Supplementary Information for

A Long-Tethered (P-B-P)-Pincer Ligand: Synthesis, Complexation, and Application to Catalytic Dehydrogenation of Alkanes

Enrique Huang Kwan, Yasushi Jack Kawai, Sei Kamakura, Makoto Yamashita*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, 112-8551 Tokyo, Japan

Table of Contents

1.	NMR and IR spectra of 5	S2
2.	NMR and IR spectra of 6	S3
3.	NMR and IR spectra of 7	S6
4.	NMR and IR spectra of 8	S8
5.	NMR and IR spectra of 9	S11
6.	NMR and IR spectra of 10	S13
7.	Calculated structure of 9	S17
8.	Calculated structure of 10	S17
9.	Reaction of 9 with ^{<i>n</i>} BuLi in d_8 -toluene at low temperature	S18
10.	Crystallographic data and structure refinement details for 9 and 10	S19

Figure S1. ¹H NMR spectrum of **5** (d_6 -DMSO, 25 °C, 500 MHz)

Figure S2. ¹³C NMR spectrum of 5 (d_6 -DMSO, 25 °C, 126 MHz)

Figure S4. ¹H NMR spectrum of 6 (CDCl₃, 25 °C, 500 MHz)

Figure S5. ¹¹B NMR spectrum of 6 (CDCl₃, 25 °C, 161 MHz)

Figure S6. ³¹P NMR spectrum of 6 (CDCl₃, 25 °C, 202 MHz)

Figure S7. ¹³C NMR spectrum of 6 (CDCl₃, 25 °C, 126 MHz)

Figure S8. IR spectrum of 6

Figure S9. ¹H NMR spectrum of **7** (C₆D₆, 25 °C, 500 MHz)

Figure S10. ¹¹B NMR spectrum of **7** (C₆D₆, 25 °C, 161 MHz)

Figure S11. ³¹P NMR spectrum of **7** (C₆D₆, 25 °C, 202 MHz)

Figure S12. ¹³C NMR spectrum of **7** (C₆D₆, 25 °C, 126 MHz)

Figure S14. ¹H NMR spectrum of **8** (C₆D₆, 25 °C, 500 MHz)

Figure S15. ¹¹B NMR spectrum of **8** (C₆D₆, 25 °C, 161 MHz)

Figure S16. ³¹P NMR spectrum of **8** (C₆D₆, 25 °C, 202 MHz)

Figure S17. ¹³C NMR spectrum of **8** (C₆D₆, 25 °C, 126 MHz)

Figure S18. IR spectrum of 8

Figure S19. ¹H NMR spectrum of **9** (C₆D₆, 25 °C, 500 MHz)

Figure S20. ¹¹B NMR spectrum of **9** (C₆D₆, 25 °C, 161 MHz)

Figure S21. ³¹P NMR spectrum of **9** (C₆D₆, 25 °C, 202 MHz)

Figure S22. ¹³C NMR spectrum of **9** (C₆D₆, 25 °C, 126 MHz)

Figure S23. IR spectrum of 9

Figure S24. ${}^{1}H{}^{11}B{}$ NMR spectrum of **10** (C₆D₆, 25 °C, 500 MHz)

Figure S25. ¹H NMR spectrum of **10** (C₆D₆, 25 °C, 500 MHz)

Figure S26. ¹¹B NMR spectrum of **10** (C₆D₆, 25 °C, 161 MHz)

Figure S27. ³¹P NMR spectrum of **10** (C₆D₆, 25 °C, 202 MHz)

Figure S28. ¹³C NMR spectrum of **10** (C₆D₆, 25 °C, 126 MHz)

Figure S29. IR spectrum of 10

Figure S30. Calculated displacement vector at 2156 cm⁻¹ (scaled with 0.977)¹ for **9** (gray: carbon, pale orange: boron, orange: phosphorus, white: hydrogen, blue-green: iridium, blue: nitrogen, light green: chlorine)

Figure S31. Calculated displacement vectors at 1768 and 2077 cm⁻¹ (scaled with 0.977)¹ for **10** (gray: carbon, pale orange: boron, orange: phosphorus, white: hydrogen, blue-green: iridium, blue: nitrogen)

Figure S32. Reaction of **9** with ^{*n*}BuLi at low temperature as monitored by ¹H NMR spectroscopy. Signal assignable to the dihydride ligands was detected upon addition even at -78 °C.

Figure S33. Reaction of **9** with ^{*n*}BuLi at low temperature as monitored by ³¹P NMR spectroscopy.

	4(9)·3(C ₆ H ₆)	10
CCDC deposit #	1481611	1481612
formula	$C_{130}H_{230}B_4CI_4Ir_4N_8P_8$	$C_{28}H_{54}BIrN_2P_2$
fw	3106.81	683.68
Т (К)	93(2)	93(2)
crystal system	orthorhombic	monoclinic
space group	Pbca	C2/c
a, (Å)	9.369(3)	33.074(11)
b, (Å)	21.885(6)	8.348(3)
<i>c,</i> (Å)	33.532(9)	24.590(9)
α, (°)	90	90
β, (°)	90	119.367(4)
γ, (°)	90	90
<i>V</i> , (Å ³)	6876(3)	5917(4)
Ζ	2	8
D_{calc} , (g/cm ³)	1.501	1.535
μ (mm⁻¹)	4.079	4.641
F(000)	3164	2784
crystal size (mm)	0.07 x 0.06 x 0.04	0.160 x 0.080 x 0.040
2 $ heta$ range , (°)	3.061-27.470	3.062-27.520
refins collected	67732	23516
indep reflns/R _{int}	7855/0.0853	6773/0.0587
params	400	325
GOF on F ²	1.184	1.133
<i>R</i> ₁ , w <i>R</i> ₂ [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	0.0501, 0.0889	0.0500, 0.0941
R_1 , w R_2 (all data)	0.0611, 0.0928	0.0588, 0.0985

Table S1. Crystallographic data and structure refinement details for 9 and 10

Calculated SCF GIAO Magnetic shielding tensor (ppm) SiMe₄

```
3 H Isotropic = 31.7839

4 H Isotropic = 31.7806

5 H Isotropic = 31.7820

7 H Isotropic = 31.7839

8 H Isotropic = 31.7793

9 H Isotropic = 31.7819

11 H Isotropic = 31.7804

13 H Isotropic = 31.7817

15 H Isotropic = 31.7819

16 H Isotropic = 31.7836

17 H Isotropic = 31.7833

Complex 10

2 H Isotropic = 30.4190 (close to boron atom)

3 H Isotropic = 37.1463 (far from boron atom)
```

Reference

1. I. M. Alecu, J. Zheng, Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput., 2010, 6, 2872.