Electronic Supplementary Information

Alkylaluminium Schiff base complexes derived from the dianilines $[(2-NH_2C_6H_4)_2X]$ (X = O, CH₂CH₂): Synthesis, characterization and ROP capability.

Wenxue Yang,^{*a*} Qe-King Zhao,^{*a*} Timothy J. Prior,^{*b*} David L. Hughes,^{*c*} Abdessamad Arbaoui,^{*c*} Mark R.J. Elsegood ^{*d*} and Carl Redshaw^{*a,b**}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.

^b Department of Chemistry, University of Hull, Hull, HU6 7RX, U.K.

^c School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K.

^d Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

Contents

 Table S1. Analysis of the cleft distances and angles.

Figure S1. Stacking of $L^{1}H_{2}$ molecules parallel to the *c* axis.

Figure S2. A general view of one molecule of L^2H_2 ·MeCN, indicating the atom numbering scheme. The second molecule is similar. H atoms not involved in H-bonding and the two disordered MeCN molecules are omitted for clarity.

Figure S3. An 'end-on' view of one molecule of L^2H_2 ·MeCN illustrating the sides of the cleft being almost parallel.

Figure S4. A view of a molecule of L^2H_2 ethyl acetate, indicating the atom numbering scheme. H atoms not involved in H-bonding and the second disorder component of the ethyl acetate molecule are omitted for clarity.

Figure S5. $\pi \cdots \pi$ interactions in L²H₂·2ethyl acetate

Figure S6. A view of one molecule of $L^2H_2 \cdot 2$ (acetone), indicating the atom numbering scheme. H atoms not involved in H-bonding have been omitted for clarity.

Figure S7. A view of a molecule of $L^2H_2 \cdot 2$ (toluene), indicating the atom numbering scheme. H atoms not involved in H-bonding have been omitted for clarity.

Figure S8. $\pi \cdots \pi$ interactions in L²H₂·2toluene.

Figure S9. Molecular structure of $L^{2}(tosyl)_{2}$. Selected bond lengths (Å) and angles (°): S(1)-O(51) 1.417(2), S(1)-O(52) 1.423(2), S(1)-O(1) 1.620(2), N(2)-C(7) 1.256(4), N(2)-C(24') 1.419(4), N(1)-C(12) 1.268(4), N(1)-C(13) 1.421(4); C(51)-S(1)-O(1) 105.14(14), N(2)-C(7)-C(2) 121.4(3), N(1)-C(12)-C(6) 120.0(3) °. H atoms have been omitted for clarity.

Figure S10. Alternative view of $L^2(tosyl)_2$

Figure S11. Alternative view of structure of complex 10.

Figure S12. Packing in the structure of complex 10.

- Table S2. ROP of ε -caprolactone (runs 1 13) and *rac*-lactide (runs 14 23) by 1 14
- (not 8 10) for ϵ -CL and complexes 1 6 and 11- 14 for *rac*-lactide.
- Figure S13 and S14. MALDI-ToF of PCL (runs 2 and 5, Table S2)
- Figure S15. Plot of average molecular weight (M_n) versus conversion for PCL.
- Figures S16 and S17. ¹H NMR spectra of the PCL (runs 2 and 5, Table S2)
- **Figure S18**. ¹H NMR spectra of the PLA (run 4, Table 3; run 17, table S2)
- Figure S19. MALDI-ToF of PLA (run 4, Tables 3; run 17 table S2)
- Figures S20 and S21. 2D J-resolved ¹H NMR spectra of PLA (runs 2 and 5, Tables 3;
- runs 15 and 18, table S2).

Table S1. The 'Cleft'

The principal opposing C₆ rings that are closest to the centre of elliptical shape of the macrocyclic ring are the phenolate rings, and it is these rings that form the $\pi \cdots \pi$ contacts across the ring (in some compounds), etc. In the complexes analysed, the angles between opposing phenolate rings, with other data, are:

	Angle between	Angles between	Dist. between the	Dist. between the	
Compound	normals to phenolate	the C ₆ –C–N–C ₆	centroids of C1	centroids of C19	
	ring planes /°	groups /°	and C25 rings /Å	and C43 rings /°	
$L^{1}H_{2}$ ·MeCN	H ₂ ·MeCN 89.03(5)/90.97(5)		7.237	8.498	
$L^{2}H_{2}$ ·MeCN, Mol A 12.56(12)		15.88(8) 3.897		8.846	
$L^{2}H_{2}$ ·MeCN, Mol B	9.49(14)	21.96(8)	3.785	9.130	
$L^{2}H_{2}\cdot 2(Me_{2}CO)$	7.39(7)	23.36(3)	3.869	9.704	
L ² H ₂ ·MeCOOEt	6.09(8)	17.87(2)	3.838	10.417	
$L^{2}H_{2}$ ·2(MeCOOEt)	6.8(2)	34.76(10)	3.969	10.427	
$L^{2}H_{2}\cdot 2(PhMe)$	89.88(7)	71.45(6)	6.795	7.710	
$L^2(tosyl)_2$	0.0	0.0	4.965	-	

Figure S1. Stacking of L^1H_2 molecules parallel to the *c* axis.

Figure S2. A general view of one molecule of L^2H_2 ·MeCN, indicating the atom numbering scheme. The second molecule is similar. H atoms not involved in H-bonding and the two disordered MeCN molecules are omitted for clarity.

Figure S3. An 'end-on' view of one molecule of L^2H_2 ·MeCN illustrating the sides of the cleft being almost parallel.

Figure S4. A view of a molecule of L^2H_2 ethyl acetate, indicating the atom numbering scheme. H atoms not involved in H-bonding and the second disorder component of the ethyl acetate molecule are omitted for clarity.

Figure S5. $\pi \cdots \pi$ interactions in L²H₂·2ethylacetate (minor disorder components have been removed for clarity).

Figure S6. A view of one molecule of $L^2H_2 \cdot 2(acetone)$, indicating the atom numbering scheme. H atoms not involved in H-bonding have been omitted for clarity.

Figure S7. A view of a molecule of $L^2H_2 \cdot 2$ (toluene), indicating the atom numbering scheme. H atoms not involved in H-bonding have been omitted for clarity.

Figure S8. $\pi \cdots \pi$ interactions in L^2H_2 ·2toluene

Figure S9. Molecular structure of $L^{2}(tosyl)_{2}$. Selected bond lengths (Å) and angles (°): S(1)-O(51) 1.417(2), S(1)-O(52) 1.423(2), S(1)-O(1) 1.620(2), N(2)-C(7) 1.256(4), N(2)-C(24') 1.419(4), N(1)-C(12) 1.268(4), N(1)-C(13) 1.421(4); C(51)-S(1)-O(1) 105.14(14), N(2)-C(7)-C(2) 121.4(3), N(1)-C(12)-C(6) 120.0(3) °. H atoms have been omitted for clarity.

Figure S10. Alternative view of $L^2(tosyl)_2$

Figure S11. Alternative view of structure of complex 10.

Table S2. ROP of ε -CL (runs 1 – 13) and *rac*-lactide (runs 14 – 23) using complexes 1-16 (not 8-10) for ε -CL and complexes 1 – 6 and 11-14 for *rac*-lactide.

Run	Complex	CL/rac.LA: M:	T/°C	t/h	Conv./% ^a	$M_{\rm n} \times$	$M_{\rm n}{\rm Cal} imes$	PDI^{e}
		BnOH				10 ^{4b, d}	10 ^{4c}	
1	1	250:1:1	80	0.5	93.2	3.32	2.65	1.41
2	2	250:1:1	80	0.5	96.7	3.52	2.73	1.49
3	3	250:1:1	80	0.5	95.0	2.87	2.79	1.30
4	4	250:1:1	80	0.5	97.1	3.49	2.79	1.22
5	5	250:1:1	80	0.5	98.0	3.67	2.82	1.31
6	6	250:1:1	80	0.5	96.5	3.05	2.83	1.42
7	7	250:1:1	80	0.5	25.6	0.45	0.58	1.26
8	11	250:1:1	80	0.5	98.7	3.05	2.81	1.11
9	12	250:1:1	80	0.5	80.9	2.56	2.30	1.49
10	13	250:1:1	80	0.5	99.1	3.27	2.82	1.40
11	14	250:1:1	80	0.5	94.3	2.76	2.68	1.30
12	15	250:1:1	80	0.5	38.5	0.76	1.09	1.23
13	16	250:1:1	80	0.5	29.1	0.56	0.82	1.24
14	1	100:1:1	110	12	94.8	1.65	1.32	1.38
15	2	100:1:1	110	12	98.4	1.47	1.37	1.36
16	3	100:1:1	110	12	93.5	1.39	1.42	1.13
17	4	100:1:1	110	12	95.7	1.78	1.40	1.11
18	5	100:1:1	110	12	98.7	1.60	1.40	1.19
19	6	100:1;1	110	12	94.0	1.39	1.42	1.12

20	11	100:1:1	110	12	97.6	1.41	1.40	1.31
21	12	100:1:1	110	12	95.3	1.23	1.36	1.23
22	13	100:1:1	110	12	96.5	1.41	1.38	1.10
23	14	100:1:1	110	12	93.2	1.13	1.34	1.07

^{*a*} By ¹H NMR spectroscopic analysis. ^{*b*} For ϵ -CL, obtained from GPC analysis times 0.56.^{*c*} (F.W.[M]/[BnOH])(conversion). ^{*d*} For *rac*-lactide, M_n values were determined by GPC in THF *vs* PS standards and were corrected with a Mark-Houwink factor of 0.58. ^{*e*} Polydispersity index (M_w/M_n) were determined by GPC.

Figure S13 and S14. MALDI-ToF of PCL (runs 2 and 5, table S2)

Figure S15. Plot of average molecular weight (M_n) versus conversion for PCL.

Figures S16 and S17. ¹H NMR spectra of the PCL (runs 2 and 5, table S2)

Figure S18. ¹H NMR spectra of the PLA run 4, Tables 3 (run 17 table S2).

Figure S19. MALDI-ToF of PLA run 4, Table 3 (run 17 table S2)

Run 5 Pr = 0.67