Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Characterization of a Monocyanide Model of FeFe hydrogenase – Highlighting the Importance of the Bridgehead Nitrogen for Catalysis

C. Esmieu^a and G. Berggren^{a,*}

a Molecular Biomimetics, Department of Chemistry – Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden

Contents:

X-ray Crystallographic Data: Table S1 Stability of **2** in solution: Figure S1 Catalytic assays with Eu (II): Figure S2 Electrochemistry: Figures S3-S12 and S14

Stability of **2** under electrocatalytic conditions: Figure S13

Table S1. Crystal data and structure refinement for compound **2**

Crystal data	
CCDC-No.	1437643
Empirical formula	$C_8H_5Fe_2N_2O_5S_2, C_8H_{20}N$
Formula weight	515.21
Crystal description	orange plate
Crystal size	0.2x0.18x0.08
Crystal system, space group	monoclinic, P 21/c
Unit cell dimensions: a	14.6311(5)
b	10.8642(4)
с	13.8535(4)
β	91.440(2)
Volume	2201.39(13)
Ζ	4
Calculated density	1.555
F(000)	1064
Linear absorption coefficient µ	1.538
Absorption correction	multi-scan, SADABS 2008
Max. and min. transmission	0.5857, 0.7455
Unit cell determination	2.3 < \Omega < 25.2^{\omega}
	3585 reflections used at 100K
Data collection	
Temperature	100(2)K
Diffractometer	Bruker APEX-II CCD
Radiation source	fine-focus sealed tube
Radiation and wavelength	MoK _a , 0.71073Å
Monochromator	Graphite
Scan type	() scans
Θ range for data collection	2.33 to 27.35°
Index ranges	$-15 \le h \le 18$, $-13 \le k \le 13$, $-14 \le l \le 17$
Reflections collected / unique	17828 / 4785
Significant unique reflections	3585 with I > $2\sigma(I)$
R(int) R(sigma)	0.0575_0.0608
Completeness to Θ	96.1 %
Refinement	
Refinement method	Full-matrix least-squares on F ²
Data / parameters / restraints	4785/318/0
Goodness-of-fit on F^2	1.053
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0488, $wR2 = 0.1143$
R indices (all data)	R1 = 000703 wR2 = 0.1280
Weighting scheme	$w=1/[\sigma^2(F^2)+(aP)^2+bP]$ where
	$P = (F_2^2 + 2F_2^2)/3$
Weighting scheme parameters a, b	0.0494, 2.7603
Largest Λ/σ in last cycle	0.000
Largest difference peak and hole	1 237 and -0 895 $e/Å^3$
Structure Solution Program	SHELXS-2014 (Sheldrick 2008)
Structure Refinement Program	SHELXL-2014/7 (Sheldrick, 2008)

Fig. S1 The stability of complex **2** in anaerobic DMSO/H₂O (1:1) (left) and CH₃CN (right) solutions monitored by transmission FTIR spectropscopy. FTIR spectra recorded at t = 5 min (black line); t = 35 min (red line); t = 65 min (blue line); t = 125 min (grey line).

Fig. S2 The effect of changing buffer (left) and reaction time (right) on H₂ production observed following the addition of 39 μ moles of Eu-DTPA (final conc. 25 mM) to mixed DMSO/H₂O (1:1) solutions, H₂ amounts reported in TON relative to 0.39 μ moles catalyst (Fe²⁺ ions or complex **2**). Left: (a) blank; (b) (NH₄)₂Fe(SO₄)₂ (0.25 mM); (c) complex **2** (0.25 mM); Tris buffer 50 mM pH 7.5, V = 1.5 mL, 25 °C, after one hour reaction. Right: (a) blank ; (b) (NH₄)₂Fe(SO₄)₂ (0.25 mM); (c) complex **2** (0.25 mM); (d) complex **2** (0.25 mM); (e) complex **2** (0.25 mM); (f) complex **2** (0.25 mM) total H₂ production following a second addition of 39 μ moles Eu-DTPA; (g) complex **2** (0.25 mM) total H₂ production following a second addition of 39 μ moles Eu-DTPA. All Reactions performed in DMSO/H₂O (1:1) buffer (50 mM HEPES, pH 7.5), V = 1.5 mL, at 25 °C. * 1 h reaction time; ** 2 h reaction time time; *** 3 h reaction time.

Fig. S3 Plot of anodic peak current ($i_{p,a}$) of complex **2** vs (scan rate)^{1/2} from cyclic voltammetry. Conditions: 50 μ M of **2** in CH₃CN-Bu₄NPF₆ (0.1 M); glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S4 Onset of catalytic current following addition of acid in the presence and absence of **3**, and cyclic voltammogram of **3** in pure electrolyte (inset). Complex **3** (50 μ M) in presence of 6 mM acetic acid (black solid line) or 10 mM dichloroacetic acid (blue solid line); 10 mM acetic acid without complex **3** (dashed black line); 14 mM dichloroacetic acid without complex **3** (dashed blue line). Conditions: CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode with a surface area of 0.0701 cm². Cathodic peak current ($i_{p, c}$): -2.16 V; Anodic peak current ($i_{p, a}$): 0.05 V and 0.03 V

Fig. S5 Cyclic voltammogram of **1**. Conditions: 50 μ M of **1** in CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S6 Onset of catalytic current following addition of acetic acid in the presence and absence of **2**. Complex **2** (50 μ M) in pure electrolyte (black); complex **2** (50 μ M) in presence of 10 mM acetic acid (blue); 10 mM of acetic acid without complex (red). Conditions: CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S7 Plot of cathodic peak current $(i_{p, c})$ of complex **2** vs the acid concentration from cyclic voltammogram. Conditions: 50 μ M of **2** in CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S8 Plot of cathodic current (at -1.7 V) of complex 2 vs (scan rate)^{1/2} in the presence of dichloroacetic acid from cyclic voltammetry. Conditions: complex 2 (50 μ M) and Cl₂AcOH (10 mM) in CH₃CN-Bu₄NPF₆ (0.1 M); glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S9 Cyclic voltammograms of **2** in the presence of increasing amounts of dichloroacetic acid from 0 (black) to 500 (brown) equivalents. Conditions: 200 μ M of **2** in CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S10 Onset of catalytic current following addition of dichloroacetic acid in the presence and absence of **2.** Complex **2** (50 μ M) in pure electrolyte (black); complex **2** (50 μ M) in presence of 10 mM of dichloroacetic acid (blue); 10 mM of dichloroacetic acid without complex (red). Conditions: CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode of surface area 0.0701 cm².

Fig. S11 Plot of cathodic current (at -1.68 V) of complex **2** vs the catalyst concentration from cyclic voltammogram. Currents corrected by subtracting background current observed for dichloroacetic acid. Conditions: 20 mM of dichloroacetic acid in CH₃CN-Bu₄NPF₆ (0.1 M); scan rate = 100 mV s⁻¹; glassy carbon as working electrode with a surface area of 0.0701 cm².

Fig. S12 Controlled potential coulometry of **2** (0.5 mM) in the presence of dichloroacetic acid, charge (Q, black line) passed through the cell and current (*i*, blue line) shown as a function of time; (inset): Charge passed through the cell in the presence (black line) and absence (red line) of **2**. Conditions: 50 mM of dichloroacetic acid in $CH_3CN-Bu_4NPF_6$ (0.1 M); glassy carbon as working electrode with a surface area of 0.22 cm²; potential set to -1.7 V.

Fig. S13 The stability of complex **2** under electrocatalytic conditions monitored by transmission FTIR spectropscopy. Samples collected and transferred *via* syringe to the sample cell, FTIR spectra recorded at t = 0 s (blue); t = 300 s (orange); t = 1800 s (violet); t = 3600 s (green); t = 7200 s (red). Conditions: 0.5 mM **2**; 50 mM of dichloroacetic acid in CH₃CN-Bu₄NPF₆ (0.1 M); glassy carbon as working electrode with a surface area of 0.22 cm²; potential set to -1.7 V.

Fig. S14 Controlled potential coulometry of **2** (0.5 mM) in the presence of acetic acid, charge (Q, black line) passed through the cell and current (*i*, blue line) shown as a function of time; (inset): Charge passed through the cell in the presence (black line) and absence (red line) of **2**. Conditions: 50 mM of acetic acid in $CH_3CN-Bu_4NPF_6$ (0.1 M); glassy carbon as working electrode with a surface area of 0.22 cm²; potential set to -1.8 V.