 (2H, m (br), H23b), 1.82-1.84 (2H, m (br), H19b), 1.88-1.90 (2H, m (br), H20b) 2.16 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.89$ Hz, H15), 2.20 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.83$ Hz, H8), 2.29 (2H, m (br), H18), 7.48 (2H, d, ${}^{3}J_{HH} = 7.90$ Hz, H6), 7.52 (2H, d, ${}^{3}J_{\text{HH}} = 7.94$ Hz, H13), 7.74 (1H, t, ${}^{3}J_{\text{HH}} = 7.90$ Hz, H7), 7.74 (1H, t, ${}^{3}J_{\text{HH}} = 7.94 \text{ Hz}, \text{ H14}$; ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, in ppm): $\delta = 23.87$ (2C, s, C16), 24.11 (2C, s, C17), 24.15 (2C, s, C9), 25.05 (2C, s, C10), 26.20 (2C, s, C21), 27.36 (2C, d, ${}^{2}J_{CP} = 11$ Hz, C19), 27.78 (2C, d, ${}^{2}J_{CP}$ = 11 Hz, C23), 30.19 (2C, d, ${}^{5}J_{CP}$ = 1 Hz, C8), 30.66 (2C, s, C15), 31.53 (2C, d, ${}^{3}J_{CP}$ = 7 Hz, C20), 31.67 (2C, d, ${}^{3}J_{CP}$ = 7 Hz, C22), 34.77 (2C, d, ${}^{1}J_{CP}$ = 15 Hz, C18), 121.62 $(1C, q, {}^{1}J_{CF} = 322 \text{ Hz}, -CF_3), 126.02 (1C, s, C11), 126.39 (2C, s, C6), 126.59 (2C, s, C13),$ 131.38 (1C, d, ${}^{2}J_{CP}$ = 10 Hz, C3), 134.13 (1C, s, C7), 134.58 (1C, s, C14), 135.44 (1C, d, ${}^{1}J_{CP} = 50$ Hz, C2), 136.90 (1C, s, C1), 145.38 (1C, d, ${}^{4}J_{CP} = 2$ Hz, C5), 145.94 (1C, s, C12); ¹⁹F{¹H} NMR (CD₂Cl₂, in ppm): $\delta = -78.89$ (3F, s, -CF₃); ³¹P{¹H} NMR (CD₂Cl₂, in ppm): $\delta = -15.23$ (s); elemental analysis: calcd. for C₄₀H₅₆Cl₂F₃N₂O₃PS: C: 59.7, H: 7.0, N: 3.5, S: 4.0; found: C: 59.9, H: 7.2, N: 3.5, S: 4.7.

S3.14 Characterization data of 10b[OTf]

8: 6.82 g, 14.80 mmol (o-C₆H₄F₂: 15 ml); Ph₂PCl: 2.52 g, 11.40 mmol; Me₃SiOTf: 2.53 g, 11.40 mmol, (*o*-C₆H₄F₂: 10 ml); *n*-hexane: 45 ml; yield: 8.72 g (97%); mp: 282-284 °C; **Raman** (60 mW, in cm⁻¹): v = 3078(49), 3064(16), 3051(7), 2988(22), 2971(11), 2940(66), 2909(100), 2871(66), 2772(16), 2729(22), 1584(83), 1516(33), 1470(33), 1448(16), 1430(49), 1338(7), 1301(67), 1264(11), 1185(16), 1161(16), 1104(27), 1050(11), 1032(83), 998(91),

956(16), 930(7), 887(27), 753(33), 688(16), 618(16), 570(7), 492(7); **IR** (ATR, in cm⁻¹): 14 v = 2962(vw), 2872(vw), 1514(w), 1467(w), 1389(vw), 1367(vw), 1347(vw), 1273(vw),1259(vs), 1222(w), 1185(vw), 1164(m), 1138(vw), 1059(vw), 1028(s), 935(vw), 804(w), 754(w), 703(w), 703(vw), 661(vw), 635(s), 572(vw), 541(vw), 516(vw), 504(m), 493(vw), 432(vw), 412(vw); ¹**H** NMR (CD₂Cl₂, in ppm): $\delta = 1.00$ (6H, d, ³J_{HH} = 6.76 Hz, H9), 1.21 (6H, d, ${}^{3}J_{HH} = 6.76$ Hz, H10); 1.29 (6H, d, ${}^{3}J_{HH} =$ H16), 1.31 (6H, d, ${}^{3}J_{HH} = 6.86$ Hz, H17), 2.19 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.86$ Hz, H15), 2.21 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.76$ Hz, H8), 7.25-7.32 (4H, m, H20, 22), 7.42-7.56 (10H, m, H6, H13, H19, H21, H23), 7.75 (2H, t, ${}^{3}J_{HH} = 7.75$ Hz, H7, H14); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, in ppm): $\delta = 22.98$ (2C, d, ${}^{6}J_{CP} = 2$ Hz, C9), 23.86 (2C, s, C16), 24.07 (2C, s, C17), 24.82 (2C, s, C10), 30.65 (2C, d, ${}^{5}J_{CP} = 2$ Hz, H8), 30.72 (2C, s, C15), 121.72 (1C, q, ${}^{1}J_{CF}$ = 321 Hz, -CF₃), 126.03 (1C, s, C11), 126.39 (2C, s, C6), 126.54 (2C, s, C13), 127.65 (1C, d, ${}^{3}J_{CP} = 2$ Hz, H4), 129.60 (2C, d, ${}^{1}J_{CP} = 8$ Hz,C18), 130.40 (2C, s, C23), 130.48 (2C, s, C19), 131.65 (2C, s, C21), 132.66 (1C, d, ${}^{2}J_{CP}$ = 8 Hz, C3), 133.46 (2C, s, C20), 133.53 (2C, s, C22), 134.35 (1C, s, C7), 134.60 (1C, s, C14), 135.23 (1C, d, ${}^{1}J_{CP}$ = 37 Hz, C2), 136.96 (1C, s, C1), 145.88 (2C, s, C15), 145.95 (2C, d, ${}^{4}J_{CP} = 2$ Hz, C5); ${}^{31}P{}^{1}H$ (CD₂Cl₂, in ppm): $\delta = -28.98$ (s); ¹⁹F{¹H} NMR (CD₂Cl₂, in ppm): $\delta = -78.87$ (s); elemental analysis: calcd. for C₄₀H₄₄Cl₂F₃N₂O₃PS: C: 60.7, H: 5.6, N: 3.5, S: 4.0; found: C: 60.6, H: 5.2, N: 3.0, S: 4.1.

S3.15 Preparation of 14a[OTf]₂

A solution of MeOTf (1.00 g, 6.10 mmol) in CH₂Cl₂ (3 ml) was slowly added to a solution of **10a**[OTf] (1.00 g, 1.22 mmol) in CH₂Cl₂ (10 ml). The reaction mixture was stirred for 36 h at ambient temperature. After the addition of *n*-hexane (25 ml) a beige precipitate was observed, filtered and washed with C₆H₅F (10 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless, moisture sensitive powder.

Yield: 800 mg (68%); **mp**: 270-272 °C; **Raman** (60 mW, in cm⁻¹): *v* = 3076(40), 2991(19), 2947(59), 2922(14), 2898(35), 2871(22), 2861(8), 2779(5), 2733(11), 1600(8), 1586(16),

1514(19), 1471(29), 1447(48), 1424(37), 1397(8), 1334(19), 1305(22), 1286(14), 1271(11), 1234(11), 1223(8), 1182(14), 1102(16), 1048(22), 1030(100), 999(24), 959(11), 882(29), 851(5), 829(11), 793(5), 765(5), 752(27), 706(29), 609(11), 571(29), 518(11), 446(13); **IR** (ATR, in cm^{-1}): v = 2969(vw), 2896(vw), 2861(vw), 1508(m), 1467(vw), 1450(m), 1394(vw), 1372(vw), 1345(vw), 1274(27), 1251(m), 1222(m), 1182(vw), 1142(m), 1101(vw), 1059(vw), 1028(vs), 908(vw), 876(vw), 845(vw), 810(m), 762(vs), 705(vw), 635(vs); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 1.25$ (6H, d, ${}^{3}J_{\text{HH}} = 6.68$ Hz, H9), 1.25-1.28 (2H, m (br), H20a), 1.28 (6H, d, ${}^{3}J_{\text{HH}} = 6.84$ Hz, H16), 1.30-1.34 (2H, m (br), H19a), 1.33 (6H, d, ${}^{3}J_{HH} = 6.84$ Hz, H17), 1.47-1.49 (2H, m (br), H23a), 1.52-1.55 (2H, m (br), H21a), 1.52-1.55 (2H, m (br), H22a), 1.53 (6H, d, ${}^{3}J_{HH} = 6.68$ Hz, H10), 1.76-1.80 (2H, m (br), H21b), 1.76-1.80 (2H, m (br), H22b), 1.85-1.89 (2H, m (br), H20b), 1.86 (3H, d, ${}^{2}J_{HP}$ = 12 Hz, H24), 1.87-1.91 (2H, m (br), H19b), 1.95-1.98 (2H, m (br), H23b), 2.11 (2H, pseudo sept, ${}^{3}J_{HH} = 6.84$ Hz, H15), 2.33 (2H, pseudo sept, ${}^{3}J_{HH} = 6.68$ Hz, H8), 3.26-4.01 (2H, m (br), H18), 7.56 (2H, d, ${}^{3}J_{HH} = 7.91$ Hz, H13), 7.64 (2H, d, ${}^{3}J_{HH} = 7.84$ Hz, H6), 7.83 (1H, t, ${}^{3}J_{\text{HH}} = 7.91$ Hz, H14), 7.91 (1H, t, ${}^{3}J_{\text{HH}} = 7.84$ Hz, H7); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, in ppm): $\delta = 0.09$ (1C, d, ${}^{1}J_{CP} = 48$ Hz, C24), 24.01 (2C, s, C10), 24.10 (2C, s, C17), 24.22 (2C, s, C16), 25.12 (2C, d, ${}^{4}J_{CP}$ = 2 Hz, C21), 25.76 (2C, s, C9), 26.07 (2C, d, ${}^{2}J_{CP}$ = 15 Hz, C19), 26.61 $(2C, {}^{2}J_{CP} = 14 \text{ Hz}, C23), 27.39 (2C, d, {}^{3}J_{CP} = 4 \text{ Hz}, C20), 27.95 (2C, d, {}^{3}J_{CP} = 5 \text{ Hz}, C22), 30.32$ (2C, s, C8), 31.00 (2C, s, C15), 34.07 (2C, d, ${}^{1}J_{CP} = 37$ Hz, C18), 116.98 (1C, d, ${}^{1}J_{CP} = 73$ Hz, C2), 121.17 (2C, q, ${}^{1}J_{CF}$ = 321 Hz, -CF₃), 125.16 (1C, s, C11), 127.16 (2C, s, C13), 127.43 (1C, s, C4), 128.32 (2C, s, C6), 135.50 (1C, s, C14), 136.40 (1C, s, C7), 138.97 (1C, d, ${}^{2}J_{CP} = 10$ Hz, C3), 142.62 (1C, d, ${}^{3}J_{CP} = 3$ Hz, C1), 145.47 (2C, s, C12), 145.88 (2C, s, C5); ${}^{19}F{}^{1}H$ NMR (CD₂Cl₂, in ppm): $\delta = -78.76$ (6F, s, -CF₃); ³¹P{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 38.45$ (s); elemental analysis: calcd. for C42H59Cl2F6N2O6PS2·0.5CH2Cl2: C: 50.5, H: 5.9, N: 2.8 S: 6.4; found: C: 50.3, H: 5.6, N: 2.8, S: 6.6.

S3.16 Preparation of 14b[OTf]₂

A solution of MeOTf (1.03 g, 6.30 mmol) in o-C₆H₄F₂ (3 ml) was slowly added to a solution of **10b**[OTf] (1.00 g, 1.26 mmol) in o-C₆H₄F₂ (10 ml). The reaction mixture was stirred for 48 h at 70 °C. After the addition of *n*-hexane (25 ml) a pale brown precipitate was observed, filtered and washed with C₆H₅F (10 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless, moisture sensitive powder.

Yield: 990 mg (79%); mp: 257-259 °C; **Raman** (60 mW, in cm⁻¹): v = 3074(69), 3019(5), 2986(26), 2946(7), 2913(40), 2872(18), 2724(5), 1587(59), 1506(12), 1473(28), 1445(19), 1423(23), 1331(10), 1310(16), 1284(19), 1237(7), 1224(7), 1185(5), 1168(12), 1105(33), 1050(16), 1029(100), 998(75), 888(31), 755(27), 703(24), 612(21), 572(16), 518(5); **IR** (ATR, in cm⁻¹): v = 2966(vw), 2911(vw), 2873(vw), 1586(vw), 1504(w), 1438(vw), 1391(vw), 1370(vw), 1286(vw), 1259(s), 1240(w), 1222(w), 1167(vw), 1143(m), 1109(vw), 1061(vw), 1026(vs), 995(vw), 936(vw), 908(m), 819(vw), 751(m), 722(vw), 682(w), 635(vs); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.79$ (6H, d, ${}^{3}J_{\text{HH}} = 6.68$ Hz, H9), 1.11 (6H, d, ${}^{3}J_{\text{HH}} = 6.68$ Hz, H10), 1.29 (6H, d, ${}^{3}J_{\text{HH}} = 6.82 \text{ Hz}, \text{H16}$), 1.44 (6H, d, ${}^{3}J_{\text{HH}} = 6.82 \text{ Hz}, \text{H17}$), 2.36 (2H, *pseudo* sept, ${}^{3}J_{\text{HH}} = 6.68 \text{ Hz}$, H8), 2.45 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.82$ Hz, H15), 3.09 (3H, d, ${}^{2}J_{HP} = 14$ Hz, H22), 7.28 (2H, d, ${}^{3}J_{\text{HH}} = 7.88 \text{ Hz}, \text{ H6}$), 7.57 (2H, d, ${}^{3}J_{\text{HH}} = 7.92 \text{ Hz}, \text{ H13}$), 7.59-7.66 (4H, m, H20), 7.67 (1H, t, ${}^{3}J_{\text{HH}}$ = 7.88 Hz, H7), 7.69-7.75 (4H, m, H19), 7.82 (1H, t, ${}^{3}J_{\text{HH}}$ = 7.92 Hz, H14), 7.90-7.96 (2H, m, H21); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): δ = 13.30 (1C, d, ¹J_{CP} = 57 Hz, C22), 22.72 (2C, s, C9), 24.29 (2C, s, C17), 24.47 (2C, s, C16), 25.71 (2C, s, C10), 30.22 (2C, s, C8), 30.64 (2C, s, C15), 113.98 (2C, d, ${}^{1}J_{CP} = 92$ Hz, C18), 117.16 (1C, d, ${}^{1}J_{CP} = 101$ Hz, C2), 121.48 (2C, q, ${}^{1}J_{CF} = 321 \text{ Hz}, -CF_3$, 125.58 (1C, s, C11), 127.11 (2C, s, C13), 127.45 (1C, s, C4), 127.47 (2C, s, C6), 132.18 (4C, d, ${}^{2}J_{CP} = 14$ Hz, C19), 134.17 (4C, d, ${}^{3}J_{CP} = 12$ Hz, C20), 135.26 (1C, s, C14), 135.81 (1C, s, C7), 137.91 (2C, d, ${}^{4}J_{CP}$ = 3 Hz, C21), 139.69 (1C, d, ${}^{2}J_{CP}$ = 12 Hz, C3), 142.84 (1C, d, ${}^{3}J_{CP} = 5$ Hz, C1), 146.51 (2C, s, C12), 146.58 (2C, s, C5); ${}^{19}F{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = -78.56$ (s); ³¹P{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 16.88$ (s); elemental 17 **analysis**: calcd. for C₄₂H₄₇Cl₂F₆N₂O₆PS₂: C: 52.7, H: 4.9, N: 2.9, S: 6.7; found: C: 52.6, H: 4.9, N: 2.9, S: 7.1.

S3.17 Preparation of 15a[OTf]

A solution of XeF_2 (2.78 g, 1.64 mmol) in CH_2Cl_2 (8 ml) was added dropwise to a solution of **10a**[OTf] (1.20 g, 1.50 mmol) in CH_2Cl_2 (8 ml). After stirring 12 h at ambient temperature *n*-hexane (20 ml) was added and a colorless precipitate was observed. The precipitate was filtered and washed with *n*-hexane (3 x 5 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless and moisture sensitive powder.

Yield: 1.02 g (81%); mp: 165-167 °C; **Raman** (60 mW, in cm⁻¹): v = 3070(43), 3035(5), 2995(6), 2976(9), 2940(57), 2918(8), 2901(35), 2871(30), 2856(48), 2770(13), 2723(11), 1600(12), 1586(26), 1469(30), 1445(74), 1427(22), 1392(8), 1349(21), 1332(9), 1302(100), 1275(17), 1222(18), 1183(17), 1104(30), 1049(39), 1032(91), 999(34), 960(17), 887(52), 854(9), 820(21), 771(7), 752(26), 737(13), 688(7), 609(34), 572(13), 549(17), 445(26), 373(27), 347(26), 317(17); **IR** (ATR, in cm⁻¹): v = 2966(vw), 2928(w), 2854(vw), 1502(w), 1465(w), 1450(vw), 1390(vw), 1367(vw), 1349(vw), 1325(vw), 1287(vw), 1260(s), 1222(m), 1182(w), 1144(vs), 1060(vw), 1031(vs), 937(vw), 860(vw), 825(vw), 808(w), 771(m), 705(s), 657(w), 636(vs); ¹**H NMR** (CD₃CN, in ppm): $\delta = 1.23$ (6H, d, ³J_{HH} = 6.68 Hz, H9), 1.30 (6H, d, ${}^{3}J_{\text{HH}} = 6.85 \text{ Hz}, \text{ H16}$), 1.37 (6H, d, ${}^{3}J_{\text{HH}} = 6.85 \text{ Hz}, \text{ H17}$), 1.46 (6H, d, ${}^{3}J_{\text{HH}} = 6.68 \text{ Hz}, \text{ H10}$), 1.24-1.28(2H, m, H19), 1.25-1.29 (2H, m, H21), 1.46-1.52 (2H, m, H20), 1.71-1.76 (2H, m, H21), 1.82-1.85 (2H, m, H19), 1.83-1.87 (2H, m, H20), 2.21 (2H, pseudo sept, ${}^{3}J_{\text{HH}} = 6.85$ Hz, H15), 2.25-2.35 (2H, m, H18), 2.41 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.68$ Hz, H8), 7.51 (2H, d, ${}^{3}J_{\text{HH}} = 7.84 \text{ Hz}, \text{ H6}$), 7.56 (2H, d, ${}^{3}J_{\text{HH}} = 7.84 \text{ Hz}, \text{ H13}$), 7.75 (1H, t, ${}^{3}J_{\text{HH}} = 7.84 \text{ Hz}, \text{ H7}$), 7.82 (1H, t, ${}^{3}J_{\text{HH}} = 7.84 \text{ Hz}$, H14); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CD₃CN, in ppm): $\delta = 22.94$ (2C, pseudo t, ${}^{6}J_{CP} = 1$ Hz, C10), 23.51 (2C, s, C17), 23.73 (2C, s, C16), 24.90 (2C, s, C9), 25.72 (2C, d, ${}^{4}J_{CP} = 2$ Hz, C21), 26.93 (4C, dt, ${}^{2}J_{CP} = 19$ Hz, ${}^{3}J_{CF} = 2$ Hz, C19), 28.07 (4C, dt, ${}^{3}J_{CP} = 4$ Hz, ${}^{4}J_{CF} = 6$ Hz, C20), 29.85 (2C, s, C8), 29.97 (2C, s, C15), 44.75 (2C, dt, ${}^{1}J_{CP} = 114$ Hz, 18 ²*J*_{CF} = 20 Hz, C18), 121.01 (1C, q, ¹*J*_{CF} = 321 Hz, -CF₃), 125.74 (2C, s, C6), 126.11 (2C, s, C13), 130.46 (2C, s, C4/11), 132.82 (1C, dt, ¹*J*_{CP} = 192 Hz, ²*J*_{CF} = 48 Hz, C2), 133.18 (1C, s, C7), 134.05 (1C, dt, ²*J*_{CP} = 48 Hz, ³*J*_{CF} = 23 Hz, C3), 134.13 (1C, s, C14), 138.26 (1C, d, ³*J*_{CP} = 9 Hz, C1), 145.23 (2C, s, C5), 145.41 (2C, s, C12); ¹⁹F{¹H} NMR (CD₃CN, in ppm): δ = -40.11 (2F, d, ¹*J*_{FP} = 721 Hz, -F1,2), -79.3 (3F, s, -CF₃); ³¹P{¹H} NMR (CD₃CN, in ppm): δ = -28.54 (t, ¹*J*_{PF} = 721 Hz); **elemental analysis**: calcd. for C₄₀H₅₆Cl₂F₅N₂O₃PS: C: 57.0, H: 6.7, N: 3.3, S: 3.8; found: C: 56.9, H: 6.5, N: 3.3, S: 4.5.

S3.18 Preparation of 15b[OTf]

A solution of XeF₂ (1.21 g, 7.10 mmol) in CH₂Cl₂ (15 ml) was added dropwise to a solution of **10b**[OTf] (5.16 g, 6.50 mmol) in CH₂Cl₂ (10 ml). After stirring 3 h at ambient temperature, *n*-hexane was added and a colorless precipitate was observed. The precipitate was filtered and washed with *n*-hexane (30 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless and moisture sensitive powder.

Yield: 4.82 g, (89%); **mp**: 241-243 °C; **Raman** (60 mW, in cm⁻¹): v = 3084(37), 3068(24), 3036(5), 2975(48), 2939(41), 2909(51), 2870(44), 2767(8), 2722(16), 1591(68), 1519(10), 1466(29), 1445(17), 1429(32), 1389(5), 1338(13), 1301(44), 1277(19), 1237(13), 1222(6), 1205(7), 1171(11), 1151(6), 1102(29), 1050(6), 1034(65), 1002(100), 960(13), 887(29), 753(16), 708(19), 621(6), 608(14), 582(7), 523(6), 445(17); **IR** (ATR, in cm⁻¹): v = 2971(vw), 2931(vw), 2871(vw), 2378(vw), 1588(vw), 1553(vw), 1516(w), 1466(w), 1444(vw), 1388(vw), 1367(vw), 1325(vw), 1265(vs), 1221(vw), 1184(vw), 1146(s), 1112(w), 1098(vw), 1059(vw), 1030(m), 999(vw), 936(vw), 808(w), 774(vw), 761(vw), 746(w), 730(w), 706(vw), 691(vw), 636(s), 582(vw), 553(s), 537(vw), 517(w), 464(vw); ¹H NMR (CD₃CN, in ppm): δ = 1.00 (6H, d, ³*J*_{HH} = 6.61 Hz, H9), 1.16 (6H, d, ³*J*_{HH} = 6.61 Hz, H10), 1.26 (6H, d, ³*J*_{HH} = 7.74 Hz, H16), 1.28 (6H, d, ³*J*_{HH} = 6.61 Hz, H17), 2.20 (2H, *pseudo* sept, ³*J*_{HH} = 6.74 Hz, H15), 2.37 (2H, *pseudo* sept, ³*J*_{HH} = 6.61 Hz, H15), 2.37 (2H, *pseudo* sept, ³*J*_{HH} = 6.61 Hz, H10), 7.43-7.48

(1H, m, H14), 7.50 (2H, d, ${}^{3}J_{\text{HH}} = 7.88$ Hz, H13), 7.57-7.64 (2H, m, H21), 7.70-7.80 (4H, m, H19), 7.71-7.76 (1H, m, H7); ${}^{13}C{}^{1}H$ **NMR** (CD₃CN, in ppm): $\delta = 22.53$ (2C, d, ${}^{6}J_{CP} = 1$ Hz, C9), 23.98 (2C, s, C17), 24.16 (2C, s, C16), 25.36 (2C, s, C10), 30.41 (2C, s, C8), 30.47 (2C, s, C15), 122.01 (1C, q, ${}^{1}J_{CF} = 321$ Hz, -CF₃), 125.94 (1C, s, C11), 126.41 (2C, s, C6), 126.61 (2C, s, C13), 129.69 (1C, s, C4), 129.97 (2C, dt, ${}^{1}J_{CP} = 24$ Hz, ${}^{2}J_{CF} = 183$ Hz, C18), 130.03 (4C, dt, ${}^{3}J_{CP} = 2$ Hz, ${}^{4}J_{CF} = 17$ Hz, C20), 130.98 (1C, dt, ${}^{2}J_{CP} = 5$ Hz, ${}^{3}J_{CF} = 17$ Hz, C3), 134.03 (1C, s, C14), 134.42 (1C, dt, ${}^{1}J_{CP} = 60$ Hz, ${}^{2}J_{CF} = 226$ Hz, C2), 134.58 (1C, s, C7), 134.71 (2C, dt, ${}^{4}J_{CP} = 2$ Hz, ${}^{5}J_{CF} = 4$ Hz, C21), 136.72 (4C, dt, ${}^{2}J_{CP} = 12$ Hz, ${}^{3}J_{CF} = 14$ Hz, C19), 137.33 (1C, d, ${}^{4}J_{CF} = 9$ Hz, C1), 146.03 (2C, s, C12), 146.26 (2C, s, C5); ${}^{19}F{}^{1}H{}$ NMR (CD₃CN, in ppm): $\delta = -64.9$ (t, ${}^{1}J_{PF} = 712$ Hz); **elemental analysis**: calcd. for C₄₀H₄₄Cl₂F₅N₂O₃PS: C: 57.9, H: 5.3, N: 3.4, S: 3.9; found: C: 57.6, H: 5.2, N: 3.3, S: 3.9.

S3.19 Preparation of 16a[OTf]₂

15a[OTf] (500 mg, 0.59 mmol) was dissolved in C_6H_5F (4 ml) and an excess of Me₃SiOTf (528 mg, 2.37 mmol) was added. The reaction mixture was stirred for 2 h accompanied by the formation of a colorless precipitate. After filtration the residue was washed with C_6H_5F (3 x 3 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless, very air and moisture sensitive powder

Yield: 521 mg, (91%); **mp**: 187-189 °C; ¹**H NMR** (CD₃CN, in ppm): δ = 1.26 (6H, d, ³*J*_{HH} = 6.76 Hz, H10), 1.29 (6H, d, ³*J*_{HH} = 6.69 Hz, H17), 1.37 (6H, d, ³*J*_{HH} = 6.69 Hz, H16), 1.47(6H, d, ³*J*_{HH} = 6.76 Hz, H9), 1.39-1.51 (2H, m, H20), 1.45-1.54 (2H, m, H19), 1.55-1.62 (1H, m, H21), 1.84-2.22(2H, m, H20), 1.89-1.95 (2H, m, H23), 1.97-2.09 (1H, m, H21), 2.00-2.09 (2H, m, H23), 2.01-2.12 (2H, m, H19), 2.22-2.31 (2H, m, H22), 2.25 (2H, *pseudo* sept, ³*J*_{HH} = 6.69 Hz, H15), 2.43 (2H, *pseudo* sept, ³*J*_{HH} = 6.76 Hz, H8), 3.46 (2H, m, H18), 7.69 (4H, d, ³*J*_{HH} = 8.01, H7, H14), 7.90 (2H, t, ³*J*_{HH} = 8.01 Hz, H6, H13); ¹³C{¹H} NMR (CD₃CN, in ppm): δ = 24.11 (2C, d, ⁶*J*_{CP} = 1 Hz, C9), 24.57 (2C, s, C16), 24.62 (2C, s, C17), 25.27 (2C, d, 20)

³*J*_{CP} = 2 Hz, C20), 25.43 (2C, d, ³*J*_{CP} = 1 Hz, C22), 25.74 (2C, s, C10), 26.07 (2C, s, C21), 26.27 (2C, dd, ²*J*_{CP} = 5 Hz, ³*J*_{CF} = 1 Hz, C23), 26.62 (2C, d, ²*J*_{CP} = 14 Hz, C19), 30.92 (2C, s, C8), 31.39 (2C, s, C15), 37.87 (2C, dd, ¹*J*_{CP} = 40 Hz, ²*J*_{CF} = 7 Hz, C18), 122.46 (2C, q, ¹*J*_{CF} = 319 Hz, -CF₃), 125.87 (1C, s, C11), 128.29 (2C, s, C14), 128.68 (2C, s, C7), 129.72 (1C, s, C4), 131.67 (1C, d, ²*J*_{CP} = 9 Hz, C3), 136.35 (1C, s, C6), 136.47 (1C, s, C13), 140.33 (1C, dd, ¹*J*_{CP} = 22 Hz, ²*J*_{CF} = 5 Hz, C2), 145.92 (1C, d, ³*J*_{CP} = 5 Hz, C1), 146.84 (2C, d, ⁴*J*_{CP} = 1 Hz, C5), 147.24 (2C, s, C12); ¹⁹**F**{¹**H**} **NMR** (CD₃CN, in ppm): δ = -149.69(d, ¹*J*_{FP} = 1027 Hz); ³¹**P**{¹**H**} **NMR** (CD₃CN, in ppm): δ = 122.11(d, ¹*J*_{PF} = 1027 Hz); **elemental analysis**: calcd. for C₄₁H₅₆Cl₂F₇N₂O₆PS₂: C: 50.7, H: 5.8, N: 2.9, S: 6.6; found: C: 50.7, H: 5.6, N: 3.1, S: 7.3.

S3.20 Preparation of 16b[OTf]₂

15b[OTf] (800 mg, 0.96 mmol) was dissolved in o-C₆H₄F₂ (5 ml) and an excess of Me₃SiOTf (2.15 g, 9.67 mmol) was added. The reaction mixture was stirred for 48 h accompanied by the formation of a colorless precipitate. After filtration the residue was washed with o-C₆H₄F₂ (4 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless, very air and moisture sensitive powder.

Yield: 661 mg, (72%); **mp**: decomp. 172-174 °C; **Raman** (80 mW, in cm⁻¹): v = 3073(63), 3033(6), 2983(14), 2942(23), 2913(16), 2869(14), 2771(8), 1585(57), 1504(5), 1465(20), 1444(11), 1417(24), 1338(8), 1303(29), 1278(21), 1237(6), 1222(6), 1164(9), 1100(23), 1050(11), 1030(100), 999(63), 961(5), 909(6), 886(26), 756(25), 710(17), 683(7), 610(23), 574(11), 518(9); **IR** (ATR, cm⁻¹): v = 3069(vw), 2871(vw), 1584(vw), 1501(m), 1464(vw), 1443(vw), 1390(vw), 1367(vw), 1329(vw), 1279(s), 1249(vs), 1220(w), 1164(w), 1150(w), 1113(vw), 1098(vw), 1060(vw), 1026(vs), 995(vw), 934(vw), 907(w), 806(m), 774(vw), 754(m), 734(m), 708(w), 690(vw), 679(vw), 656(vw), 635(vs), 573(w), 554(m), 519(s), 492(m), 433(vw); ¹H NMR (CD₂Cl₂, in ppm): δ = 0.93 (6H, d, ³J_{HH} = 6.67 Hz, H9), 1.15 (6H, ³J_{HH} = 6.67 Hz, H10), 1.25 (6H, d, ³J_{HH} = 6.77 Hz, H17), 1.38 (6H, d, ³J_{HH} = 6.77 Hz, H16), 2.45 (2H, *pseudo* sept, ³J_{HH} = 6.77 Hz, H15), 2.51 (2H, *pseudo* sept, ³J_{HH} = 6.67 Hz, H8), 7.38 (2H, d,

³*J*_{HH} = 7.86 Hz, H6), 7.54 (2H, d, ³*J*_{HH} = 7.93 Hz, H13), 7.72-7.79 (2H, m, H7, H14), 7.80-7.86 (4H, m, H19), 8.02-8.10 (2H, m, H21), 8.11-8.15 (4H, m, H20); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): δ = 22.71 (2C, d, ⁶*J*_{CP} = 1 Hz, C9), 24.30 (2C, s, C16), 24.43 (2C, s, C17), 25.76 (2C, s, C10), 30.03 (2C, s, C8), 30.36 (2C, s, C15), 112.70 (2C, dd, ¹*J*_{CP} = 12 Hz, ²*J*_{CF} = 115 Hz, C18), 117.72 (1C, dd, ¹*J*_{CP} = 142 Hz, ²*J*_{CF} = 23 Hz, C2), 121.71 (2C, q, ¹*J*_{CF} = 322 Hz, -CF₃), 125.46 (1C, s, C11), 127.01 (2C, s, C13), 127.04 (1C, s, C4), 127.41 (2C, s, C6), 132.09 (4C, d, ³*J*_{CF} = 16 Hz, C19), 135.05 (4C, dd, ³*J*_{CP} = 3 Hz, ⁴*J*_{CF} = 14 Hz, C20), 135.09 (1C, s, C14), 135.81 (1C, s, C7), 140.28 (2C, dd, ⁴*J*_{CP} = 1 Hz, ⁵*J*_{CF} = 3 Hz, C21), 142.56 (1C, dd, ²*J*_{CP} = 3 Hz, ³*J*_{CF} = 16 Hz, C3), 143.38 (1C, dd, ³*J*_{CP} = 1 Hz, ⁴*J*_{CF} = 8 Hz, C1), 146.82 (1C, s, C12), 147.09 (1C, s, C5); ¹⁹F{¹H} NMR (CD₂Cl₂, in ppm): δ = -126.27 (1F, d, ¹*J*_{FP} = 996 Hz, F1); -78.79 (s, -CF₃); ³¹P{¹H} NMR (CD₂Cl₂, in ppm): δ = 70.6 (d, ¹*J*_{CP} = 996 Hz); elemental analysis: calcd. for C₄₁H₄₄Cl₂F₇N₂O₆PS₂: C: 51.3, H: 4.6, N: 2.9, S: 6.6; found: C: 50.9, H: 4.5, N: 2.9, S: 6.6.

S3.21 Preparation of 17b[OTf]

14b[OTf]₂ (505 mg, 0.53 mmol) and PCy₃ (148 mg, 0.53 mmol) were combined and suspended in C_6H_5F (5 ml). The reaction mixture got clear after 5 min and the solvent was reduced after 1.5 h accompanied by the formation of a colorless precipitate. Benzene (6 ml) was added and the precipitate was filtered and washed with benzene (6 ml). All volatiles were removed *in vacuo* and the product was isolated as colorless, air

and moisture sensitive powder.

Yield: 306 mg, (75%); **mp**: 177-179 °C; **IR** (ATR, in cm⁻¹): v = 2957(vw), 2925(vw), 2867(vw), 1590(vw), 1510(w), 1386(vw), 1349(w), 1280(w), 1257(m), 1223(w), 1208(vw), 1152(s), 1110(m), 1060(vw), 1029(vs), 997(vw), 967(vw), 935(vw), 899(w), 883(w), 808(m), 764(vw), 749(s), 719(vw), 688(s), 636(vs), 572(vw), 538(vw), 516(s), 493(vw), 463(w), 433(w); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.97$ (6H, d, ³ $J_{HH} = 6.83$ Hz, H9), 1.11 (6H, d, ³ $J_{HH} = 6.83$ Hz, H10), 1.21 (6H, d, ³ $J_{HH} = 6.87$ Hz, H17), 1.27 (6H, d, ³ $J_{HH} = 6.87$ Hz, H16), 2.31 (3H, d, ² $J_{HP} = 14$ Hz, H22),

2.53 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.83$ Hz, H8), 2.67 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.87$ Hz, H15), 7.26 (2H, d, ${}^{3}J_{HH} = 7.78$ Hz, H6), 7.36 (2H, d, ${}^{3}J_{HH} = 7.79$ Hz, H13), 7.47 (1H, t, ${}^{3}J_{HH} = 7.78$ Hz, H7), 7.49 (1H, t, ${}^{3}J_{HH} = 7.79$ Hz, H14), 7.69-7.75 (4H, m, H19), 7.72-7.80 (4H, m, H20), 7.77-7.85 (2H, m, H21); ${}^{13}C{}^{1}H$ **NMR** (CD₂Cl₂, in ppm): $\delta = 9.91$ (1C, d, ${}^{2}J_{CP} = 59$ Hz, C22), 21.39 (2C, s, C9), 23.41 (2C, s, C16), 24.59 (2C, s, C17), 26.48 (2C, s, C10), 29.86 (2C, s, C15), 30.33 (2C, s, C8), 109.46 (1C, d, ${}^{1}J_{CP} = 108$ Hz, C2), 118.7 (2C, d, ${}^{1}J_{CP} = 92$ Hz, C18), 122.40 (1C, q, ${}^{1}J_{CF} = 323$ Hz, -CF₃), 124.92 (2C, s, C13), 125.11 (2C, s, C6), 131.28 (1C, s, C14), 131.59 (4C, d, ${}^{2}J_{CP} = 14$ Hz, C19), 132.07 (1C, s, C7), 133.79 (1C, s, C11), 134.08 (4C, d, ${}^{3}J_{CP} = 12$ Hz, C20), 136.34 (2C, d, ${}^{4}J_{CP} = 3$ Hz, C21), 136.42 (1C, s, C4), 137.08 (1C, d, ${}^{2}J_{CP} = 21$ Hz, C3), 146.99 (2C, s, C12), 147.20 (2C, s, C5), 229.30 (1C, d, ${}^{3}J_{CP} = 5$ Hz, C1); ${}^{19}F{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = -78.83$ (s, -CF₃); ${}^{3}P{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = 10.6$ (s); elemental analysis: calcd. for C₄₁H₄₇ClF₃N₂O₃PS: C: 63.9, H: 6.1, N: 3.6, S: 4.2; found: C: 63.9, H: 6.0, N: 3.7, S: 4.4.

S3.22 Preparation of 18b[OTf]

16b[OTf]₂ (250 mg, 0.26 mmol) and PPh₃ (69 mg, 0.26 mmol) were combined and suspended in C_6H_5F (5 ml). The reaction mixture got clear after 10 min and the solvent was removed after 1 h. The crude product was extracted with toluene (15 ml) and precipitated with *n*-hexane (15 ml). The solid was filtered and dried *in vacuo*. The product was isolated as colorless, very air and moisture sensitive powder.

Yield: 110 mg, (55%); **mp**: 123-125 °C; **IR** (ATR, in cm⁻¹): v = 2964(vw), 2870(vw), 1585(vw), 1531(vw), 1506(vw), 1466(vw), 1439(w), 1388(vw), 1367(vw), 1348(vw), 1273(vw), 1261(m), 1222(w), 1147(m), 1123(vw), 1060(vw), 1029(vs), 995(vw), 968(vw), 902(vw), 805(m), 756(w), 738(vw), 708(vw), 685(m), 636(vs), 615(vw), 592(w), 571(vw), 550(m), 532(vw), 513(s), 466(vw), 433(vw); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.93$ (6H, d, ³*J*_{HH} = 6.84 Hz, H9), 1.13 (6H, d, ³*J*_{HH} = 6.84 Hz, H10), 1.22 (6H, d, ³*J*_{HH} = 6.76 Hz, H17), 1.28 (6H, d, ³*J*_{HH} = 6.76 Hz, H16), 2.41 (2H, *pseudo* sept, ³*J*_{HH} = 6.84 Hz, H8), 2.52 (2H, *pseudo* sept, ³*J*_{HH} = 6.76 Hz, H15), 7.20 (2H, d, 23)

³*J*_{HH} = 7.83 Hz, H6), 7.38 (2H, d, ³*J*_{HH} = 7.88 Hz, H13), 7.48 (1H, t, ³*J*_{HH} = 7.83 Hz, H7), 7.57 (1H, t, ³*J*_{HH} = 7.88 Hz, H14), 7.65-7.73 (4H, m, H20), 7.82-7.89 (4H, m, H19), 8.05-8.12 (2H, m, H21); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): δ = 21.64 (2C, s, C9), 23.53 (2C, s, C16), 24.94 (2C, s, C17), 26.26 (2C, s, C10), 29.84 (2C, s, C15), 30.18 (2C, s, C8), 107.87 (1C, dd, ¹*J*_{CP} = 143 Hz, ²*J*_{CF} = 20 Hz, C2), 115.46 (2C, dd, ¹*J*_{CP} = 117 Hz, ²*J*_{CF} = 14 Hz, C18), 121.61 (1C, q, ¹*J*_{CF} = 322 Hz, -CF₃), 124.73 (2C, s, C6), 125.05 (2C, s, C13), 131.72 (1C, s, C14), 132.02 (4C, d, ²*J*_{CP} = 15 Hz, C19), 132.04 (1C, s, C7), 132.26 (1C, s, C11), 133.67 (4C, dd, ³*J*_{CP} = 14 Hz, ⁴*J*_{CF} = 1 Hz, C20), 134.80 (1C, d, ³*J*_{CP} = 2 Hz, C4), 139.86 (2C, dd, ⁴*J*_{CP} = 3 Hz, ⁵*J*_{CF} = 1 Hz, C21), 140.59 (1C, dd, ²*J*_{CP} = 30 Hz, ³*J*_{CF} = 1 Hz, C3), 146.16 (2C, s, C12), 146.20 (2C, s, C5), 230.80 (1C, *pseudo* t, ^{3/4}*J*_{CP/F} = 4 Hz); ¹⁹F{¹H} NMR (CD₂Cl₂, in ppm): δ = -78.79 (s, -CF₃), -128.22 (1F, d, ¹*J*_{FP} = 997 Hz, F1); ³¹P{¹H} NMR (CD₂Cl₂, in ppm): δ = 77.8 (d, ¹*J*_{CP} = 997 Hz); elemental analysis: calcd. for C₄₀H₄₄ClF₄N₂O₃PS: C: 61.9, H: 5.7, N: 3.6, S: 4.1; found: C: 61.1, H: 5.8, N: 3.3, S: 4.3.

S3.23 General procedure for the preparation of transition metal complexes

14b[OTf]₂ and Cy₃P or 16b[OTf]₂ and PPh₃ were suspended in THF at ambient temperature. After 10-30 minutes a suspension of the corresponding transition metal salt in THF was added to the clear reaction mixture. The reaction mixture was stirred for 4-6 h accompanied by a formation of a colorless precipitate which was filtered off, washed with THF and dried *in vacuo*. 19[OTf] and 20[OTf] were obtained as colorless, air-stable powder. 21[OTf] and 22[OTf]₃ were obtained as colorless, moisture sensitive powder. 23[OTf] was obtained as yellow, moisture sensitive powder.

S3.24 Characterization data of 19[OTf]

14b[OTf]₂ (400 mg, 0.42 mmol); Cy₃P (117 mg, 0.42 mmol), THF (8 ml); AuCl(tht) (135 mg, 0.42 mmol), THF (5 ml); THF (8 ml); **yield**: 372 mg, (88%); **mp**: 300 °C (decomp.); **Raman** (40 mW, in cm⁻¹): v = 3173(7), 3066(100), 3012(13), 2986(12), 2969(28), 2941(13), 2914(64), 2866(40), 2765(6), 2716(10), 1588(55), 1514(22), 1467(12), 1444(15), 1412(7), 1367(37), 1338(21), 1307(12), 1262(18), 1235(6), 1196(6), 1166(9),

1112(12), 1047(10), 1030(43), 999(44), 888(12), 754(9), 707(7), 693(11), 613(10); IR (ATR, in cm^{-1}): v = 2966(vw), 2913(vw), 2866(vw), 1587(vw), 1513(m), 1465(vw), 1439(m), 1388(vw), 1587(vw), 1587(vw), 1513(m), 1465(vw), 1439(m), 1388(vw), 1587(vw), 1587(vw),1364(vw), 1339(vw), 1273(vw), 1258(s), 1222(w), 1164(vw), 1114(m), 1059(vw), 1029(vs), 916(vw), 900(m), 805(m), 762(vw), 742(s), 723(vw), 685(m), 636(vs), 572(w), 543(vw), 516(s), 498(vw), 485(vw); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.97$ (6H, d, ³J_{HH} = 6.79 Hz, H10), 1.28 (6H, d, ${}^{3}J_{HH} = 6.87$ Hz, H17), 1.35 (6H, d, ${}^{3}J_{HH} = 6.87$ Hz, H16), 1.38 (6H, d, ${}^{3}J_{HH} = 6.79$ Hz, H9), 2.11 (3H, d, ${}^{1}J_{\text{HP}}$ = 14.01 Hz, H22), 2.39 (2H, *pseudo* sept, ${}^{3}J_{\text{HH}}$ = 6.79 Hz, H8), 2.42 (2H, *pseudo* sept, ${}^{3}J_{\text{HH}} = 6.87 \text{ Hz}$, H15), 7.44 (2H, d, ${}^{3}J_{\text{HH}} = 7.87 \text{ Hz}$, H6), 7.49 (2H, d, ³*J*_{HH} = 7.87 Hz, H13), 7.59-7.69 (4H, m, H20), 7.67-7.72 (2H, m, H7, H14), 7.74-7.82 (4H, m, H19), 7.91-7.97 (2H, m, H21); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, in ppm): $\delta = 10.56$ (1C, d, ${}^{1}J_{CP} = 59$ Hz, C22), 22.52 (2C, s, C10), 23.67 (2C, s, C17), 24.80 (2C, s, C17), 27.00 (2C, s, C9), 30.04 (2C, s, C8), 30.48 (2C, s, C15), 112.46 (2C, d, ${}^{1}J_{CP} = 111$ Hz, C18), 116.56 (1C, d, ${}^{1}J_{CP} = 93$ Hz, C2), 122.21 (1C, q, ${}^{1}J_{CF}$ = 321 Hz, -CF₃), 126.45 (2C, s, C13), 127.24(2C, s, C6), 130.70 (1C, s, C11), 132.19 (4C, d, ${}^{2}J_{CP}$ = 14 Hz, C19), 132.98 (1C, s, C7), 133.61 (1C, s, C14), 134.09 (4C, d, ${}^{3}J_{CP} = 11$ Hz, C20), 134.28 (1C, s, C7), 137.72 (2C, d, ${}^{4}J_{CP} = 3$ Hz, C21), 138.97 (1C, d, ${}^{2}J_{CP} = 14$ Hz, C3), 147.08 (2C, s, C12), 147.23 (2C, s, C5), 184.04 (1C, s, C1); ${}^{19}F{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = -79.24$ (s, -CF₃); ³¹P{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 14.08$ (s); elemental analysis: calcd. for C₄₁H₄₇Cl₂F₃N₂O₃PSAu: C: 49.0, H: 4.7, N: 2.8, S:3.2; found: C: 49.0, H: 4.6, N: 2.8, S: 2.8.

S3.25 Characterization data of 20[OTf]

14b[OTf]₂ (500 mg, 0.52 mmol); Cy₃P (147 mg, 0.52 mmol), THF (8 ml); CuBr(tht) (128 mg, 0.55 mmol), THF (5 ml); THF (8 ml); **yield**: 442 mg, 93%; **mp**: 278-280 °C (decomp.); **Raman** (40 mW, in cm⁻¹): v = 3173(6), 3098(5), 3066(100), 3030(5), 3011(9), 2971(39), 2940(9), 2914(84), 2865(45), 2764(9), 2714(12), 2293(6), 2108(6), 1588(75), 1512(24), 1467(18), 1443(18), 1392(6), 1369(42), 1324(33), 1304(12),

1257(21), 1236(9), 1196(6), 1166(12), 1105(33), 1047(9), 1030(54), 999(55), 960(6), 887(18), 756(12), 733(6), 693(15), 613(9), 596(12), 573(6), 537(5), 517(6); **IR** (ATR, in cm^{-1}): v = 2965(vw), 2912(vw), 1587(vw), 1508(w), 1464(vw), 1440(m), 1387(w), 1361(w), 1321(vw), 1464(vw), 1464(v1303(vw), 1272(vw), 1258(vs), 1222(w), 1161(w), 1147(m), 1114(m), 1060(m), 1029(vs), 935(vw), 916(vw), 901(m), 807(m), 792(vw), 764(vw), 742(s), 724(vw), 686(vs), 572(w), 544(vw), 517(s), 498(w), 465(m), 430(w); ¹**H NMR** (CD₃CN, in ppm): $\delta = 0.97$ (6H, d, ${}^{3}J_{\text{HH}} = 6.68 \text{ Hz}, \text{H10}$, 1.28 (6H, d, ${}^{3}J_{\text{HH}} = 6.84 \text{ Hz}, \text{H17}$), 1.29 (6H, d, ${}^{3}J_{\text{HH}} = 6.68 \text{ Hz}, \text{H9}$), 1.30 (6H, d, ${}^{3}J_{HH} = 6.84$ Hz, H16), 2.13 (3H, d, ${}^{1}J_{HP} = 13.88$ Hz, H22), 2.40 (2H, *pseudo* sept, ${}^{3}J_{\text{HH}} = 6.68 \text{ Hz}, \text{H8}$), 2.44 (2H, *pseudo* sept, ${}^{3}J_{\text{HH}} = 6.84 \text{ Hz}, \text{H15}$), 7.41 (2H, d, ${}^{3}J_{\text{HH}} = 7.87 \text{ Hz}$, H6), 7.48 (2H, d, ${}^{3}J_{HH} = 7.85$ Hz, H13), 7.59-7.65 (4H, m, H20), 7.64-7.69 (2H, m, H7, H14), 7.74-7.79 (4H, m, H19), 7.91-7.96 (2H, m, H21); ${}^{13}C{}^{1}H$ NMR (CD₃CN, in ppm): $\delta = 10.55$ $(1C, d, {}^{1}J_{CP} = 58 \text{ Hz}, C22), 22.15 (2C, s, C10), 23.67 (2C, s, C17), 25.10 (2C, s, C16), 27.47 (2C, s, C16))$ s, C9), 30.24 (2C, s, C8), 30.28 (2C, s, C15), 111.84 (2C, d, ${}^{1}J_{CP} = 110$ Hz, C18), 116.75 (1C, d, ${}^{1}J_{CP} = 93$ Hz, C2), 122.26 (1C, q, ${}^{1}J_{CF} = 321$ Hz, -CF₃), 126.18 (2C, s, C13), 126.69(2C, s, C6), 130.87 (1C, s, C11), 132.11 (4C, d, ${}^{2}J_{CP}$ = 14 Hz, C19), 133.39 (1C, s, C4), 133.41 (1C, s, C7), 133.98 (1C, s, C14), 134.14 (4C, d, ${}^{3}J_{CP} = 11$ Hz, C20), 137.39 (2C, d, ${}^{4}J_{CP} = 3$ Hz, C21), 138.70 $(1C, d, {}^{2}J_{CP} = 15 \text{ Hz}, C3), 147.09 (2C, s, C12), 147.11 (2C, s, C5), 189.51 (1C, s, C1);$ ¹⁹F{¹H} NMR (CD₃CN, in ppm): $\delta = -79.11$ (s, -CF₃); ³¹P{¹H} NMR (CD₃CN, in ppm): δ = 13.12 (s); elemental analysis: calcd. for C₄₁H₄₇ClBrF₃N₂O₃PSCu: C: 53.8, H: 5.2, N: 3.1, S:3.5; found: C: 53.3, H: 5.3, N: 3.2, S: 3.4.

S3.26 Characterization data of 21[OTf]

16b[OTf]₂ (120 mg, 0.12 mmol); Ph₃P (33 mg, 0.12 mmol), THF (3 ml); AuCl(tht) (40 mg, 0.12 mmol), THF (2 ml); THF (3 ml); **yield**: 109 mg, (87%); **mp**: 136 °C (decomp.); **IR** (ATR, in cm⁻¹): v = 2965(w), 2871(vw), 1586(vw), 1511(w), 1464(vw), 1440(m), 1382(vw), 1364(vw), 1340(vw), 1274(vw), 1265(vs), 1223(w), 1184(vw), 1156(w), 1145(vw), 1129(vw), 1118(vw), 1099(vw), 1061(w), 1030(vs), 996(vw),

927(m), 907(vw), 807(m), 782(vw), 764(vw), 743(s), 711(m), 688(vw), 676(vw), 636(vs), 603(vw), 572(w), 551(m), 533(m), 515(vs), 478(m), 430(w); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.92$ (6H, d, ${}^{3}J_{\text{HH}} = 6.80$ Hz, H9), 1.35 (6H, d, ${}^{3}J_{\text{HH}} = 7.21$ Hz, H16), 1.43 (6H, d, ${}^{3}J_{\rm HH} = 7.21$ Hz, H17), 1.45 (6H, d ${}^{3}J_{\rm HH} = 6.80$ Hz, H10), 2.38 (2H, *pseudo* sept, ${}^{3}J_{\rm HH} = 6.80$ Hz, H8), 2.43 (2H, *pseudo* sept, ${}^{3}J_{HH} = 7.21$ Hz, H15), 7.34 (2H, d, ${}^{3}J_{HH} = 7.85$ Hz, H6), 7.48 (2H, d, ${}^{3}J_{\text{HH}} = 7.91 \text{ Hz}, \text{H13}$, 7.68 (1H, t, ${}^{3}J_{\text{HH}} = 7.85 \text{ Hz}, \text{H7}$), 7.73 (1H, t, ${}^{3}J_{\text{HH}} = 7.91 \text{ Hz}, \text{H14}$), 7.80-7.88 (4H, m, H20), 7.91-7.99 (4H, m, H19), 8.14-8.21 (2H, m, H21); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 22.52$ (2C, s, C9), 23.77 (2C, s, C16), 24.74 (2C, s, C17), 26.65 (2C, s, C10), 30.24 ${}^{1}J_{CP} = 116 \text{ Hz}, {}^{2}J_{CF} = 14 \text{ Hz}, C18$, 125.88 (2C, s, C13), 125.98 (2C, s, C6), 129.69(1C, s, C11), 130.74 (1C, dd, ${}^{2}J_{CP}$ = 129 Hz, ${}^{3}J_{CF}$ = 14 Hz, C3), 131.86 (1C, d, ${}^{3}J_{CP}$ = 2Hz, C4), 132.14 (4C, d, ${}^{2}J_{CP} = 15$ Hz, C19), 133.32 (1C, s, C14), 133.67 (1C, s, C7), 134.21 (4C, d, ${}^{3}J_{CP} = 13$ Hz, C20), 140.28 (2C, s, C21), 146.11 (2C, s, C12), 146.23 (2C, s, C5), 186.46 (1C, s, C1); ¹⁹F{¹H} NMR (CD₂Cl₂, in ppm): $\delta = -78.75$ (s, -CF₃), -128.16 (1F, d, ${}^{1}J_{\text{FP}} = 1008$ Hz, -PF); ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = 78.97$ (d, ¹J_{PF} = 1008 Hz); elemental analysis: calcd. for C₄₀H₄₄AuCl₂F₄N₂O₃PS: C: 47.7, H: 4.4, N: 2.8, S: 3.2; found: C: 47.9, H: 4.5, N: 2.8, S: 3.8.

S3.27 Characterization data of 22[OTf]₃

14b[OTf]₂ (220 mg, 0.23 mmol); Cy₃P (65 mg, 0.23 mmol), THF (5 ml); AgOTf (58 mg, 0.23 mmol), THF (3 ml); THF (5 ml); **yield**: 193 mg, (82%); **mp**: 304 °C (decomp.); **Raman** (40 mW, in cm⁻¹): v = 3069(68), 2987(14), 2965(16), 2939(18), 2908(25), 2866(19), 2846(9), 2765(9), 2721(11), 1588(75), 1520(31), 1467(22), 1442(19), 1392(10), 1370(37), 1320(21), 1297(25), 1258(13), 1223(9), 1168(16), 1108(44), 1048(15), 1031(100), 999(75), 984(9),

959(11), 887(25), 809(8), 753(26), 731(13), 692(25), 614(19), 595(12), 572(13), 518(10), 448(11), 405(10), 380(8); **IR** (ATR, in cm⁻¹): v = 2968(vw), 2922(vw), 2875(vw), 1585(vw), 1516(w), 1463(vw), 1440(w), 1388(vw), 1363(vw), 1275(w), 1255(m), 1221(w), 1149(s), 1110(m), 1062(w), 1029(vs), 996(vw), 903(vw), 888(w), 807(w), 748(m), 720(w), 687(m), 636(vs), 571(w), 537(vw), 515(s), 497(vw), 462(vw), 433(w); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.75$ (6H, d, ${}^{3}J_{\text{HH}} = 6.70$ Hz, H10), 0.83 (6H, d, ${}^{3}J_{\text{HH}} = 6.57$ Hz, H17), 0.90 (6H, d, ${}^{3}J_{\text{HH}} = 6.57 \text{ Hz}, \text{H9}$, 1.16 (6H, d, ${}^{3}J_{\text{HH}} = 6.70 \text{ Hz}, \text{H16}$), 2.00 (3H, d, ${}^{1}J_{\text{HP}} = 13.41 \text{ Hz}, \text{H22}$), 2.10 (4H, *pseudo* sept, ${}^{3}J_{HH} = 6.79$ Hz, H8, H15), 7.31 (4H, *pseudo* t, ${}^{3}J_{HH} = 7.87$ Hz, H6, H13), 7.48-7.57 (4H, m, H20), 7.67-7.78 (2H, m, H7, H14), 7.67-7.78 (4H, m, H19), 7.87-7.93 (2H, m, H21); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 9.19$ (1C, d, ¹J_{CP} = 58 Hz, C22), 20.93 (2C, s, C9), 22.74 (2C, s, C16), 24.86 (2C, s, C17), 27.38 (2C, s, C10), 29.29 (2C, s, C8), 29.47 (2C, s, C15), 113.39 (2C, d, ${}^{1}J_{CP} = 107$ Hz, C18), 115.16 (1C, d, ${}^{1}J_{CP} = 92$ Hz, C2), 120.90 (2C, q, ${}^{1}J_{CF} = 322 \text{ Hz}, -CF_{3}, 125.75 (2C, s, C13), 126.31(2C, s, C6), 129.76 (1C, s, C11), 131.35 (4C, d, d, d)$ ${}^{2}J_{CP} = 14$ Hz, C19), 132.41 (1C, s, C4), 132.52 (4C, d, ${}^{3}J_{CP} = 12$ Hz, C20), 134.19 (1C, s, C7), 133.03 (1C, s, C14), 136.79 (2C, d, ${}^{4}J_{CP}$ = 3 Hz, C21), 139.94 (1C, d, ${}^{2}J_{CP}$ = 15 Hz, C3), 145.40 (2C, s, C12), 145.42 (2C, s, C5), 183.68 (1C, d, ${}^{1}J_{CAg107} = 202 \text{ Hz}$, ${}^{1}J_{CAg109} = 234 \text{ Hz}$, C1); ¹⁹**F**{¹**H**} **NMR** (CD₂Cl₂, in ppm): $\delta = -78.75$ (s, -CF₃); ³¹**P**{¹**H**} **NMR** (CD₂Cl₂, in ppm): $\delta = 14.08$ (s); elemental analysis: calcd. for C₈₃H₉₄Cl₂F₉N₄O₉P₂S₃Ag: C: 55.4, H: 5.3, N: 3.1, S:5.3; found: C: 54.9, H: 5.4, N: 2.9, S: 5.3.

S3.28 Characterization data of 23[OTf]

14b[OTf]₂ (192 mg, 0.20 mmol); Cy₃P (57 mg, 0.20 mmol), THF (5 ml); [Rh(cod)Cl]₂ (55 mg, 0.11 mmol), THF (2 ml); THF (6 ml); **yield**: 179 mg, (88%); **mp**: 199-201 °C (decomp.); **Raman** (40 mW, in cm⁻¹): v = 3065(91), 3011(11), 2970(36), 2945(12), 2917(22), 2905(10), 2872(45), 2826(27), 1587(85), 1515(63), 1469(23), 1443(16), 1430(12), 1346(22), 1333(11), 1303(51), 1280(10), 1262(13), 1238(24), 1220(36), 1189(11), 1167(9), 1142(9), 1106(42), 1047(11), 1031(73), 998(100), 976(22), 954(17), 912(9), 883(17), 852(12), 809(12), 779(8), 754(13), 733(12), 693(9), 615(10), 597(23), 573(27), 530(9), 505(10), 484(16); **IR** (ATR, in cm⁻¹): v = 2968(vw),

2870(vw), 1586(vw), 1512(w), 1461(vw), 1440(w), 1388(vw), 1333(vw), 1286(m), 1252(m), 1219(w), 1152(vs), 1107(w), 1058(vw), 1031(s), 995(vw), 954(vw), 932(vw), 896(m), 851(vw), 803(vw), 753(vs), 690(m), 637(vs), 571(w), 546(vw), 516(m), 496(vw); ¹H NMR (CD₂Cl₂, in ppm): $\delta = 0.29$ (3H, d, ${}^{3}J_{HH} = 6.79$ Hz, H24), 0.91 (3H, d, ${}^{3}J_{HH} = 6.69$ Hz, H26), 1.14 (3H, d, ${}^{3}J_{\rm HH} = 6.69$ Hz, H27), 1.16 (3H, d, ${}^{3}J_{\rm HH} = 6.69$ Hz, H11), 1.35-1.45 (8H, m, H12, H15, H42), 1.42 (3H, d, ${}^{3}J_{HH} = 6.90$ Hz, H26), 1.55 (3H, d, ${}^{3}J_{HH} = 6.90$ Hz, H23), 1.59-1.72 (2H, m, H39), 1.72-1.79 (4H, m, H40, H41), 1.85 (3H, d, ${}^{2}J_{HP}$ = 13 Hz, H36), 2.06 (1H, pseudo sept, ${}^{3}J_{\text{HH}} = 6.79 \text{ Hz}, \text{H25}$, 2.47 (1H, *pseudo* sept, ${}^{3}J_{\text{HH}} = 6.69 \text{ Hz}, \text{H13}$), 3.39 (2H, s(br), H37, H38), 3.50 (1H, pseudo sept, ${}^{3}J_{HH} = 6.69$ Hz, H10), 3.68 (1H, pseudo sept, ${}^{3}J_{HH} = 6.69$ Hz, H10), 4.45-4.54 (1H, m, H44), 4.79-4.88 (1H, m, H43), 7.39 (2H, d, ${}^{3}J_{HH} = 7.92$ Hz, H8, H20), 7.43-7.53 (4H, m, H6, H18, H30), 7.59-7.66 (2H, m, H29), 7.61-7.70 (2H, m, H34), 7.65-7.70 (1H, m, H19), 7.79-7.86 (3H, m, H7, H33), 7.90-7.97 (2H, m, H31, H35); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 9.99$ (1C, d, ${}^{1}J_{CP} = 59$ Hz, C36), 22.64 (1C, s, C24), 22.82 (1C, s, C26), 25.05 (1C, s, C14), 25.27 (1C, s, C27), 25.35 (1C, s, C11), 26.14 (1C, s, C15), 26.57 (1C, s, C42), 27.04 (1C, s, C12), 29.01 (1C, s, C23), 29.09 (1C, s, C12), 29.22 (1C, s, C25), 29.66 (1C, s, C10), 29.70 (1C, s, C13), 30.36 (1C, s, C40), 30.49 (1C, s, C39), 34.72 (1C, s, C41), 66.21 (1C, d, ${}^{1}J_{CRh} = 14$ Hz, C38), 72.3 (1C, d, ${}^{1}J_{CRh} = 14$ Hz, C37), 96.80 (1C, d, ${}^{1}J_{CRh} = 7$ Hz, C44), 100.31 (1C, d, ${}^{1}J_{CRh} = 7$ Hz, C43), 109.48 (1C, d, ${}^{1}J_{CP} = 114$ Hz, C2), 115.88 (1C, d, ${}^{1}J_{CP} = 90$ Hz, C28), 117.95

(1C, d, ${}^{1}J_{CP} = 93$ Hz, C32), 120.82 (1C, q, ${}^{1}J_{CF} = 321$ Hz, -CF₃), 124.48 (1C, s, C8), 125.70 (1C, s, C20), 126.65 (1C, s, C6), 127.74 (1C, s, C18), 131.02 (2C, d, ${}^{2}J_{CP} = 14$ Hz, C29), 131.54 (2C, d, ${}^{2}J_{CP} = 14$ Hz, C33), 131.79 (1C, s, C7), 132.01 (1C, s, C4), 132.65 (1C, s, C19), 132.99 (2C, d, ${}^{3}J_{CP} = 11$ Hz, C30), 133.05 (2C, d, ${}^{3}J_{CP} = 11$ Hz, C34), 133.34 (1C, s, C16), 136.26 (1C, d, ${}^{4}J_{CP} = 3$ Hz, C31), 136.70 (1C, d, ${}^{4}J_{CP} = 3$ Hz, C35), 140.20 (1C, d, ${}^{2}J_{CP} = 17$ Hz, C16), 145.02 (1C, s, C9), 146.47 (1C, s, C21), 148.22 (1C, s, C17), 148.62 (1C, s, C5), 206.08 (1C, d, ${}^{1}J_{CRh} = 52$ Hz, C1); ${}^{19}F{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = -78.99$ (s, -CF₃); ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = 13.34$ (s); elemental analysis: calcd. for C₄₉H₅₉RhCl₂F₃N₂O₃PS: C: 57.6, H: 6.2, N: 2.7, S:3.1; found: C: 57.7, H: 5.9, N: 2.8, S: 4.0.

S3.29 Preparation of 24[OTf]

Carbon monoxide was bubbled for 45 min through a solution of 23[OTf] (125 mg, 0.12 mmol) in CH₂Cl₂ (8 ml) accompanied by a color change from deep yellow to pale yellow. The solvent was reduced *in vacuo* and *n*-hexane (10mL) was added accompanied by the formation of a yellow precipitate. After filtration, all volatiles were removed *in vacuo*. 24[OTf] was isolated as air and moisture sensitive, pale yellow powder. For

CO stretching frequencies see IR spectrum in figure S2.10.

Yield: 99 mg, (86%); **mp**: 246-248 °C (decomp.); **Raman** (40 mW, in cm⁻¹): v = 3072(77), 3062(61), 3026(23), 3006(20), 2971(30), 2963(28), 2937(73), 2915(61), 2869(35), 2079(67), 1997(100), 1587(76), 1572(17), 1510(30), 1467(15), 1442(21), 1366(40), 1350(38), 1317(28), 1295(38), 1273(11), 1244(31), 1228(22), 1183(8), 1168(9), 1107(23), 1046(21), 1029(81), 999(77), 982(16), 952(7), 883(23), 774(11), 754(17), 733(11), 714(9), 693(19), 658(7), 615(17), 600(19), 572(11), 539(15), 514(11), 491(15); **IR** (ATR, in cm⁻¹): v = 2962(vw), 2933(vw), 2073(s), 2007(s), 1586(vw), 1510(w), 1466(vw), 1439(w), 1386(vw), 1365(w), 1318(vw), 1265(vs), 1224(w), 1160(w), 1141(w), 1106(m), 1058(vw), 1032(s), 930(vw), 879(m), 804(w), 751(s), 713(w), 686(m), 639(vs), 586(vw), 571(vw), 540(vw), 515(m), 498(vw), 477(w), 460(vw), 436(w); ¹**H NMR** (CD₂Cl₂, in ppm): δ = 0.95 (6H, d, ³*J*_{HH} = 6.74 Hz, H10), 1.16 (6H,

d, ${}^{3}J_{\text{HH}} = 6.53$ Hz, H16), 1.42 (6H, d, ${}^{3}J_{\text{HH}} = 6.74$ Hz, H9), 1.48 (6H, d, ${}^{3}J_{\text{HH}} = 6.53$ Hz, H17), 2.04 (3H, d, ${}^{3}J_{\text{HP}} = 13.61$ Hz, H22), 2.76-2.88 (4H, m, H8, H15), 7.44 (2H, d, ${}^{3}J_{\text{HH}} = 7.82$ Hz, H13), 7.48 (2H, ${}^{3}J_{\text{HH}} = 7.84$ Hz, H6), 7.61-7.69 (5H, m, H14, H20), 7.71-7.76 (1H, m, H7), 7.73-7.79 (4H, m, H19), 7.88-7.94 (2H, m, H21); 13 C{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 9.59$ (1C, d, ${}^{1}J_{\text{CP}} = 57$ Hz, C22), 24.60 (2C, s, C17), 24.86 (2C, s, C10), 25.26 (2C, s, C16), 26.99 (2C, s, C9), 29.59 (2C, s, C8), 30.79 (2C, s, C15), 112.71 (2C, d, ${}^{1}J_{\text{CP}} = 110$ Hz, C18), 117.25 (1C, d, ${}^{1}J_{\text{CP}} = 92$ Hz, C2), 121.42 (1C, q, ${}^{1}J_{\text{CF}} = 320$ Hz, -CF₃), 126.09 (2C, s, C13), 127.35 (2C, s, C6), 131.37 (1C, s, C11), 131.65 (4C, d, ${}^{2}J_{\text{CP}} = 14$ Hz, C19), 132.75 (1C, s, C14), 133.37 (1C, s, C4), 133.39 (4C, d, ${}^{3}J_{\text{CP}} = 11$ Hz, C20), 133.66 (1C, s, C7), 137.01 (2C, d, ${}^{4}J_{\text{CP}} = 3$ Hz, C21), 140.09 (1C, dd, ${}^{2}J_{\text{CP}} = 15$ Hz, ${}^{3}J_{\text{CRh}} = 2$ Hz, C3), 146.75 (1C, s, C12), 147.13 (1C, s, C5), 182.06 (1C, d, ${}^{1}J_{\text{CRh}} = 72$ Hz, C24), 183.37 (1C, d, ${}^{1}J_{\text{CRh}} = 55$ Hz, C23), 194.97 (1C, d, ${}^{1}J_{\text{CRh}} = 48$ Hz, C1); ${}^{31}P{^{1}H}$ NMR (CD₂Cl₂, in ppm): $\delta = -78.99$ (s, -CF₃).

S3.30 Preparation of 26[OTf][Cl]

To a solution of Ph_2PH (20 mg, 0.11 mmol) in 1,2dichloroethane (1 ml) a solution of **17b**[OTf] (38 mg, 0.05 mmol) in 1,2-dichloroethane (2 ml) was added dropwise. The reaction mixture was stirred for 12 h at ambient temperature. *n*-Hexane was added (2 ml) followed by the formation of a colorless precipitate. The precipitate was filtered, washed with *n*-hexane and dried *in vacuo*.

Yield: not determined; **mp**: 199-201 °C; ¹**H NMR** (CD₂Cl₂, in ppm): $\delta = 0.45$ (6H, d, ³*J*_{HH} = 6.39 Hz, H10), 0.98 (6H, d, ³*J*_{HH} = 6.39 Hz, H9), 1.16 (6H, d, ³*J*_{HH} = 6.55 Hz, H17), 1.30 (6H, d, ³*J*_{HH} = 6.55 Hz, H16), 1.94 (2H, *pseudo* sept, ³*J*_{HH} = 6.39 Hz, H8), 2.42 (2H, *pseudo*, sept, ³*J*_{HH} = 6.55 Hz, H15), 3.15 (3H, d, ²*J*_{HP} = 14 Hz, H22), 7.17 (2H, d, ³*J*_{HH} = 7.91 Hz, H6), 7.35 (2H, d, ³*J*_{HH} = 7.82 Hz, H13), 7.45-7.56 (4H, m, H20), 7.52-7.64 (4H, m, H19), 7.56-7.66 (1H, m, H14), 7.56-7.61 (1H, m, H7), 7.79-7.85 (2H, m, H21), 10.69 (1H, s, H3), 11.66 (1H, s, H1); ¹³C{¹H} NMR (CD₂Cl₂, in ppm): $\delta = 12.17$ (1C, d, ¹*J*_{CP} = 57 Hz, C22), 21.20 (2C, s, C10),

24.18 (2C, s, C16), 24.58 (2C, s, C17), 26.61 (2C, s, C9), 29.99 (2C, s, C15), 30.12 (2C, s, C8), 114.19 (2C, d, ${}^{1}J_{CP} = 92$ Hz, C18), 118.76 (2C, d, ${}^{1}J_{CP} = 150$ Hz, C2), 121.11 (1C, q, ${}^{1}J_{CF} = 321$ Hz, -CF₃), 125.35 (2C, s, C13), 125.87 (2C, s, C6), 128.68 (1C, s, C4), 129.73 (1C, s, C11), 131.37 (4C, d, ${}^{3}J_{CP} = 14$ Hz, C19), 132.97 (1C, s, C14), 134.27 (1C, s, C7), 134.46 (4C, d, ${}^{4}J_{CP} = 11$ Hz, C20), 137.04 (2C, d, ${}^{5}J_{CP} = 3$ Hz, C21), 141.07 (1C, d, ${}^{3}J_{CP} = 19$ Hz, C3), 145.44 (2C, s, C12), 146.36 (2C, s, C5), 148.35 (1C, d, ${}^{4}J_{CP} = 4$ Hz, C1); ${}^{19}F{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = -79.03$ (s, -CF₃); ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂, in ppm): $\delta = 12.30$ (s).

S3.31 Preparation of 34[OTf]₂

14b[OTf]₂ (500 mg, 0.52 mmol) and Cy₃P (147 mg, 0.52 mmol) were combined and suspended in C₆H₅F (8 ml). After 30 minutes MeOTf (103 mg, 0.62 mmol) in C₆H₅F (2 ml) was added to the clear reaction mixture accompanied by a formation of a colorless precipitate. After 12 h the precipitate was filtered, washed with C₆H₅F (6 ml) and dried *in vacuo*. The product was obtained as colorless, air-stable

powder.

Yield: 466 mg, 96%; mp: 247-249 °C; Raman (40 mW, in cm⁻¹): v = 3071(51), 3025(17), 2997(24), 2979(31), 2937(41), 2914(51), 2872(27), 1852(15), 1587(58), 1504(33), 1469(55), 1444(37), 1373(27), 1341(41), 1288(37), 1223(29), 1167(24), 1099(31), 1050(15), 1030(100), 999(76), 887(23), 813(15), 753(48), 722(36), 612(31), 572(26), 513(21), 451(19), 384(32), 348(41); **IR** (ATR, in cm⁻¹): v = 2965(vw), 2904(vw), 1586(vw), 1511(vw), 1466(vw), 1439(w), 1391(vw), 1348(vw), 1268(w), 1251(m), 1223(w), 1162(vw), 1147(w), 1105(w), 1060(vw), 1028(vs), 996(vw), 934(vw), 904(m), 808(vw), 789(vw), 749(m), 723(vw), 686(m), 636(vs), 572(w), 540(vw), 517(w), 505(vw), 485(vw), 471(vw), 455(vw); ¹H NMR (CH₂Cl₂, in ppm): δ = 0.88 (6H, d, ³*J*_{HH} = 6.65 Hz, H10), 1.10 (6H, d, ³*J*_{HH} = 6.65 Hz, H9), 1.33 (6H, d, ³*J*_{HH} = 6.73 Hz, H16), 1.42 (6H, d, ³*J*_{HH} = 6.73 Hz, H17), 2.38 (3H, s, H23), 2.91 (3H, d, ¹*J*_{HP} = 13.88 Hz, H22), 2.34 (2H, *pseudo* sept, ³*J*_{HH} = 6.65 Hz, H8), 2.38 (2H, *pseudo* sept, ³*J*_{HH} = 6.73 Hz, H15), 7.35 (2H, d, ³*J*_{HH} = 7.94 Hz, H6), 7.59 (2H, d, ³*J*_{HH} = 7.81 Hz, H13), 7.62-

7.69 (4H, m, H20), 7.71 (1H, t, ${}^{3}J_{\text{HH}} = 7.94$ Hz, H7), 7.73-7.79 (4H, m, H19), 7.83 (1H, t, ${}^{3}J_{\text{HH}} = 7.81$ Hz, H14), 7.91-7.97 (2H, m, H21); ${}^{13}C\{{}^{1}H\}$ NMR (CH₂Cl₂, in ppm): $\delta = 12.31$ (1C, d, ${}^{1}J_{\text{CP}} = 57$ Hz, C22), 15.12 (1C, s, C23), 22.68 (2C, s, C9), 24.26 (2C, s, C16), 24.68 (2C, s, C17), 25.50 (2C, s, C10), 30.02 (2C, s, C8), 30.38 (2C, s, C15), 114.50 (2C, d, ${}^{1}J_{\text{CP}} = 92$ Hz, C18), 114.81 (1C, d, ${}^{1}J_{\text{CP}} = 104$ Hz, C2), 121.44 (1C, q, ${}^{1}J_{\text{CF}} = 321$ Hz, -CF₃), 125.45 (1C, s, C11), 127.22 (2C, s, C6), 127.50 (2C, s, C13), 127.69 (1C, s, C4), 132.11 (4C, d, ${}^{2}J_{\text{CP}} = 14$ Hz, C19), 133.86 (4C, d, ${}^{3}J_{\text{CP}} = 12$ Hz, C20), 134.87 (1C, s, C14), 135.57 (1C, s, C7), 137.73 (2C, d, ${}^{4}J_{\text{CP}} = 3$ Hz, C21), 139.05 (1C, d, ${}^{2}J_{\text{CP}} = 13$ Hz, C3), 146.01 (2C, s, C12), 146.15 (2C, s, C5), 154.63 (1C, d, ${}^{3}J_{\text{CP}} = 4$ Hz C1); ${}^{19}F\{{}^{1}H\}$ NMR (CH₂Cl₂, in ppm): $\delta = -78.61$ (s, -CF₃); ${}^{31}P\{{}^{1}H\}$ NMR (CH₂Cl₂, in ppm): $\delta = 15.63$ (s); elemental analysis: calcd. for C₄₃H₅₀ClF₆N₂O₆PS: C: 55.2, H: 5.4, N: 2.9, S:6.9; found: C: 54.9, H: 5.3, N: 2.9, S: 7.2.

S3.32 Preparation of 35[OTf]

34[OTf]₂ (300 mg, 0.32 mmol) was suspended in THF (3 ml). LDA (147 mg, 0.52 mmol) was added accompanied by the formation of a clear yellow solution. The reaction mixture was stirred for 30 minutes and the solvent was then removed in *vacuo*. The crude material was suspended in CH₂Cl₂ (2 ml), filtrated, and *n*-hexane was added to the filtrate until a yellow precipitate was observed. After filtration of the precipitate all

volatiles were removed in vacuo and 35[OTf] was isolated as yellow, air-sensitive powder.

Yield: 235 mg, 93%; **mp**: 156-158 °C (decomp.); **Raman** (40 mW, in cm⁻¹): v = 3066(62), 3008(16), 2983(33), 2964(31), 2911(58), 2869(45), 1642(29), 1586(66), 1523(100), 1468(24), 1444(23), 1411(16), 1388(21), 1354(20), 1303(16), 1259(37), 1231(24), 1165(21), 1105(21), 1049(16), 1029(41), 997(45), 973(11), 887(14), 753(12), 720(13), 691(19), 610(21), 549(11), 480(16), 443(17), 394(26); **IR** (ATR, in cm⁻¹): v = 2965(w), 2930(vw), 2870(vw), 1641(vs), 1586(vw), 1520(m), 1466(w), 1439(m), 1410(vw), 1387(w), 1365(vw), 1282(m), 1254(vs), 1223(m), 1192(vw), 1145(vs), 1106(m), 1060(vw), 1029(vs), 1009(vw), 971(vw), 937(vw), 897(s), 856(vw), 804(s), 745(vs), 717(w), 687(s), 636(vs), 609(w), 571(w), 538(vw), 511(vs), 33

473(w); ¹**H** NMR (CH₂Cl₂, in ppm): $\delta = 1.00$ (6H, d, ³*J*_{HH} = 6.89 Hz, H9), 1.23 (6H, d, ³*J*_{HH} = 6.89 Hz, H10), 1.31 (6H, d, ³*J*_{HH} = 6.86 Hz, H16), 1.32 (6H, d, ³*J*_{HH} = 6.86 Hz, H17), 1.80 (3H, d, ¹*J*_{HP} = 13.67 Hz, H22), 2.50 (1H, d, ²*J*_{HH} = 3.65 Hz, H23a), 2.57 (1H, dd, ²*J*_{HH} = 3.65 Hz, ⁵*J*_{HP} = 1.64 Hz H23b), 2.98 (2H, *pseudo* sept, ³*J*_{HH} = 6.86 Hz, H15), 3.02 (2H, *pseudo* sept, ³*J*_{HH} = 6.89 Hz, H8), 7.30 (2H, d, ³*J*_{HH} = 7.78 Hz, H6), 7.34 (2H, d, ³*J*_{HH} = 7.78 Hz, H13), 7.56 (2H, t(br), ³*J*_{HH} = 7.78 Hz, H7, H14), 7.63-7.71 (4H, m, H20), 7.70-7.76 (4H, m, H19), 7.83-7.91 (2H, m, H21); ¹³C{¹H} NMR (CH₂Cl₂, in ppm): $\delta = 10.37$ (1C, d, ¹*J*_{CP} = 62 Hz, C22), 22.56 (2C, s, C9), 23.66 (2C, s, C16), 23.97 (2C, s, C17), 24.92 (2C, s, C10), 29.11 (2C, s, C8), 29.33 (2C, s, C15), 55.03 (1C, s, C23), 97.23 (1C, d, ¹*J*_{CP} = 127 Hz, C2), 118.65 (2C, d, ¹*J*_{CP} = 93 Hz, C18), 121.65 (1C, q, ¹*J*_{CF} = 322 Hz, -CF₃), 125.11 (2C, s, C13), 125.88 (2C, s, C6), 128.24 (1C, s, C11), 130.79 (4C, d, ²*J*_{CP} = 11 Hz, C20), 135.73 (1C, d, ²*J*_{CP} = 15 Hz, C3), 135.80 (2C, d, ⁴*J*_{CP} = 3 Hz, C21), 147.80 (2C, s, C12), 148.89 (2C, s, C5), 151.66 (1C, d, ³*J*_{CP} = 6 Hz C1); ¹⁹F{¹H} NMR (CH₂Cl₂, in ppm): $\delta = -79.01$ (s, -CF₃); ³¹P{¹H} NMR (CH₂Cl₂, in ppm): $\delta = 9.64$ (s).

S3.33 Preparation of 36[OTf]

31[OTf] (88 mg, 0.11 mmol) was dissolved in THF (1.5 ml), giving a clear yellow solution. AuCl(tht) (36 mg, 0.11 mmol) was added accompanied by the formation of a colorless precipitate. The reaction mixture was stirred for 3 h, filtered and washed with THF (2 ml). After removing all volatiles in *vacuo* **36**[OTf] was isolated as colorless solid.

Yield: 79 mg, 71%; **mp**: 171-173 °C (decomp.); **IR** (ATR, in cm⁻¹): v = 2968(vw), 2904(vw), 1587(vw), 1522(m), 1478(w), 1441(w), 1391(w), 1368(vw), 1345(vw), 1322(vw), 1285(vs), 1254(s), 1223(w), 1182(vw), 1143(vs), 1103(m), 1058(vw), 1030(s), 1014(vw), 935(vw), 900(65), 839(vw), 810(m), 787(w), 748(vs), 718(w), 688(s), 637(vs), 571(w), 535(w), 516(m), 487(m), 469(m), 439(m); ¹H NMR (CD₃CN, in ppm): $\delta = 1.04$ (6H, d, ³ $J_{HH} = 6.84$ Hz, H9), 1.24 (6H, d, ³ $J_{HH} = 6.68$ Hz, H17), 1.43 (6H, d, ³ $J_{HH} = 6.84$ Hz, H10), 1.54 (6H, d, ³ $J_{HH} = 6.68$ Hz, 34

H16), 1.98 (3H, d, ${}^{1}J_{HP} = 13.71$ Hz, H22), 2.36 (1H, s, H23), 2.58 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.68$ Hz, H15), 2.65 (2H, *pseudo* sept, ${}^{3}J_{HH} = 6.84$ Hz, H8), 7.58 (4H, d, ${}^{3}J_{HH} = 7.91$ Hz, H6, H13), 7.65-7.72 (4H, m, H20), 7.75 (1H, t, ${}^{3}J_{HH} = 7.91$ Hz, H14), 7.79 (1H, t, ${}^{3}J_{HH} = 7.91$ Hz, H7), 7.79-7.86 (4H, m, H19), 7.95-8.02 (2H, m, H21); ${}^{13}C{}^{1}H$ NMR (CD₃CN, in ppm): $\delta = 8.53$ (1C, s, C23), 9.21 (1C, d, ${}^{1}J_{CP} = 57$ Hz, C22), 23.02 (2C, s, C9), 23.65 (2C, s, C16), 24.27 (2C, s, C17), 25.87 (2C, s, C10), 29.29 (2C, s, C8), 29.68 (2C, s, C15), 108.21 (1C, d, ${}^{1}J_{CP} = 114$ Hz, C2), 115.83 (2C, d, ${}^{1}J_{CP} = 93$ Hz, C18), 121.52 (1C, q, ${}^{1}J_{CF} = 319$ Hz, -CF₃), 126.23 (2C, s, C13), 126.39 (1C, s, C11), 127.15 (2C, s, C6), 127.92 (1C, s, C4), 131.22 (4C, d, ${}^{2}J_{CP} = 14$ Hz, C19), 132.91 (4C, d, ${}^{3}J_{CP} = 12$ Hz, C20), 133.12 (1C, s, C14), 133.80 (1C, s, C7), 136.68 (2C, d, ${}^{4}J_{CP} = 3$ Hz, C21), 137.42 (1C, d, ${}^{2}J_{CP} = 15$ Hz, C3), 146.14 (2C, s, C12), 146.57 (2C, s, C5), 168.72 (1C, d, ${}^{3}J_{CP} = 4$ Hz C1); ${}^{19}F{}^{1}H$ NMR (CH₂Cl₂, in ppm): $\delta = -79.30$ (s, -CF₃); ${}^{3}P{}^{1}H$ NMR (CH₂Cl₂, in ppm): $\delta = 14.30$ (s).

S4 Crystallographic Details

	$\boldsymbol{9b}[OTf] {\cdot} C_6 H_4 F_2$	$\boldsymbol{10b}[OTf] \!\cdot\! C_6 H_4 F_2$	14b [OTf] ₂	$\textbf{15b}[OTf]{\cdot}1.5~CH_2Cl_2$
formula	$C_{46}H_{48}Cl_2F_5N_2O_3PS$	$C_{46}H_{48}Cl_2F_5N_2O_3PS$	$C_{42}H_{47}Cl_2F_6N_2O_6PS_2$	$C_{41.5}H_{47}Cl_5F_5N_2O_3PS$
$M_r / g mol^{-1}$	905.79	905.79	955.83	957.09
color, habit	colorless block	colorless block	colorless stick	colorless block
crystal system	triclinic	monoclinic	monoclinic	triclinic
space group	<i>P</i> -1	$P2_1/n$	$P2_1/c$	<i>P</i> -1
a / Å	12.4108(2)	16.2304(11)	14.924(13)	12.8733(4)
<i>b</i> / Å	12.7149(3)	18.8946(12)	15.476(13)	13.2711(4)
<i>c /</i> Å	14.6973(3)	29.2339(18)	20.278(18)	15.8278(4)
lpha / °	106.9695(17)	90	90	67.6070(10)
eta / $^{\circ}$	91.5755(14)	94.813(2)	107.78(2)	69.0530(10)
γ/°	100.6970(16)	90	90	75.4420(10)
$V/\text{\AA}^3$	2171.47(7)	8933.5(10)	4460(7)	2314.07(12)
Ζ	2	8	4	1
T/K	153(2)	100(2)	153(2)	173(2)
crystal size / mm ³	0.24x0.14x0.09	0.13x0.06x0.05	0.20x0.15x0.10	0.35x0.25x0.04
$ ho_{ m c}$ / g cm ⁻³	1.385	1.347	1.4235	1.374
F(000)	944	3776	1987	990
$\lambda_{ m XKlpha}$ / Å	0.71073 (X = Mo)	0.71073 (X = Mo)	0.71073 (X = Mo)	0.71073 (X = Mo)
$ heta_{ m min}$ / $^{\circ}$	2.139	2.50	1.50	2.547
$ heta_{ m max}$ / $^{\circ}$	34.970	26.30	29.14	28.34
	$-19 \le h \le 19$	$-20 \le h \le 20$	$-20 \le h \le 13$	$-16 \le h \le 16$
index range	$-19 \le k \le 20$	$-23 \le k \le 23$	$0 \le k \le 21$	$-17 \le k \le 17$
	$-23 \le 1 \le 23$	$-35 \le 1 \le 36$	$0 \le 1 \le 27$	$-20 \le l \le 20$
μ / mm ⁻¹	0.299	0.291	0.349	0.452
absorption	multi scon	multi coon	multi soon	multi scon
correction	muni-scan	muni-scan	muni-scan	muni-scan
refl. collected	81346	188008	40162	39542
refl. unique	18665	19058	11957	10851
R _{int}	0.0326	0.0560	0.0308	0.0213
reflection obs.	14138	15029	9119	8587
$[F>3\sigma(F)]$	11150	1502))11)	0507
residual density	0 926 / -0 613	0 508 / -0 538	0 754 / -0 603	0 759 / -0 777
min / max / e A^{-3}	0.9207 0.015	0.2007 0.220	0.7517 0.005	0.1097 0.111
structure solution	Superflip	Superflip	Superflip	Superflip
parameters	549	1164	558	613
GOOF	1.022	1.168	1.039	1.046
$R_1 [I > 2\sigma(I)]$	0.0398	0.0689	0.0439	0.0459
wR_2	0.0996	0.1567	0.1162	0.1341
CCDC	1450350	1450349	1450346	1450345

Table S4.1: Crystallographic data and details of the structure refinements of compounds 9b[OTf], 10b[OTf], $14b[OTf]_2$ and 15b[OTf].

	16b [OTf] ₂	17b[OTf]	19[OTf]·CH ₂ Cl ₂	20 [OTf]·2CH ₃ CN
		$\frac{0.5 \text{ C}_6 \text{H}_4 \text{F}_2}{\text{C}_{12} \text{ H}_{12} \text{ C}_{12} \text{ H}_{12} \text{ C}_{12} \text{ H}_{12} \text{ C}_{12} \text{ H}_{12} \text{ C}_{12} \text{ H}_{12} $		
formula	$C_{41}H_{44}Cl_2F_7N_2O_6PS_2$	$C_{44}H_{49}CIF_4N_2O_3PS$	$C_{42}H_{49}AuCl_4F_3N_2O_3PS$	$C_{45}H_{53}CuBrClF_3N_4O_3PS$
$M_r / g \mod 1$	959.79	828.33	1088.63	996.84
color, habit	colorless block	colorless block	colorless stick	colorless block
crystal system	monoclinic	triclinic	monoclinic	monoclinic
space group	$P2_1/c$	<i>P</i> -1	$P2_1/n$	$P2_1/n$
a / A	12.5233(17)	10.5/89(17)	12.2965(3)	12.0550(4)
b/A	14.8180(18)	14.667(3)	28.6164(8)	32.3002(11)
<i>c /</i> A	24.220(2)	15.965(3)	12.7029(4)	12.1453(5)
α/\circ	90	64.828(9)	90	90
β / °	99.726(5)	70.980(9)	91.453(2)	91.944(2)
$\gamma/^{\circ}$	90	85.838(9)	90	90
V/A^{3}	4430.0(9)	2113.1(6)	4468.5(2)	4726.4(3)
Ζ	4	2	4	4
T/K	153(2)	123(2)	100(2)	173(2)
crystal size / mm ³	0.15x0.10x0.03	0.24x0.20x0.14	0.17x0.09x0.09	0.42x 0.38x0.12
$\rho_{\rm c}$ / g cm ⁻³	1.4390	1.302	1.618	1.401
F(000)	1987	870	2176	2056
$\lambda_{\rm XK\alpha}/{\rm \AA}$	0.71073 (X = Mo)	0.71073 (X = Mo)	0.71073 (X = Mo)	0.71073 (X = Mo)
$\theta_{\rm min}$ / °	2.20	2.55	2.39	2.34
$\theta_{\rm max}/\circ$	23.87	26.40	31.49	27.47
- max ·	$-15 \le h \le 16$	$-13 \le h \le 13$	$-17 \le h \le 18$	$-16 \le h \le 16$
index range	$-19 \le k \le 18$	$-19 \le k \le 19$	$-42 \le k \le 42$	$-38 \le k \le 44$
moon nunge	-28 < 1 < 31	-20 < 1 < 20	-18 < 1 < 18	-12 < 1 < 16
μ/mm^{-1}	0 354	0.237	3 666	1 496
absorption	0.554	0.237	5.000	1.470
correction	multi-scan	multi-scan	multi-scan	multi-scan
refl_collected	34337	42703	58502	36664
refl unique	10051	9407	14898	13013
R:	0.0454	0.0617	0.0342	0.0325
reflection obs	0.0151	0.0017	0.0312	0.0325
$[F > 3\sigma(F)]$	6672	7359	12616	9535
residual density				
min / max / e	1.4741 / -0.8423	0.702 / -0.783	2.359 / -3.849	0.509 / -0.904
Å ⁻³				
structure	Superflin	Superflin	ShelXT	ShelXT
solution	Superinp	Superinp	01101211	01101211
parameters	557	584	523	581
GOOF	1.027	1.025	1.081	1.026
$R_1 [I > 2\sigma(I)]$	0.0541	0.0525	0.0393	0.0475
wR_2	0.1432	0.1408	0.0956	0.1202
CCDC	1450348	1450347	1450351	1450352

Table S4.2: Crystallographic data and details of the structure refinements of compounds **16b**[OTf]₂, **17b**[OTf], **19**[OTf] and **20**[OTf].

	$21[OTf] \cdot CH_2Cl_2$	22 [OTf] ₃ ·1.5 Et ₂ O·CH ₃ CN	$23[OTf] \cdot Et_2O$
formula	C ₄₁ H ₄₆ AuCl ₄ F ₄ N ₂ O ₃ PS	$C_{91}H_{112}AgCl_2F_9N_5O_{10.5}P_2S_3$	C53H69Cl2F3N2O4PRhS
$M_r / g mol^{-1}$	1092.59	1951.74	1091.94
color, habit	colorless block	colorless needle	yellow block
crystal system	monoclinic	triclinic	triclinic
space group	$P2_1/n$	<i>P</i> -1	<i>P</i> -1
<i>a /</i> Å	11.8603(6)	17.14476(19)	10.8203(3)
<i>b</i> / Å	28.3452(14)	17.1735(3)	14.3026(4)
<i>c</i> / Å	13.1731(6)	18.09533(13)	18.3756(2)
lpha / °	90	98.7772(11)	71.9557(17)
eta / $^{\circ}$	92.001(3)	101.6430(8)	88.5118(16)
γ/°	90	97.9382(12)	78.384(2)
\dot{V} / Å ³	4425.9(4)	5078.06(12)	2646.53(10)
Ζ	4	2	2
<i>T /</i> K	100(2)	100(2)	100(2)
crystal size / mm ³	0.18x0.11x0.06	0.48x 0.11x0.06	0.14x 0.91x0.04
$\rho_{\rm c}$ / g cm ⁻³	1.640	1.276	1.370
F(000)	2176	2034	1140
$\lambda_{\rm XKlpha}$ / Å	0.71073 (X = Mo)	1.54184 (X = Cu)	1.54184 (X = Cu)
$ heta_{\min}$ / °	2.352	3.2240	3.3170
$\theta_{\rm max}$ / °	31.212	76.4080	76.3330
	$-16 \le h \le 17$	$-19 \le h \le 21$	$-13 \le h \le 13$
index range	$-41 \le k \le 41$	$-21 \le k \le 21$	$-17 \le k \le 17$
C	$-19 \le 1 \le 17$	$-22 \le 1 \le 22$	$-23 \le 1 \le 21$
μ/mm^{-1}	3.705	3.550	4.647
absorption	1.1		•
correction	multi-scan	gaussian	gaussian
refl. collected	70316	57825	26966
refl. unique	14924	21098	10839
R _{int}	0.0506	0.0543	0.0350
reflection obs.	11001	10184	0024
$[F>3\sigma(F)]$	11901	19184	9934
residual density	1 525 / 1 762	1 010 / 1 492	1 927 / 1 012
min / max / e Å ⁻³	1.5257-1.765	1.9107 -1.482	1.82/7-1.013
structure solution	ShelXT	ShelXT	ShelXT
parameters	579	1378	615
GOOF	1.040	1.053	1.068
$R_1 [I > 2\sigma(I)]$	0.0323	0.0771	0.0376
wR ₂	0.0697	0.2214	0.1086
CCDC	1450353	1450355	1450354

Table S4.3: Crystallographic data and details of the structure refinements of compounds 21[OTf], 22[OTf]₃ and 23[OTf].

	34 [OTf]·0.5 Et ₂ O	$35[OTf]_2 \cdot 2 Et_2O$	36 [OTf]·CH ₃ CN
formula	C ₄₅ H ₅₅ ClF ₆ N ₂ O _{6.5} PS ₂	C ₅₀ H ₆₉ ClF ₃ N ₂ O ₅ PS	C44H52AuCl2F3N3O3PS
$M_r / g mol^{-1}$	972.45	933.55	1058.78
color, habit	colorless block	yellow plate	colorless block
crystal system	orthorhombic	monoclinic	monoclinic
space group	$P2_{1}2_{1}2_{1}$	$P2_1/c$	<i>P</i> 2 ₁ /c
a / Å	21.61588(4)	18.0515(9)	10.7069(2)
<i>b</i> / Å	21.61899(5)	13.7825(6)	21.3249(4)
<i>c</i> / Å	41.02783(8)	20.6137(9)	19.5715(5)
lpha / °	90	90	90
eta / $^{\circ}$	90	90.735(2)	102.332(2)
γ/°	90	90	90
$V/Å^3$	19172.86(7)	5128.2(4)	4365.52(16)
Ζ	16	4	4
T/K	100(2)	173(2)	100(2)
crystal size / mm ³	0.49x0.30x0.24	0.31x 0.23x0.08	0.23x 0.13x0.12
$ ho_{ m c}$ / g cm ⁻³	1.348	1.209	1.611
F(000)	8144	1992	2128
$\lambda_{ m XKlpha}$ / Å	1.54184 (X = Cu)	0.71073 (X = Mo)	1.54184 (X = Cu)
$ heta_{ m min}$ / $^{\circ}$	2.8650	2.256	3.0950
$ heta_{ m max}$ / $^{\circ}$	76.610	27.179	75.7480
	$-27 \le h \le 27$	$-22 \le h \le 19$	$-13 \le h \le 13$
index range	$-27 \le k \le 27$	$-17 \le k \le 16$	$-16 \le k \le 26$
-	$-51 \le 1 \le 51$	$-25 \le 1 \le 25$	$-24 \le 1 \le 24$
μ/mm^{-1}	2.458	0.202	8.718
absorption	1.1		
correction	multi-scan	gaussian	gaussian
refl. collected	232073	50197	25208
refl. unique	40155	10485	9104
R _{int}	0.0352	0.0299	0.0296
reflection obs.	40144	0000	9509
$[F>3\sigma(F)]$	40144	8088	8308
residual density	0.050 / 0.525	1 104/ 0 207	2.016/ 1.202
min / max / e Å ⁻³	0.9307-0.323	1.104/ -0.807	2.010/ -1.303
structure solution	ShelXT	ShelXT	ShelXT
parameters	2406	589	533
GOOF	1.052	1.020	1.050
$R_1 [I > 2\sigma(I)]$	0.0396	0.0621	0.0309
wR_2	0.1073	0.1795	0.0757
CCDC	1469788	1469787	1469786

Table S4.3: Crystallographic data and details of the structure refinements of compounds **34**[OTf], **35**[OTf]₂ and **36**[OTf].

S4.1 Structure solution and refinement

Suitable single crystals were coated with Paratone-N oil or Fomblin Y25 PFPE oil, mounted using a glass fiber and frozen in the cold nitrogen stream. X-ray diffraction data were collected at low temperature as indicated in tables S4.1-4.3 on either a Bruker Kappa APEX II diffractometer

using Mo K_{α} radiation ($\lambda = 0.71073$ Å) generated using a fine-focus sealed tube or on a Rigaku Oxford Diffraction SuperNova diffractometer using Cu K_{α} radiation ($\lambda = 1.54184$ Å) generated by a Nova micro-focus source. The data reduction and absorption correction was performed using Bruker SMART⁴ and Bruker SADABS⁵ or CrysAlisPro⁶, respectively. For further crystal and data collection details see tables S4.1-4.3. Using Olex2⁷, the structures were solved with the SHELXT package⁸ by direct methods or with Superflip⁹ Hydrogen atoms bonded to carbon atoms were added to the structure models on calculated positions using the riding model. Images of the Structures depicted were produced with Diamond¹⁰ software.

Crystals of $22[OTf]_3 \cdot 1.5 C_4H_{10}O \cdot CH_3CN$ loose solvent easily and were therefore handled below $-20 \ ^{\circ}C$ at all times. It was also possible to crystallize $22[OTf]_3$ from THF, but disorder of the anions and of the 10 THF molecules per trication rendered satisfactory refinement impossible (Space group *Pbcn*, *a*: 25.3195(3), *b*: 18.4175(3), *c*: 26.8985(3); Ag on $\frac{1}{2}$, 0.782, $\frac{1}{4}$).

Structures **10b**[OTf]·C₆H₄F₂, **14b**[OTf]₂ and **15b**[OTf]·CH₂Cl₂ exhibit very short Cl1–OTf distances of 2.6–2.8 Å causing checkCIF A and B alerts. This corresponds well to the calculated σ -hole of the phosphonio-imidazolium species **14b**[OTf]₂ supporting the close contact between cation and anion.

In some structures SIMU, DFIX or SADI restraints ($10b[OTf] \cdot C_6H_4F_2$, $15b[OTf] \cdot CH_2Cl_2$, 17b[OTf] $\cdot 0.5 C_6H_4F_2$, 20[OTf] $\cdot 2 CH_3CN$, 21[OTf] $\cdot CH_2Cl_2$, 22[OTf] $_3 \cdot 1.5 C_4H_{10}O \cdot CH_3CN$) or an EADP constraint ($10b[OTf] \cdot C_6H_4F_2$) were employed in order to allow convergence of disordered solvent molecules or anions to a reasonable minimum.

S5 Computational methods

S5.1 General Considerations

The energies of all complexes included in this study were computed using either the DFT BP86¹¹-D3¹² functional or the ab initio RI-MP2¹³ method using the def2-TZVP¹⁴ basis set. The calculations have been performed by using the program TURBOMOLE version 7.0.¹⁵ The MEPS calculations have been performed at the ab-initio/DFT-D level by means of the SPARTAN software.¹⁶

S5.2 Cartesian coordinates of the optimized compounds

Р	-3.4447061	-1.3207040	0.0602280
Ν	-0.6234714	1.4206168	-0.1699352
Ν	-0.6708394	-0.7239636	0.0627691
С	-1.9487706	1.0731119	-0.1643669
С	-1.9922659	-0.3035571	-0.0152928
С	0.1522868	0.3286036	-0.0319869
Cl	1.8160333	0.2957711	0.0118706
Р	4.9659910	0.2631353	0.0918405
Н	-0.2639074	2.3718358	-0.2648722
Н	-0.3228378	-1.6748089	0.1749143
Н	-3.4674387	-2.2559064	-0.9791316
Н	-4.5340377	-0.4565456	-0.0620975
Н	-3.5240259	-2.0080540	1.2754055
Н	5.6757216	-0.9367344	0.2746413
Н	5.6520811	1.0083482	1.0668143
Н	5.7033305	0.7217519	-1.0138850

Table S5.2.1: Reactants; Figure 5 (A); MP2-optimized.

Table S5.2.2: Transition state (TS); Figure 5 (A); MP2-optimized.

Р	-3.0886144	-1.7440454	0.0002855
Ν	-0.3061452	1.0217152	-0.0013735
Ν	-0.3192255	-1.1138892	0.0006910
С	-1.6277668	0.6676420	-0.0015134
С	-1.6510577	-0.7176846	-0.0002025
С	0.5003242	-0.0566307	-0.0000411
Cl	2.5231110	-0.0381252	0.0004868
Р	4.8861277	0.0181032	0.0010212
Н	0.0314205	1.9828628	-0.0021871

Н	0.0327463	-2.0672595	0.0017076
Н	-3.1412836	-2.5687672	-1.1269916
Н	-4.1940595	-0.8924470	-0.0030733
Н	-3.1443984	-2.5638287	1.1310166
Н	5.5048475	-1.2365079	0.0320349
Н	5.4457191	0.6980163	1.0883274
Н	5.4479135	0.6446582	-1.1167883

Table S5.2.3: 15 lowest vibrations of the TS; MP2-optimized.

#		cm**(-1)	km/mol	IR	RAMAN
1	a	-420.29	0.00000	YES	YES
2		-0.00	0.00000	_	-
3		-0.00	0.00000	_	-
4		-0.00	0.00000	_	-
5		-0.00	0.00000	_	-
6		0.00	0.00000	_	-
7		0.00	0.00000	_	-
8	a	64.56	4.44479	YES	YES
9	a	72.40	3.65093	YES	YES
10	a	174.01	4.64993	YES	YES
11	a	190.63	0.03114	YES	YES
12	a	192.66	0.37189	YES	YES
13	a	217.62	5.84854	YES	YES
14	a	233.60	6.86201	YES	YES
15	a	239.36	3.26237	YES	YES

Table S5.2.4: Products (P); Figure 5 (A); MP2-optimized.

P	-3.6459012	-1.3705391	0.0016344
Ν	-0.8012703	1.2850570	-0.0027323
Ν	-0.8624994	-0.8225027	0.0010193
С	-2.1277246	0.9761182	-0.0024040
С	-2.1886624	-0.4039113	0.0000152
С	0.0324868	0.1962648	-0.0006701
Cl	3.3928075	0.3471797	0.0016076
Ρ	5.3390393	0.4998923	0.0007096
Н	-0.4602332	2.2395243	-0.0044745
Н	-0.5561748	-1.7864166	0.0026964
Н	-3.7482941	-2.2045169	-1.1149476
Н	-4.7321447	-0.4960600	-0.0023205
Н	-3.7510196	-2.1975925	1.1231167
Н	5.9243895	-0.7651284	0.0255254
Н	5.7698795	1.2106924	1.1200099
Н	5.7721920	1.1673897	-1.1440670

Table S5.2.5: Figure 5(B); DFT-optimized.

Cl	-3.5887698	2.3940945	0.3138909
Р	-4.2051023	-1.1552383	0.2359855
Ν	-1.1169848	1.3853178	0.1909853
Ν	-1.3468944	-0.7855082	0.0443998
С	-2.4791282	1.1265551	0.1677631
С	-2.6497167	-0.2473504	0.0709539
С	-0.4505381	0.2128840	0.1164231
Cl	1 3089660	0 0830483	0 1990492
P	3 9995767	0 3232344	0 2707935
C	-5 4244608	-0 1363658	-0 6008359
C	-5 1515340	0.3566359	-1 8904043
C	-6 65/7289	0.1268247	0 019/9/6
C	-6 1165676	1 1007053	-2 55/2128
U U	-0.1103070	1.1097033	-2.3643630
п	-4.1000302	0.1031077	-2.3043039
		0.0041200	1 0006001
п	-0.8609659	-0.2447879	1.0236334
C	-7.3455100	1.3729502	-1.93/8653
H	-5.9098363	1.496/434	-3.5519/18
H 	-8.5689112	1.0949230	-0.1//8105
H	-8.0966882	1.9664392	-2.4594180
C	-4.1889574	-2.8012465	-0.4936763
С	-4.808/334	-3.0189/60	-1./366896
С	-3.6331915	-3.8810340	0.2172930
С	-4.8527589	-4.3089799	-2.2665271
Н	-5.2709498	-2.1979630	-2.2825055
С	-3.6743110	-5.1604037	-0.3274779
Н	-3.1658958	-3.7258314	1.1875321
С	-4.2828903	-5.3764168	-1.5684332
Н	-5.3401467	-4.4782203	-3.2265224
Н	-3.2337961	-5.9911656	0.2228590
Н	-4.3219153	-6.3821543	-1.9875879
С	4.3376045	1.6782602	1.4399250
С	5.3641561	1.5983711	2.3943771
С	3.4877372	2.8017167	1.4331769
С	5.5432127	2.6270501	3.3221949
Н	6.0281708	0.7337128	2.4082135
С	3.6862845	3.8325996	2.3503223
Н	2.6792783	2.8803872	0.7020767
С	4.7095442	3.7471351	3.2998135
Н	6.3457575	2.5560576	4.0569862
Н	3.0377672	4.7080437	2.3233757
Н	4.8595129	4.5545431	4.0171832
С	5.3202685	-0.9045306	0.5077355
С	6.5428998	-0.8326039	-0.1796401
С	5.1024652	-1.9373233	1.4348751

С	7.5365139	-1.7811510	0.0676558
Н	6.7161994	-0.0361497	-0.9047755
С	6.1038332	-2.8766034	1.6860779
Н	4.1464937	-2.0016682	1.9593023
С	7.3202892	-2.7994178	1.0013605
Н	8,4851346	-1.7223543	-0.4669325
Н	5.9339273	-3.6732870	2.4110442
н	8 1005586	-3 5366055	1 1928537
C	4 2383304	1 0083365	-1 4024325
C	3 8338515	0 1978561	-2 4797234
C	1 7484862	2 2893535	-1 6601978
C	3 0505736	0 6571206	_3 7000130
	2 1202260	0.0371200	-3.7900130
п	3.4303200	-0.7991243	-2.2074075
C	4.8505740	2.7501964	-2.9/545/0
H	5.0/01//2	2.9253271	-0.8350351
С	4.45433/4	1.93/8961	-4.040/4/2
Н	3.6461693	0.0172607	-4.6199059
Η	5.2539669	3.7450384	-3.1681584
Η	4.5427069	2.2997660	-5.0654607
С	-0.4940106	2.6776084	0.3812262
С	-0.1043449	3.3962119	-0.7589905
С	-0.3137990	3.1124937	1.7054883
С	0.4685701	4.6541636	-0.5316672
С	0.2437347	4.3853457	1.8681687
С	0.6219425	5.1483961	0.7632126
Η	0.7928176	5.2558236	-1.3809035
Н	0.4000325	4.7760640	2.8737162
Η	1.0556892	6.1375494	0.9134928
С	-0.9463046	-2.1778609	-0.0172322
С	-0.8466633	-2.7724804	-1.2906190
С	-0.6244683	-2.8208258	1.1917283
С	-0.4136216	-4.1019432	-1.3222738
C	-0.1929839	-4.1510772	1.0911341
C	-0 0899685	-4 7813284	-0 1464749
н	-0.3251328	-4 6159398	-2 2780929
ц	0.07/1165	-1 6959059	1 997051/
п П	0.0741100	-5 0151763	_0 1000603
п	0.2327711	-J.01J1703	-0.1909003
C	-0.646/921	2.2428834	2.9077134
H	-1.0801279	1.2959315	2.5444952
С	-0.2724249	2.8509275	-2.16/1031
Н	-0.7096652	1.8413980	-2.0983935
С	-0./045990	-2.1412560	2.5529650
Η	-1.1274353	-1.1320944	2.4174602
С	-1.1575990	-2.0009211	-2.5669954
Η	-1.9426630	-1.2628235	-2.3281298
С	-1.6970469	2.8989132	3.8181743

Н	-1.3215634	3.8352977	4.2524948
Η	-2.6185288	3.1321834	3.2656999
Η	-1.9492810	2.2290131	4.6528225
С	0.6362410	1.8764374	3.6758492
Н	1.3618467	1.3734029	3.0222628
Н	1.1262952	2.7716998	4.0820903
Н	0.4002791	1.2091431	4.5163569
С	-1.2484563	3.7160038	-2.9835738
Н	-2.2279530	3.7903505	-2.4896938
Н	-0.8605377	4.7359747	-3.1130708
Н	-1.3938675	3.2868647	-3.9848196
С	1.0899901	2.7039548	-2.8648893
Η	1.5681907	3.6802063	-3.0219761
Η	1.7800426	2.0845772	-2.2762899
Η	0.9672102	2.2327112	-3.8496221
С	0.0832988	-1.2254881	-3.0584238
Η	0.4625475	-0.5089696	-2.3198465
Η	0.8989492	-1.9254963	-3.2870567
Н	-0.1545500	-0.6701447	-3.9764962
С	-1.6993041	-2.8914731	-3.6932207
Н	-2.5243982	-3.5268231	-3.3485747
Н	-2.0647943	-2.2672403	-4.5197604
Н	-0.9153148	-3.5408265	-4.1067207
С	-1.6338576	-2.8955055	3.5200796
Н	-1.6936273	-2.3611267	4.4776767
Н	-2.6563374	-2.9826838	3.1277622
Н	-1.2598201	-3.9071106	3.7290651
С	0.6976785	-1.9792585	3.1714686
Н	1.3748644	-1.4304870	2.5055088
Н	0.6324850	-1.4309612	4.1210420
Н	1.1459854	-2.9605009	3.3815143
С	-4.5785549	-1.2285219	1.9979828
Н	-4.7254126	-0.2052160	2.3675350
Н	-5.4775973	-1.8346342	2.1649093
Н	-3.7337404	-1.6806939	2.5274193

Table S5.2.6: Figure 5 (C); DFT-optimized.

Cl	-3.4039265	1.9603728	-0.4448624
Ρ	-4.2532281	-1.4068075	0.1482304
Ν	-0.9758572	0.7677222	-0.4068301
Ν	-1.3359253	-1.3166693	-0.0239840
С	-2.3475816	0.6324634	-0.2945769
С	-2.6120547	-0.7029936	-0.0437805
С	-0.3304217	-0.4287642	-0.2296235
Cl	2.4530769	-0.0120573	0.0080837
Р	4.3690428	0.6518114	0.2560292

С	-5.1531452	-0.2765506	1.2290707
С	-6.4982677	0.0211844	0.9646618
С	-4.5133421	0.2700629	2.3556513
С	-7.2003599	0.8603987	1.8314068
Н	-6.9926373	-0.3858046	0.0825950
С	-5.2243975	1.1048290	3.2147864
Н	-3.4617231	0.0559211	2.5506911
C	-6 5672169	1 3992603	2 9542430
н	-8 2439751	1 0969265	1 6242095
н	-4 7293582	1 5316358	4 0870643
н	-7 1197316	2 0560841	3 6264842
C	-5 0789437	-1 5218422	-1 4514209
C	-4 7077002	-0 6945011	-2 5227305
C	-6 1619767	-2 4107199	-1 5861259
C	-5 $/1/2713$	-0.7592301	-3 7221815
с ц	-3 8590370	-0 019/390	-2 /331266
C	-6 86//351	-2 1612277	-2 7900829
с u	-6 1191590	-3 0616073	_0 7597460
C II	-6 /916373	-1 6406181	-3 856/975
	5.4910373	0 1221002	1 5550061
п	-5.1195159	-0.1221903	-4.5556964
п u	-7.0307965	-1 6007116	-2.0900080
п С	-7.0397903	-1.009/110	-4.7970707
C	4.3733497	1 1505120	2 0626405
C	4.2230737	1.1303130	2.9626403
C	4.4029333	J. 1203304	1.0000990
U U	4.1703090	1.9020410	4.003/402
п	4.1J07932 4.111215	2 0404501	2 660007
U U	4.4111213	3.5404551	2.0000907
п	4.3033000	3.3709031 2.2715400	0.0409040
U U	4.2700475	1 5420702	5 0750409
п	4.0720400	I.J420702 5.0210710	2 5500272
п u	4.4905371	J.0219710	Z.JJ09Z7Z A 0105560
C II	4.2374999	4.0124252	-1 23/0885
C	6 0021106	1 3657/3/	_1 7007/15
C	0.0921100	1.3037434	-1.799741J
C	5.8942387	2.4331119	-1.8025719
	6.4394332	2.1006810	-2.9558410
п	0.8UZI/30	0.0621972	-1.3641049
C	4.25/6192	3.1623405	-2.9315353
H C	2.8984372	2.3336334	-1.3/42468
C	5.52/1349	2.99/9058	-3.4964296
H	/.4Z4/691	1.96853/U	-3.3806/54
H	3.5425/88	3.8553549	-3.3/4/102
н	5.8052002	3.56/8269	-4.3834320
C	5.4568202	-U./464380	U.5260091
C	5.2009016	-1.9/0418/	-0.1148236

С	6.6190623	-0.5706234	1.2988452
С	6.1103652	-3.0173161	0.0241040
Η	4.2963365	-2.1037298	-0.7089543
С	7.5216222	-1.6264997	1.4256170
Н	6.8150676	0.3791245	1.7972945
С	7.2679466	-2.8456689	0.7905676
н	5,9154219	-3.9710239	-0.4661299
н	8 4231289	-1 4964355	2 0243838
н	7 9756230	-3 6684652	0 8956818
C	-0.2982805	2 0182030	-0 6496293
C	-0.05817/1	2 8639729	0.1156189
C	0.0301741	2 3261100	_1 0714040
C	0.0770349	2.5204490	-1.9714040
C	0.5574575	4.094/4/1	0.1705122
C	0.0005000	3.3829873	-2.18//05/
C	0.8885209	4.4601333	-1.1268572
H	0./641663	4./816918	0.99806/3
Н	0.9349139	3.8760281	-3.1992813
Η	1.3403394	5.4341072	-1.3189526
С	-1.0443093	-2.7042576	0.2670431
С	-0.7569140	-3.5873736	-0.7904468
С	-1.0099576	-3.0875486	1.6262184
С	-0.4766284	-4.9181709	-0.4388798
С	-0.7340623	-4.4282870	1.9115483
С	-0.4772279	-5.3389255	0.8873403
Η	-0.2533795	-5.6329757	-1.2330370
Н	-0.7139811	-4.7664677	2.9463152
Η	-0.2674889	-6.3819354	1.1273148
С	-0.4221567	2.4769799	1.8711492
Η	-0.9120311	1.4912735	1.8473058
С	-0.1449219	1.3423539	-3.1089071
Н	-0.1708348	0.3355862	-2.6660631
С	-1.1828950	-2.0637189	2.7411499
H	-1.9321584	-1.3287564	2.4038020
С	-0.6383330	-3.2150657	-2.2669629
н	-0.6937824	-4.1753084	-2.8045254
C	0 8443075	2 3263846	2 7295343
н	1 5121251	1 5608142	2 3143894
и П	1 /061298	3 2691801	2 7 8 / 9 7 0 1
11 TT	1.4001290	2 0207124	2.7649701
п	0.3030370 1 410017	2.0307134	3.7555069
C	-1.4150517	3.4725539	2.4943660
H	-0.9703000	4.4/24466	2.5964004
H	-2.3214898	3.5665930	1.8820149
H	-1.7092259	3.1378889	3.4992953
С	-1.5018278	1.5913054	-3./925736
Η	-2.3276383	1.5810846	-3.0672242
Η	-1.5137131	2.5737608	-4.2861879

-1.6970531	0.8220568	-4.5529595
0.9994151	1.3405189	-4.1310873
1.0408575	2.2753097	-4.7081180
1.9726544	1.1972455	-3.6410086
0.8551692	0.5232449	-4.8506584
-1.6838606	-2.6529070	4.0647697
-0.9110187	-3.2631958	4.5532044
-1.9383007	-1.8426245	4.7618649
-2.5736075	-3.2787991	3.9240720
0.1392757	-1.3017435	2.9702444
0.9165425	-1.9981586	3.3169435
0.4976967	-0.8224674	2.0496796
0.0059887	-0.5266181	3.7385871
-1.7515559	-2.3361986	-2.8536807
-2.7515478	-2.7081363	-2.5944610
-1.6846933	-1.2915775	-2.5287050
-1.6786300	-2.3374885	-3.9501362
0.7535380	-2.6182980	-2.5581094
1.5477546	-3.3172042	-2.2607952
0.8637006	-2.4105496	-3.6324449
0.8974846	-1.6833378	-1.9989195
-4.1732822	-3.0406031	0.9089636
-3.6108156	-3.7368174	0.2756472
-3.6910094	-2.9548671	1.8884396
-5.2024493	-3.3935914	1.0510728
	-1.6970531 0.9994151 1.0408575 1.9726544 0.8551692 -1.6838606 -0.9110187 -1.9383007 -2.5736075 0.1392757 0.9165425 0.4976967 0.0059887 -1.7515559 -2.7515478 -1.6846933 -1.6786300 0.7535380 1.5477546 0.8637006 0.8974846 -4.1732822 -3.6108156 -3.6910094 -5.2024493	-1.6970531 0.8220568 0.9994151 1.3405189 1.0408575 2.2753097 1.9726544 1.1972455 0.8551692 0.5232449 -1.6838606 -2.6529070 -0.9110187 -3.2631958 -1.9383007 -1.8426245 -2.5736075 -3.2787991 0.1392757 -1.3017435 0.9165425 -1.9981586 0.4976967 -0.8224674 0.0059887 -0.5266181 -1.7515559 -2.3361986 -2.7515478 -2.7081363 -1.6846933 -1.2915775 -1.6786300 -2.3374885 0.7535380 -2.6182980 1.5477546 -3.3172042 0.8637006 -2.41054966 0.8974846 -1.6833378 -4.1732822 -3.0406031 -3.6108156 -3.7368174 -3.6910094 -2.9548671 -5.2024493 -3.3935914

S6 References

- A. J. Arduengo III, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc., 1997, 119, 12742.
- [2] W. Voskuil, J. F. Arens, Recueil des Travaux Chimiques des Pays-Bas 1963, 82, 302.
- [3] R. Usón, A. Laguna, M. Laguna, D. A. Briggs, H. H. Murray, J. P. Fackler, Jr, *Inorg. Synth.*, 1989, **26**, 85.
- [4] Bruker (2007), SMART, Bruker AXS Inc., Madison, Wisconsin, USA.
- [5] Bruker (2001), SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- [6] Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- [7] O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- [8] G. M. Sheldrick, Acta Crystallogr., 2015, 71A, 3.
- [9] a) L. Palatinus, G. Chapuis, J. Appl. Cryst., 2008, 40, 786; b) L. Palatinus, A. van der Lee, J. Appl. Cryst., 2008, 41, 975; c) L. Palatinus, S. J. Prathapa, S. van Smaalen, J. Appl. Cryst., 2012, 45, 575.
- [10] K. Brandenburg, DIAMOND Crystal Impact GbR, Bonn, Germany, 2009.
- [11] a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822; c) J. P. Perdew, *Phys. Rev. B*, 1986, **34**, 7406.
- [12] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [13] F. Weigend, M. Häser, H. Patzelt, R. Ahlrich, Chem. Phys. Lett., 1998, 294, 143.
- [14] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- [15] R. Ahlrichs, M. Bär, M. Hacer, H. Horn, C. Kömel, Chem. Phys. Lett., 1989, 162, 165.
- Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, A.T.B. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O'Neill, R.A. DiStasio Jr., R.C. Lochan, T. Wang, G.J.O. Beran, N.A. Besley, J.M. Herbert, C.Y. Lin, T. Van Voorhis, S.H. Chien, A. Sodt, R.P. Steele, V.A. Rassolov, P.E. Maslen, P.P. Korambath, R.D. Adamson, B. Austin, J. Baker, E.F.C. Byrd, H. Dachsel, R.J. Doerksen, A. Dreuw, B.D. Dunietz, A.D. Dutoi, T.R. Furlani, S.R. Gwaltney, A. Heyden, S. Hirata, C-P. Hsu, G. Kedziora, R.Z. Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W.Z. Liang, I. Lotan, N. Nair, B. Peters, E.I. Proynov, P.A. Pieniazek, Y.M. Rhee, J. Ritchie, E. Rosta, C.D. Sherrill, A.C. Simmonett, J.E. Subotnik, H.L. Woodcock III, W. Zhang, A.T. Bell, A.K. Chakraborty, D.M. Chipman, F.J. Keil, A.Warshel, W.J. Hehre, H.F. Schaefer, J. Kong, A.I. Krylov, P.M.W. Gill and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2006, **8**, 3172.