Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Facile Synthesis and Properties of Dithieno[3,2-b:2',3'-d]arsoles

Takuji Kato, Hiroaki Imoto, Susumu Tanaka, Makoto Ishidoshiro, Kensuke Naka*

Contents:

- 1. NMR spectra
- 2. Crystallographic data
- 3. Optical properties
- 4. CV data
- 5. Theoretical calculations

1. NMR spectra

Fig. S2 ¹³C NMR spectrum (100 MHz) of 3 in CDCl₃.

Fig. S4 ¹³C NMR spectrum (100 MHz) of 4 in CDCl₃.

Fig. S5 ¹H NMR spectrum (400 MHz) of 5 in CDCl₃.

Fig. S6 ¹³C NMR spectrum (100 MHz) of 5 in CDCl₃.

Fig. S7 ¹H NMR spectrum (400 MHz) of 6 in CDCl₃.

Fig. S8 ¹³C NMR spectrum (100 MHz) of 6 in CDCl₃.

2. Crystallographic data

Table S1. ORTEP drawing (ellipsoids at 50% probability), selected angles (deg) and distances (Å) of**3**.

interplanar angle (°)		angle (°)	
As(1)C(1)C(2)C(3)C(4)-	1.04	C(1)-As(1)-C(4)	85.4(2)
S(1)C(2)C(1)C(5)C(6)	1.94	C(1)-As(1)-C(9)	97.2(2)
As(1)C(1)C(2)C(3)C(4)-	5 50	C(4)-As(1)-C(9)	101.3(2)
S(2)C(3)C(4)C(8)C(7)	5.50	C(2)-S(1)-C(6)	91.1(2)
distance (Å)		C(3)-S(2)-C(7)	90.6(2)
As(1)-C(1)	1.956(4)	As(1)-C(1)-C(2)	111.0(3)
As(1)-C(4)	1.951(4)	As(1)-C(1)-C(5)	136.2(3)
As(1)-C(9)	1.965(4)	C(2)-C(1)-C(5)	112.6(3)
S(1)-C(2)	1.726(4)	S(1)-C(2)-C(1)	111.4(3)
S(1)-C(6)	1.718(5)	S(1)-C(2)-C(3)	132.6(3)
S(2)-C(3)	1.721(4)	C(1)-C(2)-C(3)	116.0(3)
S(2)-C(7)	1.726(5)	S(2)-C(3)-C(2)	131.7(3)
C(1)-C(2)	1.380(5)	S(2)-C(3)-C(4)	112.1(3)
C(2)-C(3)	1.440(5)	C(2)-C(3)-C(4)	116.1(3)
C(3)-C(4)	1.375(5)	As(1)-C(4)-C(3)	111.4(3)
C(1)-C(5)	1.416(5)	As(1)-C(4)-C(8)	135.6(3)
C(5)-C(6)	1.359(6)		
C(4)-C(8)	1.427(5)		
C(7)-C(8)	1.352(6)		

Table S2. ORTEP drawing (ellipsoids at 50% probability), selected angles (deg) and distances (Å) of4.

CT CT CT	68 69 611 69 611 69 611 69 614 69 614 69 614 69 614 69 614 69 614 69 614 69 614 69 614 69 614 69 614 61 69 614 61 69 614 61 61 61 61 61 61 61 61 61 61 61 61 61	12 513 527 528 526 525 526 525 526 525 526 525 526 525 526 525 526 525 526 525 526 527 527 528 527 527 528 527 527 527 527 527 527 527 527	20 5 5 5 5 5 5 5 5 5 5 5 5 5	
interpla	anar angle (°)		angle (°)	
As(1)C	C(1)C(2)C(3)C(4)-	1.25	C(1)-As(1)-C(4)	85.4(2)
S(1)C(2)C(1)C(5)C(6)	1.35	C(1)-As(1)-C(9)	96.3(2)
As(1)C	C(1)C(2)C(3)C(4)-	5 27	C(4)-As(1)-C(9)	100.8(2)
S(2)C(3)C(4)C(8)C(7)	5.27	C(15)-As(2)-C(18)	85.1(2)
As(2)C	C(15)C(16)C(17)C(18)-	-	C(15)-As(2)-C(23)	99.2(2)
S(3)C(16)C(15)C(19)C(20)	1.07	C(18)-As(2)-C(23)	96.3(2)
As(2)C	C(15)C(16)C(17)C(18)-	2 00	As(1)-C(1)-C(2)	111.9(4)
S(4)C(17)C(18)C(22)C(21)	2.89	C(1)-C(2)-C(3)	115.2(5)
distanc	e (Å)		C(2)-C(3)-C(4)	116.1(5)
As(1)-	C(1)	1.948(5)	As(1)-C(4)-C(3)	111.4(4)
As(1)-0	C(4)	1.946(6)	As(2)-C(15)-C(16)	110.8(4)
As(1)-0	C(9)	1.959(5)	C(15)-C(16)-C(17)	117.0(5)
As(2)-0	C(15)	1.952(5)	C(16)-C(17)-C(18)	115.6(5)
As(2)-0	C(18)	1.964(5)	As(2)-C(18)-C(17)	111.2(4)
As(2)-0	C(23)	1.970(5)	C(2)-S(1)-C(6)	89.3(3)
S(1)-C	(2)	1.721(5)	C(3)-S(2)-C(7)	90.2(3)
S(1)-C	(6)	1.721(7)	C(16)-S(3)-C(20)	90.3(3)
S(2)-C	(3)	1.725(6)	C(17)-S(4)-C(21)	90.4(3)
S(2)-C	(7)	1.723(6)		
S(3)-C	(16)	1.725(5)		
S(3)-C	(20)	1.727(6)		
S(4)-C	(17)	1.712(5)		
S(4)-C	(21)	1.724(6)		
C(1)-C	2(2)	1.375(8)		

C(3)-C(4)	1.377(7)
C(2)-C(3)	1.451(8)
C(15)-C(16)	1.371(6)
C(17)-C(18)	1.369(6)
C(16)-C(17)	1.434(8)

Table S3. ORTEP drawing (ellipsoids at 50% probability), selected angles (deg) and distances (Å) of**5**.

interplanar angle (°)		angle (°)	
As(1)C(1)C(2)C(3)C(4)-	2.04	C(1)-As(1)-C(4)	85.2(5)
S(1)C(2)C(1)C(5)C(6)	3.04	C(1)-As(1)-C(21)	99.1(4)
As(1)C(1)C(2)C(3)C(4)-	2.00	C(4)-As(1)-C(21)	99.4(5)
S(2)C(3)C(4)C(7)C(8)	2.98	C(27)-As(2)-C(29)	85.0(5)
As(2)C(27)C(28)C(30)C(29)-	1.70	C(27)-As(2)-C(47)	99.3(4)
S(3)C(28)C(27)C(31)C(32)	1.79	C(29)-As(2)-C(47)	98.4(5)
As(2)C(27)C(28)C(30)C(29)-	2.22	As(1)-C(1)-C(2)	111.4(8)
S(4)C(30)C(29)C(33)C(34)	2.23	C(1)-C(2)-C(3)	116(1)
distance (Å)		C(2)-C(3)-C(4)	116(1)
As(1)-C(1)	1.93(1)	As(1)-C(4)-C(3)	111.2(8)
As(1)-C(4)	1.94(1)	As(2)-C(27)-C(28)	111.8(8)
As(1)-C(21)	1.93(1)	C(27)-C(28)-C(30)	116(1)
As(2)-C(27)	1.929(9)	C(28)-C(30)-C(29)	116(1)
As(2)-C(29)	1.94(1)	As(2)-C(29)-C(30)	111.7(8)
As(2)-C(47)	1.95(1)	C(2)-S(1)-C(6)	91.1(5)
S(1)-C(2)	1.69(1)	C(3)-S(2)-C(8)	91.6(6)
S(1)-C(6)	1.730(9)	C(28)-S(3)-C(32)	91.1(5)
S(2)-C(3)	1.70(1)	C(30)-S(4)-C(34)	91.4(6)
S(2)-C(8)	1.72(1)	torsion angle (°)	
S(3)-C(28)	1.700(9)	S(1)-C(6)-C(9)-C(14)	6.74(2)
S(3)-C(32)	1.74(1)	S(2)-C(8)-C(15)-C(16)	15.43(2)
S(4)-C(30)	1.71(1)	S(3)-C(32)-C(35)-C(40)	20.99(2)

S(4)-C(34)	1.74(1)	S(4)-C(34)-C(41)-C(42)	15.40(2)
C(1)-C(2)	1.37(1)		
C(3)-C(4)	1.36(2)		
C(2)-C(3)	1.43(1)		
C(27)-C(28)	1.36(2)		
C(28)-C(30)	1.44(1)		
C(29)-C(30)	1.35(1)		
C(6)-C(9)	1.46(2)		
C(8)-C(15)	1.46(1)		
C(32)-C(35)	1.46(1)		
C(34)-C(41)	1.46(2)		

Fig. S9 Packing structures of **4** along (a) *a*-axis and (b) *b*-axis. Hydrogen atoms are omitted for clarity.

Fig. S10 Packing structures of **5** along (a) *c*-axis and (b) *a*-axis. Hydrogen atoms are omitted for clarity.

3. Optical properties

Fig. S11 UV-vis absorption spectra of 3, 5 and 6 (1.0×10^{-4} M CHCl₃ solution).

Fig. S12 PL and excitation spectra of **3**, **5** and **6** in (a) solutions $(1.0 \times 10^{-4} \text{ M in CHCl}_3)$ and (b) solid states.

Fig. S13 (a) PL and excitation spectra and (b) transmission spectrum of 5/PMMA film (10 wt%).

Fig. S14 (a) PL and excitation spectra and (b) transmission spectrum of 6/PMMA film (10 wt%).

4. CV data

Fig. S15 Cyclic voltammograms of (a) **3** (b) **5**, and (c) **6** measured in THF solutions (c = 0.1 M) at the scan rate of 100 mV/s under N₂. The working electrode was a glassy carbon, the counter electrode was a platinum wire, and the reference electrode was an Ag⁰ / Ag⁺.

5. Theoretical calculations

Table S4. Atom coordinates and absolute energy level for 3 optimized in the S_0 state.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
Center Number			Х	Y	Z
1	33	0	-0.5332	-0.0001	-1.3449
2	16	0	2.8151	1.8926	0.7597
3	16	0	2.8151	-1.8925	0.7599
4	6	0	0.6125	1.3291	-0.4884
5	6	0	1.6913	0.7226	0.1353
6	6	0	1.6913	-0.7225	0.1353
7	6	0	0.6125	-1.3292	-0.4883
8	6	0	0.6973	2.749	-0.4755
9	6	0	1.8197	3.2009	0.1723
10	6	0	1.8198	-3.2008	0.1725
11	6	0	0.6974	-2.7491	-0.4754
12	6	0	-2.0826	0	-0.1376
13	6	0	-1.9656	0.0002	1.2578
14	6	0	-3.1034	0.0003	2.0649
15	6	0	-4.3762	0.0001	1.482
16	6	0	-4.5029	-0.0002	0.0919
17	6	0	-3.3581	-0.0002	-0.7134
18	1	0	-0.0373	3.414	-0.9153
19	1	0	2.1312	4.2225	0.3426
20	1	0	2.1312	-4.2225	0.3429
21	1	0	-0.0372	-3.4141	-0.9152
22	1	0	-0.9817	0.0003	1.7182
23	1	0	-2.9996	0.0005	3.1465
24	1	0	-5.2626	0.0001	2.11
25	1	0	-5.4874	-0.0003	-0.3675
26	1	0	-3.4631	-0.0004	-1.7955

3 (S₀ state): E(RB3LYP) = -3569.10172537 A.U.

5 (S ₀ state): $E(RB3LYP) = -4031.24967753 A.U.$					
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
		Thomas Type	Х	Y	Ζ
1	33	0	0.0035	1.566	-1.4191
2	16	0	1.8927	-1.9886	0.3241
3	16	0	-1.8905	-1.9816	0.3364
4	6	0	1.3288	0.3238	-0.7049
5	6	0	0.7218	-0.8129	-0.1904
6	6	0	-0.7189	-0.8137	-0.1913
7	6	0	-1.3251	0.3216	-0.709
8	6	0	2.7416	0.2412	-0.7022
9	6	0	3.2248	-0.9386	-0.1683
10	6	0	-3.2221	-0.9201	-0.1313
11	6	0	-2.7389	0.2534	-0.6801
12	6	0	-0.0036	2.9527	-0.0249
13	6	0	0.0009	2.6588	1.3437
14	6	0	-0.0065	3.6853	2.2882
15	6	0	-0.0173	5.0215	1.8707
16	6	0	-0.0216	5.3233	0.5076
17	6	0	-0.0152	4.2901	-0.4368
18	1	0	3.3946	1.0125	-1.094
19	6	0	4.6214	-1.3431	0.0239
20	6	0	-4.6173	-1.3275	0.0682
21	1	0	-3.3914	1.0505	-1.0174
22	1	0	0.0093	1.6246	1.6749
23	1	0	-0.0035	3.4458	3.3479
24	1	0	-0.0226	5.8215	2.6055
25	1	0	-0.0304	6.3582	0.1769
26	1	0	-0.0187	4.5302	-1.4972
27	6	0	5.6252	-0.3652	0.1764
28	6	0	5.0032	-2.6979	0.0696
29	6	0	6.3372	-3.0603	0.2544
30	6	0	6.9583	-0.7308	0.354
31	6	0	7.3235	-2.08	0.3935
32	1	0	4.2535	-3.4731	-0.0613
33	1	0	6.6067	-4.1123	0.2816
34	1	0	5.353	0.6855	0.1823
35	1	0	7.7133	0.0412	0.4735
36	1	0	8.362	-2.3633	0.5365
37	6	0	-4.9851	-2.2434	1.073
38	6	0	-5.6343	-0.8026	-0.7546
39	6	0	-6.9662	-1.1685	-0.5677
40	6	0	-6.3174	-2.6159	1.2507
41	6	0	-7.3165	-2.0785	0.4347
42	1	0	-5.374	-0.1217	-1.5588

Table S5. Atom coordinates and absolute energy level for 5 optimized in the S_0 state.

43	1	0	-7.7314	-0.7519	-1.2165
44	1	0	-4.2256	-2.6505	1.7344
45	1	0	-6.5753	-3.3215	2.0352
46	1	0	-8.3538	-2.3671	0.5754