Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

<u>for</u>

Metallogel Formation in Aqueous DMSO by Perfluoroalkyl Decorated Terpyridine Ligands.

Rajendhraprasad Tatikonda^a, Sandip Bhowmik^a, Kari Rissanen^a, Matti Haukka^{a*} and Massimo Cametti^{b*}

¹ Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland

² Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy

Table of contents

I.	Experimental section	 2
II.	T _{gel} experiments	 4
III.	Temperature Dependent NMR for 2-FeCl ₂ system	 9
IV.	Additional SEM and TEM Images	 10
V.	Experimental details for Anion dependence Exps	 12
VI.	Temperature Dependent NMR for 2	 14
VII.	Concentration Dependent NMR for 1	 15
VIII.	¹⁹ F-NMR data for 1 at different concentrations	 16
IX.	X-ray Crystallography	 17
Х.	X-Ray Powder Diffraction	 19

I. Experimental Section

II. T_{gel} Experiments

Figure S1. Graphical representation of the conditions viable to gel formation for the 2-FeCl₂ system and their corresponding T_{gel} . The red cross denotes precipitation.

Conc. (w/v)	Tgel (°C)	
.3	55.1	66 -]
4	57.8	64 -
.5	59.6	
6	61.5	60 - 59 -
7	63.6	
8	65.4	0,4 0,5 0,6 0,7 0,8 Conc. in % (w/v)

Tgel experiment of 1-ZnCl₂ gel system against the wt% in 9:1 of DMSO:Water

Tgel experiment of 1-ZnCl₂ gel system (0.6 % w/v) against the ratio of DMSO:Water.

Ratio of DMSO:Water	Tgel (°C)					
9.5:0.5	49.1	100 -				
9:1	61.9	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0				
8:2	89.2	τ 40-				
7:3	96.7		9.5:0.5 9:1	8:2	2 7	7:3
6:4	PPt		Ration	of DMSO:\	Water	

Tgel experiment of 1-ZnCl₂ gel system against the ratio of DMSO:Water.

(0.4 % w/v)			(0.8 % w/v)		
Ratio of DMSO:WaterTgel (°C)			Ratio of DMSO:Water	Tgel (°C)	
9.5:0.5	PPt		9.5:0.5	54.6	
9:1	57.8		9:1	65.4	
8:2	68.6		8:2	93.8	
7:3	82.6		7:3	99.2	
6:4	92.4		6:4	PPt	

Tgel experiment of 1-HgCl₂ gel system against the wt% in 9:1 of DMSO:Water

Tgel experiment of 1-CoCl₂ gel system against the wt% in 8:2 of DMSO:Water

Tgel experiment of 1-NiCl₂ gel system against the wt% in 7:3 of DMSO:Water

Conc. (w/v)	Tgel (°C)	54 _–
0.4	41.5	52 -
0.5	44.6	
0.6	47.3	
0.7	49.9	44 -
0.8	52.6	
1	56.6	0,4 0,5 0,6 0,7 0,8 Conc. in % (w/v)

Tgel experiment of 2-FeCl₂ gel system against the wt% in 9:1 of DMSO:Water

Tgel experiment of 2-FeCl₂ gel system (0.6 % w/v) against the ratio of DMSO:Water.

Tgel experiment 2-FeCl₂ gel system against the ratio of DMSO:Water.

(0.4 % w	/v)	(0.8 % w/v)		
Ratio of DMSO:WaterTgel (°C)		Ratio of DMSO:Water	Tgel (°C)	
9.5:0.5	PPt	9.5:0.5	PPt	
9:1	41.5	9:1	52.6	
8:2	54.3	8:2	76.4	
7:3	71.1	7:3	PPt	
6:4	86.7	6:4	PPt	

Conc. (w/v)	Tgel (°C)	
0.3	41.2	62 -
0.4	49	3
0.5	52.6	o_ 56 - 96 54 -
0.6	56.5	52 -
0.7	58.8	
0.8	61.4	Conc. in % (w/v)

Tgel experiment of 2-CoCl₂ gel system against the wt% in 8:2 of DMSO:Water

Tgel experiment of 2-NiCl₂ gel system against the wt% in 7:3 of DMSO:Water

III. Temperature Dependent NMR for 2-FeCl₂ system

Figure S2. Temperature dependent ¹H-NMR spectra of 2-FeCl₂ gel system (from 25 °C to 75°C, 10°C step increase).

IV. Additional SEM and TEM images

Figure S3. SEM images of metallogels with ligand 2: a) 2-FeCl₂ in 9:1 DMSO:water mixture; b) 2-CoCl₂ in 8:2 DMSO:water mixture and c) 2-NiCl₂ in 7:3 DMSO:water mixture; and corresponding TEM images d), e) and f), respectively.

Figure S4. SEM images of the micro-crystalline precipitate made from the disruption of the 1-HgCl₂ gel system.

V. Details on the experiments on the anion effect:

Ligand 1 or 2 was dissolved in 800µl of DMSO and heated to complete solubilization. To this solution 100µl of MCl₂ in water (M = Fe, Co, Zn, or Hg) and 100µl of NaX salt (X = Br, AcO⁻, NO₃⁻, SCN⁻, I⁻ or ClO₃⁻, 2 molar equivalents with respect to the MCl₂ to replace both chloride ligands) in water was added and heated to get a clear solution. The solution was then cooled to room temperature and tested about whether it is able to form a gel or not. In the case of NiCl₂, ligands were dissolved in 700µl of DMSO and 200µl of NiCl₂ and 100µl of NaX salts in water were added.

Figure S5. Photographs of the effect of the addition of 2 equivalents of different anionic species to the 2-FeCl₂ gel system.

Figure S6. Photographs of the effect of the addition of 2 equivalents of different anionic species to the 2-CoCl₂ gel system.

Figure S7. Photographs of the effect of the addition of 2 equivalents of different anionic species to the 1-CoCl₂ gel system.

Figure S8. Photographs of the effect of the addition of 2 equivalents of different anionic species to the 1-NiCl₂ gel system.

Effect of addition of increasing amount of chloride ion to the various gel systems:

These experiments also performed in aqueous DMSO solvent (0.8 wt%). The ratio of solvent mixture in Fe, Zn and Hg is 9:1, in cobalt gels with both the ligands are 8:2 and for nickel it is 7:3 due to its gelation conditions. The chloride anion source is tetrabutylammonium chloride TBACl. 1 ml of tetrabutyl ammonium chloride solution was prepared in 9:1 of aqueous DMSO solution for Fe, Zn and Hg. Each 50µl of this solution is two times to the molar amount of MCl₂. For Co and Ni related gels, tetrabutyl ammonium chloride solution was prepared from 8:2 and 7:3 of aqueous DMSO solvents.

Experimental details. 0.8 wt% of the gel was prepared from above refered solvent mixture (9:1, (:2 and 7:3), then the gel was heated to get a clear solution and 50 μ l of salt solution was added and cooled to room temperature for obervation. If there is a gel in first addition, then the gel was heated again to have clear solution and then another 50 μ l of salt solution was added and cooled to room temperature. The procedure was repeated until no gel could be obtained no more.

Figure S9. a) Temperature dependent ¹H-NMR spectra of ligand **2** (conc. = $1.4 \times 10^{-2} \text{ M}$) in DMSO-d₆ from 25° C (a) to 75°C (f) (10 °C step);

Figure S10. ¹H-NMR spectra of ligand **1** in DMSO-d₆ at 25° C and concentrations equal to: a) 4.7 x 10⁻³ M; b) 1.4 x 10^{-2} M, c) 2.3 x 10^{-2} M.

Figure S11. a) ¹⁹F-NMR spectra of ligand 1 at various concentrations (from 4.7 x 10⁻³ to 0.0188 M) and in the gel state for 1-ZnCl₂ system; b) Plots of the chemical shift variation upon increasing concentration and c) magnification of the peak centred at ca. -80.5 ppm. Reference C_6H_5F , $\delta = -113.6$ ppm).

IX. Additional Crystallographic Data:

C)

Solid state structure of Ligand 2:

Figure S12. A) X-ray determined structure for ligand **2**: A) molecular structure and B) details of the packing; C) packing.

	Ligand 2	1-ZnCl ₂	1-HgCl ₂	1-ZnBr ₂	1-CuCl ₂
CCDC	1477308	1477309	1477310	1477311	1477312
Empirical formula	C ₃₂ H ₂₀ F ₁₇ N ₃ O	$C_{26}H_{16}Cl_2F_{17}N_3OZn, C_2H_6OS$	C ₂₆ H ₁₆ Cl ₂ F ₁₇ N ₃ OHg, C ₂ H ₃ N	$C_{26}H_{16}Br_2F_{17}N_3OZn, C_2H_6OS$	C ₂₆ H ₁₆ Cl ₂ F ₁₇ N ₃ OCu, C ₂ H ₆ OS
Formula weight	785.51	923.81	1021.96	1012.73	921.98
Temp (K)	123	100	120	100	100
Crystal colour, shape	Colorless, Needle	Colorless, Plate	Colorless, Block	Colorless, Block	Blue, Plate
Crystal size/ mm3	0.32 x 0.07 x 0.06	0.11 x 0.07 x 0.04	0.18 x 0.11 x 0.06	0.20 x 0.17 x 0.04	0.08 x 0.06 x 0.02
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group	P2 ₁ /c	P 1	C2/c	P 1	P2 ₁ /c
a (Å)	26.1873(11)	7.6578(3)	13.3556(2)	7.66921(15)	27.309(4)
b (Å)	11.4472(4)	10.7944(4)	13.2198(2)	10.9302(2)	12.4387(18)
c (Å)	10.4756(4)	20.9475(10)	38.0862(5)	20.8875(5)	10.4959(13)
α (0)	90	96.942(4)	90	97.0241(17)	90
β (0)	93.328(4)	92.184(4)	97.0770(14)	91.4090(17)	97.544(11)
γ (0)	90	95.173(3)	90	94.9834(16)	90
V (Å3)	3135.0(2)	1709.77(13)	6673.17(17)	1730.10(6)	3534.4(8)
Z	4	2	8	2	4
dcalc (g/cm-3)	1.664	1.794	2.034	1.944	1.733
μ (mm-1)	1.554	1.062	10.942	3.205	0.951
F(000)	1576	920	3920	992	1836
Ref. collected	10952	12136	52501	18565	13287
Ind. reflections	6249	6666	7024	7660	6863
Rint	0.0331	0.0245	0.0728	0.0208	0.0817
GOF	1.050	1.032	1.073	1.051	1.011
$R1^a~(I{\geq}2\sigma)$	0.0470	0.0365	0.0543	0.0256	0.0909
$wR2^b~(I \geq 2\sigma)$	0.1231	0.0789	0.1295	0.0595	0.2018

Table 1: Crystallographic data and structure refinement parameters for the Ligand 2 and for complexes of ligand 1 with Cu, Zn and Hg

^a R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^b wR2 = $[\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$.

X. XRPD analysis of 1-ZnCl₂ system:

Figure S13. Comparison between the XRPD patterns of 1-ZnCl₂: a) simulated from single crystal X-ray structure, b) xerogel sample