Remote-controlled Delivery of CO via Photoactive CO-Releasing Materials

on a Fiber Optical Device

Steve Gläser,¹ Ralf Mede,¹ Helmar Görls,¹ Susanne Seupel,¹ Carmen Bohlender,¹ Ralf Wyrwa,² Sina Schirmer,² Sebastian Docho,⁴ Gandra Upendar Reddy,¹ Jürgen Popp,^{4,5} Matthias Westerhausen,¹ Alexander Schiller^{1,3}

Affiliations:

¹ Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry (IAAC), Humboldtstr. 8, D-07743 Jena, Germany.

² INNOVENT e.V., Biomaterials Department, Pruessingstr. 27 B, D-07745 Jena, Germany.

³ Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.

⁴ Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany.

⁵ Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.

- 1. Synthesis Data
- 2. Supplementary Figures
- 3. Supplementary Tables

1. Synthesis data

Figure S1: ¹H-NMR spectrum of $[Mn(CO)_3(\mu_3-S-nPr)]_4(1)$ in CDCl₃.

Figure S2: ${}^{13}C{}^{1}H$ -NMR spectrum of [Mn(CO)₃(μ_3 -S-*n*Pr)]₄(1) in CDCl₃.

Figure S3: ¹H-NMR spectrum of $[Mn(CO)_3(\mu_3$ -S-*n*Bu)]₄ (2) in CDCl₃.

Figure S4: ${}^{13}C{}^{1H}$ -NMR spectrum of [Mn(CO)₃(μ_3 -S-*n*Bu)]₄(2) in CDCl₃.

2. Supplementary Figures

Figure S5: Molecular structure and numbering scheme of [(OC)₃Mn(μ₃-S-*n*Bu)]₄ (**2**). The ellipsoids represent a probability of 30 %, H atoms are neglected for the sake of clarity. The asymmetric unit contains several very similar molecules, only molecule A is depicted. Selected bond lengths (pm): Mn1A-S1A 238.1(1), Mn1A-S2A 237.5(1), Mn1A-S4A 237.0(1), Mn2A-S1A 237.4(1), Mn2A-S2A 236.0(1), Mn2A-S3A 237.8(1), Mn3A-S2A 236.5(1), Mn3A-S3A 238.9(1), Mn3A-S4A 237.4(1), Mn4A-S1A 236.1(1), Mn4A-S3A 236.4(1), Mn4A-S4A 236.1(1), Mn1A-C17A 182.3(5), Mn1A-C18A 181.3(5), Mn1A-C19A 180.3(5), Mn2A-C20A 181.9(5), Mn2A-C21A 180.7(5), Mn2A-C22A 179.9(5), Mn3A-C23A 180.6(5), Mn3A-C24A 182.4(5), Mn3A-C25A 181.0(5), Mn4A-C26A 180.9(5), Mn4A-C27A 180.5(5), Mn4A-C28A 181.5(5).

Figure S6: Comparison of the released CO concentrations over time at the observed wavelengths (LED 405 nm, 14 mW cm⁻²) for **1** and **2**.

Figure S7: EDX spectra of two samples of CORMA-SR-1_PLA.

Figure S8: EDX spectra of two samples of CORMA-SR-1_PMMA.

Figure S9: ¹³C-NMR spectra of CORMA-SR-1_PLA and 1 which confirms the integrity of the incorporated CORM.

Figure S10: ATR-IR spectrum of CORMA-SR-1_PMMA before irradiation.

Figure S11: UV-VIS spectra of 1 (black line) and the CORMA-SR-1_PMMA (red line) in deaerated chloroform. Both samples contained equal incipient amount of CORM.

Figure S12: ATR-IR spectra of **CORMA-SR-1_PMMA** before (black line) and after irradiation (red line). The spectra show the loss of CO vibration bands (between 1900-2100 cm⁻¹) after irradiation at 405 nm.

Figure S13: Comparison of the released CO concentrations from **CORMA-SR-1_PLA/PMMA** over time at the observed wavelengths (LED 365 nm and 405 nm, 14 mW cm⁻²). Results obtained from duplicate measurements.

Figure S14: Setup for myoglobin assay with fiber optics coupled with the laser source.

3. Supplementary Tables

exp.	sample weight [mg]	weight of Mn [µg]	measured Mn conc. [μg/L]	stand. dev. [μg/L]	recovery rate [%]	recovery rate - mean [%]
1A	1.5	38.5	37.5	0.01	97.43	
1B	1.5	38.5	35.7	0.01	92.82	99.50
1C	0.9	23.1	25.0	0.01	108.26	
2A	0.9	23.1	19.7	0.009	85.31	
2B	1.2	30.8	33.3	0.01	107.99	95.08
2C	1.6	41.1	37.8	0.01	91.95	

Table S1: ICP measurements for CORMA-SR-1_PLA (1A-C) and CORMA-SR-1_PMMA (2A-C).