Supporting Information

Choosing the best molecular precursor to prepare $Li_4Ti_5O_{12}$ by the sol-gel method using ¹H NMR. Evidences of $[Ti_3(OEt)_{13}]^{-1}$ in solution.

Authors: Gabriel García-Herbosa ^a, Mario Aparicio ^b, Jadra Mosa ^b, José V. Cuevas ^a, Tomás Torroba ^a.

^a Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos

09001, Spain

^b Instituto de Cerámica y Vidrio (CSIC), C/Kelsen 5, Madrid 28049, Spain

TABLE OF CONTENTS

S0. Gravimetric determination of alcohol exchange between $Ti(OPr^i)_4$ and EtOH to give	
Ti(OEt) ₄ and Pr ⁱ OH	2
S1. ¹ H NMR spectra of commercial Ti(OPr ⁱ) ₄	3
S2. VT ¹ H NMR spectra of lithium ethoxide (LiOEt).	4
S3. ¹ H NMR spectra of 5LiOEt:5Ti(OPr ⁱ) ₄	5
S4. VT ¹ H NMR spectra of commercial Ti(OEt) ₄	6
S5. ¹ H NMR spectra overlay of LiOEt, 5LiOEt/5Ti(OPr ⁱ) ₄ , Ti(OEt) ₄ and Ti(OPr ⁱ) ₄	7
S6. ¹³ C NMR spectra overlay of LiOEt, 5LiOEt/5Ti(OPr ⁱ) ₄ , Ti(OEt) ₄ and Ti(OPr ⁱ) ₄	8
S7. Integer values of 5LiOEt/5Ti(OPr ⁱ) ₄ between -80 ^o C(bottom) and -20 ^o (top)	9
S8. VT ¹ H NMR spectra of 4LiOEt/5Ti(OPr ⁱ) ₄ from -80°C to +80°C	12
S9. VT ¹ H NMR spectra of 7LiOEt/5Ti(OPr ⁱ) ₄ from -80 ^o C to +80 ^o C	13
S10. Comparing ¹ H NMR spectra of 5LiOEt/5Ti(OPr ⁱ) ₄ with 7LiOEt/5Ti(OPr ⁱ) ₄	14
S11. VT ¹ H NMR spectra of 10LiOEt/5Ti(OPr ⁱ) ₄ from -80°C to +80°C	15
S12. Cartesian coordinates and figures for optimized model structures $B-[Ti_3(OMe)_{13}]^-$ and	В'-
[Ti ₃ (OMe) ₁₃] ⁻	16

S0. Gravimetric determination of alcohol exchange between Ti(OPrⁱ)₄ and EtOH to give Ti(OEt)₄ and PrⁱOH.

Experimental values found during gravimetric determination. Units: grams.

Three weighted samples of $5LiOEt/5Ti(OPr^{i})_{4}$ were independently evaporated in tared Schlenk flasks under vacuum for 7 h at room temperature. Volatile product could be ethanol with no alcohol exchange. With alcohol exchange both ethanol and isopropanol are the volatile products. The found percent mean value of solid residues was 28.2% (calculated solid residues for alcohol exchange 28.6%). With no alcohol exchange the calculated solid residue is 34.5%.

After formation LiOEt (-1/2H ₂) without											
Before formation LiOEt			Et	exchange			With exchange				
Sample	Li	Ti(OPri) ₄	EtOH	Weight	Li(OEt)	Ti(OPr) ₄	EtOH	Weight	Li(OEt)	Ti(OEt) ₄	EtOH+ iPrOH
5Ti/5Li	0.223	9.66*	23.76	33.64	1.671	9.66	22.28	33.611	1.671	7.753	24.187
%	0.66%	28.72%	70.63%		4.97%	28.74%	66.29%		4.97%	23.07%	71.96%
					Calci	ulated solid residues	Calcula ted volatile loss		Calcu	llated solid residues	Calculated volatile loss
						33.7%	66.3%			28.0%	72.0%
			Evapor	ated sam	ples						
Samples	Weight before evaporat ion	Weight after evapora tion (solid residue s)	Weight loss (volatile	t Four s)	nd % solid						
1	1.051	0.297	0.7	54 28	8.26%						
2	1.147	0.325	0.8	22 28	3.33%						
3	1.149	0.321	0.8	28 2 [.]	7.94%						
Found mean value		ue 2	28.2%								

The gravimetric results indicate that alcohol exchange occurs according to the reaction: $LiOEt + Ti(OPr^{i})_{4} \xrightarrow{EtOH} "LiOEt + Ti(OEt)_{4}" + 4Pr^{i}OH$

S1. ¹H NMR spectra of commercial Ti(OPrⁱ)₄.

Top +20°C. Bottom -20°C. Shifts referred to signal of residual non-deuterated toluene at 2.10 ppm. In addition to residual signals of non-deuterated toluene the commercial sample shows impurities in the range 1-2 ppm. Septuplet is well resolved at -20°C below.

Procedure to prepare the sample: Commercial $Ti(OPr^i)_4$ (0.5 ml) was dissolved in 1 ml of toluene-d₈. The calculated concentration is 1.1M.

S2. VT ¹H NMR spectra of lithium ethoxide (LiOEt).

Variable temperature ¹H NMR spectra of lithium ethoxide in d₈-toluene. Shifts referred to signal of residual non-deuterated toluene at 2.10 ppm. Chemical shifts drift slightly with temperature between 3.72 ppm(20°) and 3.88 ppm(-60°) for the methylene group and between 1.25 ppm(20°) and 1.43 ppm(-60°) for the methyl group. Coupling values ²J= 7 Hz. only observed at 20°C.

Procedure to prepare the sample: Lithium ethoxide was prepared by solving metallic lithium (0.298g, 43 mmol) in 40 ml of ethanol. An aliquot of 1.5 ml was evaporated to dryness. The residue was dissolved in 1.5 ml of deuterated toluene. The calculated concentration is 1,07M.

S3. ¹H NMR spectra of 5LiOEt:5Ti(OPrⁱ)₄.

¹H NMR spectrum, at 20°C in $C_6D_5CD_3$ (1 ml), of an evaporated aliquot (1.5 ml) of the precursor 5LiOEt/5Ti(OPrⁱ)₄. See the integer ratio 1:1.5 between methylene:methyl protons as expected for a mixture containing only ethoxide groups.(Signal at 2.1 ppm of residual toluene).

S4. VT ¹H NMR spectra of commercial Ti(OEt)₄.

Variable temperarture ¹H NMR spectra of commercial Ti(OEt)₄ in d₈-toluene. From -80°C (bottom) to +80°C (top) in 20°C steps.

Procedure to prepare the sample: Commercial $Ti(OEt)_4$ (0.3 ml) was dissolved in 1.5 ml of deuterated toluene. The calculated concentration is 0.9M.

S5. ¹H NMR spectra overlay of LiOEt, 5LiOEt/5Ti(OPrⁱ)₄, Ti(OEt)₄ and Ti(OPrⁱ)₄.

¹H NMR spectra of LiOEt, $5LiOEt/5Ti(OPr^{i})_{4}$, Ti(OEt)₄ and Ti(OPrⁱ)₄ in d₈-toluene at 20°C. See that $5LiOEt/5Ti(OPr^{i})_{4}$ is not the simple addition of LiOEt and Ti(OPrⁱ)₄ or LiOEt and Ti(OEt)₄. No free LiOEt appears in $5LiOEt/5Ti(OPr^{i})_{4}$. New double lithium-titanium ethoxides have formed.

S6. ¹³C NMR spectra overlay of LiOEt, 5LiOEt/5Ti(OPrⁱ)₄, Ti(OEt)₄ and Ti(OPrⁱ)₄.

¹³C NMR spectra of LiOEt, $5LiOEt/5Ti(OPr^{i})_{4}$, Ti(OEt)₄ and Ti(OPri)₄ in d₈-toluene at 20°C. See that $5LiOEt/5Ti(OPr^{i})_{4}$ is not the simple addition of LiOEt and Ti(OPri)₄ or LiOEt and Ti(OEt)₄. No free LiOEt neither Ti(OPrⁱ)₄ appear in $5LiOEt/5Ti(OPr^{i})_{4}$. New double lithium-titanium ethoxides have formed. Shifts referred to signal of toluene at 20.6ppm.

S7. Integer values of $5LiOEt/5Ti(OPr^{i})_{4}$ between $-80^{\circ}C(bottom)$ and $-20^{\circ}(top)$.

S8. VT ¹H NMR spectra of 4LiOEt/5Ti(OPrⁱ)₄ from -80°C to +80°C

Variable temperature (VT) ¹H NMR spectra in $C_6D_5CD_3$ of the precursor 4LiOEt/5Ti(OPrⁱ)₄ (4Li/5Ti). The calculated concentration for Ti is 0.82M and for Li is 0.64M. Top +80°C. Bottom -80°C. Steps 20°C.

S9. VT ¹H NMR spectra of 7LiOEt/5Ti(OPrⁱ)₄ from -80°C to +80°C

S10. Comparing ¹H NMR spectra of 5LiOEt/5Ti(OPrⁱ)₄ with 7LiOEt/5Ti(OPrⁱ)₄

Top ¹H NMR spectra of 5LiOEt/5Ti(OPrⁱ)₄ at 20°C. Bottom 7LiOEt/5Ti(OPrⁱ)₄ at 40°C. Chemical exchange is hampered down.

S11. VT ¹H NMR spectra of 10LiOEt/5Ti(OPrⁱ)₄ from -80°C to +80°C

S12. Cartesian coordinates and figures for optimized model structures B- $[Ti_3(OMe)_{13}]^-$ and B'- $[Ti_3(OMe)_{13}]^-$.

		Coordinates (Angstroms)			
Center	Atomic	x	Z		
Number	Number				
1	22	-0.133536	0.157714	-0.466692	
2	8	1.032.267	-0.427668	0.953438	
3	8	1.596.960	0.339569	-1.392689	
4	8	-1.673.669	0.068587	1.066277	
5	8	-2.132.143	0.346925	-1.305632	
6	22	-3.431.497	-0.031223	0.174183	
7	22	3.116.197	0.020978	0.226739	
8	8	-0.379656	-1.499.445	-1.308901	
9	8	3.205.582	-1.828.557	-0.205581	
10	8	3.856.294	-0.243490	1.930179	
11	8	4.562.905	0.372564	-0.893485	
12	8	2.854.666	1.828.872	0.656901	
13	8	-0.240351	2.002.322	-0.435260	
14	8	-4.418.462	1.486.731	-0.129138	
15	8	-4.268.907	-0.421074	1.797091	
16	8	-4.100.720	-1.517.046	-0.661347	
17	6	4.073.000	-2.632.876	-0.934132	
18	1	4.634.005	-3.321.042	-0.273757	
19	1	3.514.798	-3.258.537	-1.655427	
20	1	4.805.470	-2.029.069	-1.495782	
21	6	4.484.950	-1.355.327	2.493044	
22	1	4.341.978	-1.355.352	3.587991	
23	1	4.087.347	-2.299.481	2.088703	
24	1	5.572.379	-1.336.358	2.299643	
25	6	5.399.125	1.491.232	-0.961616	
26	1	6.252.529	1.386.487	-0.269484	
27	1	5.804.103	1.596.122	-1.982821	
28	1	4.857.262	2.412.098	-0.696053	
29	6	2.642.941	2.573.453	1.810817	
30	1	3.124.320	2.097.705	2.682519	
31	1	3.056.940	3.591.912	1.698444	
32	1	1.564.145	2.673.405	2.019634	
33	6	-0.978867	3.118.168	-0.819602	
34	1	-0.910565	3.896.315	-0.041797	
35	1	-0.583149	3.550.138	-1.755340	
36	1	-2.038.564	2.865.024	-0.970102	
37	6	0.498824	-2.447.541	-1.856928	
38	1	0.831376	-3.167.333	-1.095498	

Cartesian coordinates for optimized structure of B-[Ti₃(OMe)₁₃]⁻.

39	1	-0.015314	-3.002.654	-2.660916
40	1	1.393.499	-1.960.950	-2.265075
41	6	-5.685.953	1.889.498	0.319734
42	1	-5.896.794	1.480.860	1.319066
43	1	-5.724.880	2.988.574	0.365710
44	1	-6.471.530	1.546.243	-0.372195
45	6	-4.572.362	-1.606.177	2.470449
46	1	-3.690.853	-2.002.624	3.002565
47	1	-5.363.384	-1.427.019	3.216881
48	1	-4.923.519	-2.378.121	1.766053
49	6	-3.636.156	-2.563.906	-1.480663
50	1	-2.553.714	-2.492.007	-1.642644
51	1	-3.862.788	-3.531.192	-1.006104
52	1	-4.151.907	-2.534.138	-2.453093
53	6	-2.369.560	0.298420	-2.691969
54	1	-1.795.550	-0.518513	-3.150855
55	1	-3.437.637	0.141396	-2.898839
56	1	-2.069.334	1.249.358	-3.160651
57	6	1.857.285	1.361.992	-2.334508
58	1	1.905.325	2.338.981	-1.836663
59	1	2.818.135	1.158.256	-2.824295
60	1	1.070.557	1.391.502	-3.104920
61	6	-1.491.767	0.741587	2.307130
62	1	-0.512067	0.485596	2.721259
63	1	-1.525.762	1.829.621	2.158496
64	1	-2.285.155	0.448356	3.004061
65	6	0.853397	-1.572.053	1.774230
66	1	1.303.333	-1.379.114	2.757364
67	1	-0.213603	-1.790.108	1.899402
68	1	1.355.677	-2.433.786	1.320725

Optimized structure of B-[Ti₃(OMe)₁₃]⁻.

		Coordinates (Angstroms)			
Center	Atomic	x	Z		
Number	Number				
1	22	3.190.206	-0.517074	0.095098	
2	8	-1.051.870	-0.709603	0.439267	
3	8	1.636.100	0.913509	0.701304	
4	22	-2.968.348	-0.607780	0.046918	
5	22	-0.238658	1.328.494	0.107218	
6	8	-2.327.905	1.238.358	-0.376131	
7	8	-0.776344	1.638.390	1.881425	
8	8	-0.097774	3.151.615	-0.208387	
9	8	0.085838	0.876419	-1.663859	
10	8	-3.133.918	-2.460.076	0.248357	
11	8	-4.135.490	-0.217838	1.391996	
12	8	-3.775.813	-0.630921	-1.635257	
13	8	1.984.128	-1.537.190	-0.833725	
14	8	4.665.977	-1.612.428	-0.279566	
15	8	3.996.067	0.908614	-0.777594	
16	8	3.378.527	-0.894673	1.894617	
17	6	4.347.295	-1.493.512	2.703089	
18	1	3.875.393	-2.224.696	3.379662	
19	1	5.101.198	-2.011.635	2.090244	
20	1	4.856.566	-0.737977	3.325106	
21	6	3.505.766	2.017.114	-1.490155	
22	1	3.418.612	2.893.775	-0.829560	
23	1	4.209.034	2.268.711	-2.300905	
24	1	2.517.123	1.820.398	-1.923195	
25	6	1.889.839	-2.899.580	-1.136903	
26	1	1.199.309	-3.405.680	-0.443761	
27	1	1.498.072	-3.029.557	-2.158225	
28	1	2.873.271	-3.390.806	-1.068807	
29	6	5.532.582	-1.608.409	-1.376266	
30	1	5.797.698	-0.578199	-1.662261	
31	1	6.456.504	-2.157.533	-1.128208	
32	1	5.075.613	-2.098.451	-2.254199	
33	6	-1.728.749	2.468.775	2.466310	
34	1	-1.593.301	3.516.322	2.141963	
35	1	-2.750.466	2.154.187	2.199731	
36	1	-1.637.500	2.436.332	3.566118	
37	6	0.170358	3.910.475	-1.351265	
38	1	0.313718	3.271.286	-2.235566	
39	1	-0.659453	4.609.379	-1.550664	
40	1	1.083.799	4.509.444	-1.200855	

Cartesian coordinates for optimized structure of B'-[Ti₃(OMe)₁₃]⁻.

41	6	-0.284474	0.048641	-2.720897
42	1	-1.373.023	-0.115078	-2.742061
43	1	0.013549	0.499832	-3.683675
44	1	0.215228	-0.926632	-2.631058
45	6	-4.955.873	-0.948593	2.262813
46	1	-6.014.909	-0.715469	2.070735
47	1	-4.800.778	-2.029.985	2.133094
48	1	-4.728.114	-0.678016	3.304879
49	6	-4.845.642	-1.385.051	-2.132487
50	1	-4.977.937	-2.328.309	-1.579184
51	1	-5.788.321	-0.816174	-2.064515
52	1	-4.673.714	-1.624.940	-3.194445
53	6	-2.581.750	-3.556.712	-0.422902
54	1	-3.011.199	-4.493.603	-0.032873
55	1	-2.784.633	-3.509.702	-1.505399
56	1	-1.489.382	-3.597.880	-0.290840
57	6	-0.526157	-1.453.417	1.535335
58	1	-1.115.550	-2.365.464	1.690014
59	1	0.514341	-1.717.609	1.324638
60	1	-0.556704	-0.843802	2.447054
61	6	-2.939.565	2.199.306	-1.207358
62	1	-2.383.804	2.308.039	-2.149809
63	1	-3.967.486	1.899.333	-1.445719
64	1	-2.952.409	3.172.848	-0.697281
65	6	2.125.352	1.754.546	1.750836
66	1	1.890.020	1.316.420	2.727316
67	1	3.214.988	1.857.567	1.663038
68	1	1.670.145	2.748.351	1.685844

Optimized structure of B'-[Ti₃(OMe)₁₃]⁻.