SUPPLEMENTARY INFORMATION

Versatile Coordination of a Reactive P,N-Ligand toward Group 13 Metal Centers

Marc N. Devillard,^[a] Carlos Álvarez Lamsfus,^[b] Vincent Vreeken,^[a] Laurent Maron^[b] and Jarl Ivar van der Vlugt^{*[a]}

^a Homogeneous, Bioinspired & Supramolecular Catalysis, van 't Hoff Institute for

Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam,

The Netherlands. E-mail: j.i.vandervlugt@uva.nl

^b Laboratoire de Physique et Chimie des Nanoobjets, Université de Toulouse, INSA-

UPS-CNRS (UMR 5215. 135, avenue de Rangueil, 31077 Toulouse cedex 4, France.

Contents

NMR spectra		S2
Computationa	ıl data	

NMR spectra of all new compounds

Figure 1. ${}^{31}P{}^{1}H$ NMR spectrum of **1** (121 MHz, 20 °C) in CD₂Cl₂

Figure 2. 27 Al{ 1 H} NMR spectrum of 1 (78 MHz, 20 °C) in CD₂Cl₂

Figure 3. ¹H NMR spectrum of **1** (300 MHz, 20 °C) in CD_2Cl_2

Figure 4. ¹H NMR spectrum of **1** (300 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 5. 1 H NMR spectrum of 1 (300 MHz, 20 $^{\circ}$ C) in CD₂Cl₂: zoom 2

Figure 6. ¹H NMR spectrum of **1** (300 MHz, 20 °C) in CD₂Cl₂: zoom 3

Figure 7.¹³C{¹H} NMR spectrum of 1 (75 MHz, 20 °C) in CD_2Cl_2

Figure 8.¹³C{¹H} NMR spectrum of **1** (75 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 9. ¹³C{¹H} NMR spectrum of 1 (75 MHz, 20 °C) in CD_2Cl_2 : zoom 2 (=*C*H-PPh₂ signal)

Figure 10.¹³C $\{^{1}H\}$ NMR spectrum of **1** (75 MHz, 20 °C) in CD₂Cl₂: zoom 3

Figure 11.¹³C $\{^{1}H\}$ NMR spectrum of **1** (75 MHz, 20 °C) in CD₂Cl₂: zoom 4

Figure 12. ${}^{31}P{}^{1}H$ NMR spectrum of **2** (121 MHz, 20 °C) in CD₂Cl₂

Figure 13. ¹H NMR spectrum of **2** (300 MHz, 20 °C) in CD₂Cl₂

Figure 14. ¹H NMR spectrum of **2** (300 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 15. ¹H NMR spectrum of **2** (300 MHz, 20 °C) in CD₂Cl₂: zoom 2

Figure 16.¹³C{¹H} NMR spectrum of **2** (75 MHz, 20 °C) in CD_2Cl_2

Figure 17.¹³C $\{^{1}H\}$ NMR spectrum of **2** (75 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 18.¹³C{¹H} NMR spectrum of **2** (75 MHz, 20 °C) in CD₂Cl₂: zoom 2

Figure 19. ³¹P{¹H} NMR spectrum of **3** (121 MHz, 20 °C) in CD₂Cl₂. *Signal attributed to $\mathbf{L}^{\mathbf{H}}$

Figure 20. ¹¹B{¹H} NMR spectrum of **3** (96 MHz, 20 $^{\circ}$ C) in CD₂Cl₂

Figure 21. ¹H NMR spectrum of **3** (300 MHz, 20 °C) in CD₂Cl₂ *Signal attributed to L^H

Figure 22. ¹H NMR spectrum of **3** (300 MHz, 20 °C) in CD₂Cl₂: zoom 1. *Signal attributed to L^{H}

Figure 23. Stacked ¹H NMR spectra of **3** (bottom) and L^{H} (top) (300 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 24. ¹H NMR spectrum of **3** (300 MHz, 20 °C) in CD₂Cl₂: zoom 2. *Signal attributed to L^{H}

Figure 25. Stacked ¹H NMR spectra of **3** (bottom) and L^{H} (top) (300 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 26.¹³C{¹H} NMR spectrum of **3** (75 MHz, 20 °C) in CD₂Cl₂. *Signal attributed to $\mathbf{L}^{\mathbf{H}}$

Figure 27.¹³C{¹H} NMR spectrum of **3** (75 MHz, 20 °C) in CD₂Cl₂: zoom 1. *Signal attributed to L^{H}

Figure 28.¹³C{¹H} NMR spectrum of **3** (75 MHz, 20 °C) in CD₂Cl₂: zoom 2 (=*C*H-PPh₂ signal)

Figure 29.¹³C{¹H} NMR spectrum of **3** (75 MHz, 20 °C) in CD₂Cl₂: zoom 3. *Signal attributed to L^{H}

Figure 30.¹³C{¹H} NMR spectrum of **3** (75 MHz, 20 °C) in CD₂Cl₂: zoom 4. *Signal attributed to L^{H}

Figure 31.¹³C{¹H} NMR spectrum of **3** (75 MHz, 20 °C) in CD₂Cl₂: zoom 5

NMR spectra of anti-3.GaCl₃

Figure 32. ³¹P{¹H} NMR spectrum of *anti-***3.GaCl₃** (121 MHz, 20 °C) in CD₂Cl₂

Figure 33. ¹¹B{¹H} NMR spectrum of *anti-3.GaCl*₃ (96 MHz, 20 °C) in CD₂Cl₂

Figure 34. ¹H NMR spectrum of *anti-3.GaCl₃* (300 MHz, 20 °C) in CD₂Cl₂

Figure 35. ¹H NMR spectrum of *anti-3.GaCl₃* (300 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 36. ¹H NMR spectrum of *anti-3.GaCl₃* (300 MHz, 20 °C) in CD₂Cl₂: zoom 2

Figure 37.¹³C{¹H} NMR spectrum of *anti*-3.GaCl₃ (75 MHz, 20 °C) in CD₂Cl₂

Figure 38.¹³C{¹H} NMR spectrum of *anti-3.GaCl₃* (75 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 39.¹³C{¹H} NMR spectrum of *anti-3.GaCl₃* (75 MHz, 20 °C) in CD₂Cl₂: zoom 2

Isomerization of anti-3.GaCl₃

Figure 40. ³¹P{¹H} NMR spectrum of the mixture of diastereoisomers (162 MHz, 20 °C) in CD₂Cl₂. ^ASignal attributed to *anti*-**3.GaCl₃**. ^BSignal attributed to *syn*-**3.GaCl₃**

Figure 41. $^{11}B\{^{1}H\}$ NMR spectrum of the mixture of diastereoisomers (128 MHz, 20 °C) in CD₂Cl₂

Figure 42. ¹H NMR spectrum (300 MHz, 20 °C) in CD₂Cl₂

Figure 43. Stacked ¹H NMR spectrum of the mixture of diastereoisomers and ¹H NMR spectrum of pure *anti*-**3.GaCl₃** (top) (300 MHz, 20 °C) in CD₂Cl₂: aliphatic region

Figure 44. Stacked ¹H NMR spectrum of the mixture of diastereoisomers (bottom) and ¹H NMR spectrum of *anti*-**3.GaCl₃** (top) (300 MHz, 20 °C) in CD₂Cl₂: aromatic region

Figure 45. Stacked ¹H (bottom) and ¹H{³¹P} (top) NMR spectra of the mixture of diastereoisomers (400 MHz, 20 °C) in CD_2Cl_2 : aliphatic region

Figure 46.¹³C{¹H} NMR spectrum of the mixture of diastereoisomers (101 MHz, 20 °C) in CD_2Cl_2

Figure 47.¹³C{¹H} NMR spectrum of the mixture of diastereoisomers (101 MHz, 20 °C) in CD₂Cl₂: zoom 1. ^ASignal attributed to *anti*-**3.GaCl₃**. Figure 70.¹³C{¹H} NMR spectrum of the mixture of diastereoisomers (101 MHz, 20 °C) in CD₂Cl₂: zoom 1. ^BSignal attributed to *syn*-**3.GaCl₃**

Figure 48.¹³C{¹H} NMR spectrum of the mixture of diastereoisomers (101 MHz, 20 °C) in CD₂Cl₂: zoom 2. ^ASignal attributed to *anti*-**3.GaCl₃**. ^BSignal attributed to *syn*-**3.GaCl₃**

Figure 49.¹³C{¹H} NMR spectrum of the mixture of diastereoisomers (101 MHz, 20 °C) in CD₂Cl₂: zoom 3. ^ASignal attributed to *anti*-**3.GaCl₃**. ^BSignal attributed to *syn*-**3.GaCl₃**

Figure 50.¹³C{¹H} NMR spectrum of the mixture of diastereoisomers (101 MHz, 20 °C) in CD₂Cl₂: zoom 4. ^ASignal attributed to *anti*-**3.GaCl₃**. ^BSignal attributed to *syn*-**3.GaCl₃**

Figure 51. ${}^{31}P{}^{1}H$ NMR spectrum of 4 (121 MHz, 20 °C) in CD₂Cl₂

Figure 52. ¹¹B{¹H} NMR spectrum of 4 (96 MHz, 20 $^{\circ}$ C) in CD₂Cl₂

Figure 53. ¹H NMR spectrum of 4 (300 MHz, 20 $^{\circ}$ C) in CD₂Cl₂

Figure 54. ¹H NMR spectrum of 4 (300 MHz, 20 °C) in CD₂Cl₂, aliphatic region

Figure 55. ¹H NMR spectrum of **4** (300 MHz, 20 °C) in CD_2Cl_2 , methylene arm

Figure 56. 1 H NMR spectrum of 4 (300 MHz, 20 $^{\circ}$ C) in CD₂Cl₂, aromatic region

Figure 57. $^{13}C\{^{1}H\}$ NMR spectrum of 4 (75 MHz, 20 °C) in CD₂Cl₂

Figure 58. ¹³C{¹H} NMR spectrum of **4** (75 MHz, 20 °C) in CD₂Cl₂, aliphatic region

Figure 59. $^{13}C{^{1}H}$ NMR spectrum of 4 (75 MHz, 20 °C) in CD₂Cl₂, aromatic region 1

Figure 60. $^{13}C\{^{1}H\}$ NMR spectrum of 4 (75 MHz, 20 °C) in CD₂Cl₂, aromatic region 2

NMR spectra of 5.BCl₂

Figure 61. ³¹P{¹H} NMR spectrum of **5.BCl₂** (121 MHz, 20 °C) in CD₂Cl₂

Figure 62. ¹¹B{¹H} NMR spectrum of **5.BCl₂** (96 MHz, 20 °C) in CD_2Cl_2

Figure 63. ¹H NMR spectrum of **5.BCl₂** (300 MHz, 20 °C) in CD_2Cl_2

Figure 64. ¹H NMR spectrum of **5.BCl₂** (300 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 65. ¹H NMR spectrum of $5.BCl_2$ (300 MHz, 20 °C) in CD₂Cl₂: zoom 2

Figure 66. ${}^{13}C{}^{1}H$ NMR spectrum of **5.BCl₂** (75 MHz, 20 °C) in CD₂Cl₂

Figure 67. ${}^{13}C{}^{1}H$ NMR spectrum of **5.BCl₂** (75 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 68. ¹³C{¹H} NMR spectrum of **5.BCl₂** (75 MHz, 20 °C) in CD₂Cl₂: zoom 2

NMR spectra of 5.B(Cl)(Ph)

Figure 69. ${}^{31}P{}^{1}H$ NMR spectrum of **5.B(Cl)(Ph)** (121 MHz, 20 °C) in CD₂Cl₂

Figure 70. ¹¹B{¹H} NMR spectrum of **5.B(Cl)(Ph)** (96 MHz, 20 °C) in CD_2Cl_2

Figure 71. ¹H NMR spectrum of **5.B(Cl)(Ph)** (400 MHz, 20 °C) in CD₂Cl₂

Figure 72. ¹H NMR spectrum of **5.B(Cl)(Ph)** (400 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 73. Stacked ${}^{1}H{}^{31}P{}$ NMR (top) and ${}^{1}H$ NMR (bottom) spectra of **5.B(Cl)(Ph)** (400 MHz, 20 °C) in CD₂Cl₂: zoom 1. ^A Signal attributed to the *syn*-**5.B(Cl)(Ph)**; **A**. ^B Signal attributed to the *anti*-**5.B(Cl)(Ph)**; **B**. ^{A+B} Here, one signal of the *t*Bu group of **A** overlap with one signal of the *t*Bu group of **B** as evidenced by integration

Figure 74. ¹H NMR spectrum of **5.B(Cl)(Ph)** (400 MHz, 20 °C) in CD₂Cl₂: zoom 2 (=C*H*-PPh₂)

Figure 75. Stacked ¹H NMR (bottom) and ¹H{³¹P} NMR (top) spectra of **5.B(Cl)(Ph)** (400 MHz, 20 °C) in CD₂Cl₂: zoom 2, B-C(<u>H</u>)-P signals. ^A Signal attributed to the *syn*-**5.B(Cl)(Ph)**; **A**. ^B Signal attributed to the *anti*-**5.B(Cl)(Ph)**; **B**

Figure 76. ¹H NMR spectrum of **5.B(Cl)(Ph)** (400 MHz, 20 °C) in CD₂Cl₂: zoom 3

Figure 77. ¹³C{¹H} NMR spectrum of **5.B(Cl)(Ph)** (75 MHz, 20 °C) in CD₂Cl₂

Figure 78. ¹³C{¹H} NMR spectrum of **5.B(Cl)(Ph)** (75 MHz, 20 °C) in CD₂Cl₂: zoom 1. ^A Signal attributed to the *syn*-**5.B(Cl)(Ph)**; **A**. ^B Signal attributed to the *anti*-**5.B(Cl)(Ph)**; **B**

Figure 79. ¹³C{¹H} NMR spectrum of **5.B(Cl)(Ph)** (75 MHz, 20 °C) in CD₂Cl₂: zoom 2. ^A Signal attributed to the *syn*-**5.B(Cl)(Ph)**; **A**. ^B Signal attributed to the *anti*-**5.B(Cl)(Ph)**; **B**

Figure 80. ¹³C{¹H} NMR spectrum of **5.B(Cl)(Ph)** (75 MHz, 20 °C) in CD₂Cl₂: zoom 3. ^A Signal attributed to the *syn*-**5.B(Cl)(Ph)**; **A**. ^B Signal attributed to the *anti*-**5.B(Cl)(Ph)**; **B**

Figure 81. ¹³C{¹H} NMR spectrum of **5.B(Cl)(Ph)** (75 MHz, 20 °C) in CD₂Cl₂: zoom 4. ^A Signal attributed to the *syn*-**5.B(Cl)(Ph)**; **A**. ^B Signal attributed to the *anti*-**5.B(Cl)(Ph)**; **B**

Figure 82. 2D [1H,1H] NOESY NMR spectrum of **5.B(Cl)(Ph)** (300 MHz, 20 °C) in CD₂Cl₂

Figure 83. 2D [1H,1H] NOESY NMR spectrum of **5.B**(Cl)(Ph) (300 MHz, 20 °C) in CD₂Cl₂; zoom on the B-C(H)-P signals. ^A Signal attributed to the *syn*-**5.B**(Cl)(Ph); **A**. ^B Signal attributed to the *anti*-**5.B**(Cl)(Ph); **B**

Isomerization of 5.B(Cl)(Ph) to 3.GaCl₃

Figure 84. ¹H NMR spectrum of the crude mixture (300 MHz, 20 °C) in CD_2Cl_2

Figure 85. ¹H NMR spectrum of the crude mixture (300 MHz, 20 °C) in CD_2Cl_2 , aliphatic region

^ASignal attributed to *anti*-3.GaCl₃

^BSignal attributed to *syn*-3.GaCl₃

^TSignal attributed to the CH₃ group of toluene (internal standard)

⁵Signal attributed to compound **4**

Figure 86. Stacked ¹H NMR spectrum of the crude mixture (top) and ¹H NMR spectrum of **4** (bottom) (300 MHz, 20 °C) in CD₂Cl₂

Figure 87. Stacked ¹H NMR spectrum of the crude mixture (top) and ¹H NMR spectrum of 4 (bottom) (300 MHz, 20 °C) in CD₂Cl₂: aliphatic region

Figure 88. Stacked ¹H NMR spectrum of the crude mixture (top) and ¹H NMR spectrum of **4** (bottom) (300 MHz, 20 °C) in CD₂Cl₂: aromatic region

NMR spectra of 6

Figure 89. ${}^{31}P{}^{1}H$ NMR spectrum of **6** (121 MHz, 20 °C) in CD₂Cl₂

Figure 90. ¹¹B{¹H} NMR spectrum of **6** (96 MHz, 20 $^{\circ}$ C) in CD₂Cl₂

Figure 91. ¹H NMR spectrum of **6** (300 MHz, 20 $^{\circ}$ C) in CD₂Cl₂

Figure 92. ¹H NMR spectrum of 6 (300 MHz, 20 °C) in CD₂Cl₂, aliphatic region

Figure 93. ¹H NMR spectrum of 6 (300 MHz, 20 °C) in CD₂Cl₂, aromatic region

Figure 94. ${}^{13}C{}^{1}H$ NMR spectrum of 6 (75 MHz, 20 °C) in CD₂Cl₂

Figure 95. ${}^{13}C{}^{1}H$ NMR spectrum of 6 (75 MHz, 20 °C) in CD₂Cl₂, aliphatic region

Figure 96. ¹³C{¹H} NMR spectrum of **6** (75 MHz, 20 °C) in CD₂Cl₂, aromatic region

Computational Details

1) <u>Relative energies of the 4 structural isomers 5.B(Cl)(Ph) and 3.GaCl₃</u>

2) MO analysis and NBO calculations on 5.BCl₂

Both Molecular Orbital analysis and Natural Bond Orbital (NBO) calculations were carried out to study the bonding of the atoms involved in the 4-membered ring of the structure.

analysis	calculations	orbital	oona mae
1.586(3)	1.61	1.96	0.58
1.682(3)	1.69	1.95	0.77
1.352(3)	1.35	1.97	1.25
1.516(4)	1.5	1.97	1.03
	analysis 1.586(3) 1.682(3) 1.352(3) 1.516(4)	analysiscalculations1.586(3)1.611.682(3)1.691.352(3)1.351.516(4)1.5	analysiscalculationsorbital1.586(3)1.611.961.682(3)1.691.951.352(3)1.351.971.516(4)1.51.97

Atomic charge from the natural

populatio	n analysis
В	+0.4
Ν	-0.5
C2	+0.3
C1	-0.9

3) <u>Z-matrices</u>

Compound 1

13	2.448614000	1.037661000	13.385962000
15	2.523320000	3.457604000	14.067084000
7	1.762598000	1.688156000	11.665640000
6	1.775670000	3.976165000	12.510486000
1	1.540977000	5.019724000	12.333681000
6	1.499036000	3.051910000	11.513010000
6	0.923223000	3.485938000	10.267105000
1	0.713980000	4.544439000	10.150690000
6	0.652794000	2.599081000	9.270226000
1	0.218319000	2.944739000	8.335421000
6	0.936911000	1.223047000	9.452614000
1	0.731397000	0.496395000	8.675441000
6	1.480981000	0.815674000	10.645606000
6	1.796355000	-0.632935000	10.881731000
1	1.483024000	-1.237148000	10.027938000
1	1.278157000	-1.016494000	11.768424000
1	2.870536000	-0.788867000	11.029356000
6	4.243921000	4.394820000	14.166445000
6	5.130773000	3.709535000	13.121407000
1	6.085947000	4.245608000	13.051511000
1	4.661713000	3.728970000	12.132214000
1	5.347837000	2.671398000	13.382262000
6	4.095555000	5.868072000	13.775836000
1	3.505137000	6.445034000	14.490528000
1	3.641226000	5.967885000	12.785833000

1	5.092933000	6.324296000	13.729524000
6	4.869984000	4.262043000	15.554632000
1	4.927409000	3.219332000	15.882386000
1	4.324830000	4.831667000	16.312709000
1	5.893959000	4.656107000	15.528858000
6	1.328209000	3.978134000	15.529157000
6	-0.075887000	3.543454000	15.097765000
1	-0.788593000	3.799686000	15.892090000
1	-0.141478000	2.465656000	14.927361000
1	-0.383120000	4.048718000	14.178000000
6	1.328334000	5.488500000	15.768560000
1	0.563554000	5.733644000	16.517173000
1	1.085260000	6.044942000	14.857905000
1	2.285376000	5.850000000	16.153702000
6	1.738267000	3.233071000	16.803132000
1	2.725505000	3.532339000	17.163999000
1	1.746100000	2.149819000	16.651894000
1	1.016850000	3.451895000	17.600906000
6	4.228528000	0.160344000	13.311838000
1	4.866125000	0.603890000	12.535110000
1	4.051795000	-0.873172000	12.976166000
6	4.994196000	0.094387000	14.642574000
1	5.931714000	-0.470335000	14.558601000
1	4.401763000	-0.388295000	15.428714000
1	5.258546000	1.090195000	15.017463000
6	1.047849000	0.046341000	14.402895000
1	0.860678000	0.537086000	15.367556000

6 1.354	4733000	-1.434927000	14.679571000
1 2.25	9217000	-1.553317000	15.286549000
1 1.522	2830000	-2.008181000	13.759850000

1 0.539039000 -1.934274000 15.218400000

anti-3.GaCl₃

Ga 8.452836 6.111389 6.357727

- Cl 6.662118 4.845230 6.716983
- Cl 10.190398 4.973915 5.539710
- Cl 9.186864 6.977356 8.302570
- Cl 5.757029 9.840473 2.087173
- P 7.952535 7.852872 3.280358
- N 5.857852 8.902360 4.805750
- C 7.645509 5.029114 2.910186
- $C \ 7.647838 \ 6.474205 \ 0.862285$
- C 9.797387 5.964017 2.051037
- C 8.302129 6.231593 2.229937
- C 8.774572 10.562827 3.599568
- C 9.268863 9.564542 1.354698
- C 10.634436 8.923173 3.364796
- C 9.233933 9.297868 2.862298
- C 4.560720 6.325203 4.034760
- C 3.626601 5.311138 3.828535
- C 2.997582 5.180770 2.591611

- C 3.308855 6.074712 1.568229
- C 4.244565 7.086108 1.781088
- C 4.902340 7.233097 3.015363
- C 3.576846 9.838056 4.369964
- C 4.747124 9.567663 5.264713
- $C \ 4.704526 \ 10.011887 \ 6.577145$
- C 5.775889 9.781998 7.434541
- $C \ 6.867581 \ 9.074431 \ 6.972757$
- C 6.893662 8.611430 5.653089
- $C \ 8.049740 \ 7.810395 \ 5.160601$
- B 5.958760 8.406054 3.289245
- H 8.157538 4.745998 3.830379
- Н 6.585787 5.181413 3.113964
- H 7.731566 4.176854 2.224835
- H 7.855907 5.599351 0.234904
- Н 6.564095 6.574552 0.939152
- H 8.047011 7.350142 0.346684
- H 9.896646 5.008202 1.522429
- H 10.288318 6.721900 1.435822
- H 10.319596 5.861695 3.004081
- H 9.487811 11.363167 3.368999
- H 7.785083 10.894075 3.282395
- H 8.777944 10.438538 4.686208
- H 9.690265 8.726297 0.794693
- H 8.279368 9.798410 0.956503
- Н 9.917095 10.430460 1.173165
- H 11.287129 9.791512 3.213214

- H 10.662373 8.689940 4.433008
- H 11.074578 8.084609 2.826853
- Н 5.037195 6.386686 5.009411
- H 3.398290 4.622543 4.637291
- H 2.267476 4.392716 2.428238
- H 2.817759 5.990332 0.602222
- H 4.457101 7.787465 0.978772
- H 3.337061 8.982348 3.737879
- H 2.708283 10.075948 4.987231
- H 3.776235 10.685724 3.708835
- H 3.820190 10.539344 6.916078
- Н 5.749694 10.136051 8.460771
- Н 7.699735 8.831034 7.624167
- H 8.967781 8.333419 5.447601

syn-3.GaCl₃

Ga 8.375845 6.215926 6.351854

- Cl 4.876221 7.121359 2.718764
- Cl 6.513708 5.046310 6.638340
- Cl 10.120936 5.017614 5.637940
- Cl 9.071757 7.108158 8.300946
- P 7.984485 7.898226 3.226866
- N 5.793612 8.857500 4.722031
- C 5.551335 12.228246 1.839378
- $C \ 5.416625 \ 10.718349 \ \textbf{-}0.027465$
- $C \ 5.595061 \ 9.639100 \ 0.836712$
- $C \ 5.738953 \ 11.142402 \ 2.694331$
- C 5.395526 12.020303 0.470606
- C 5.771371 9.818642 2.220001
- C 7.592512 5.062623 3.019498
- $C \ 7.665508 \ 6.372213 \ 0.870872$
- C 9.772248 5.863456 2.115742
- $C \ \ 8.287104 \ \ 6.199765 \ \ 2.264785$
- C 8.992961 10.558924 3.461910

- C 9.411740 9.449616 1.263530
- C 10.729290 8.788716 3.307740
- C 9.360912 9.238083 2.778987
- C 3.384254 9.424359 4.324967
- C 4.610783 9.385632 5.185370
- $C \ 4.527610 \ 9.841404 \ 6.490969$
- $C \ 5.625085 \ 9.744412 \ 7.342342$
- $C \ \ 6.777892 \ 9.137410 \ \ 6.888168$
- C 6.844027 8.654201 5.575898
- C 8.038560 7.904498 5.108245
- B 5.999227 8.548461 3.175832
- Н 5.250037 12.862816 -0.199756
- Н 5.525167 13.236228 2.245056
- Н 5.282699 10.539828 -1.091196
- H 5.579929 8.632312 0.429594
- Н 5.852113 11.337653 3.758824
- Н 8.152270 4.767546 3.907303
- Н 6.563908 5.290335 3.295966
- Н 7.572172 4.190516 2.354044
- H 7.878908 5.460456 0.300334
- H 6.582372 6.488075 0.916705
- H 8.092866 7.210709 0.315951
- H 9.830834 4.866631 1.661734
- H 10.297247 6.549579 1.446128
- H 10.287412 5.807752 3.076107
- Н 9.794827 11.278552 3.257818
- H 8.065684 10.980198 3.074820

- H 8.916879 10.468411 4.549315
- Н 9.765465 8.563433 0.731265
- H 8.440818 9.744347 0.855928
- H 10.120784 10.258487 1.049581
- Н 11.439870 9.605771 3.133910
- H 10.728499 8.591682 4.383769
- H 11.116455 7.904589 2.805110
- H 2.929466 8.429269 4.294289
- H 2.664091 10.120702 4.759166
- Н 3.585227 9.720935 3.296773
- H 3.590590 10.265625 6.833082
- H 5.568917 10.114602 8.361632
- Н 7.627161 8.979292 7.543052
- H 8.941110 8.442832 5.412621

anti-5.BClPh

- Ga 10.353660 3.907792 13.767929
- Cl 7.727051 7.398126 9.261364
- Cl 11.745509 4.481281 15.390512
- Cl 9.272274 2.026869 14.296021
- Cl 11.355124 3.659478 11.799799
- P 8.692531 5.732992 13.396148
- N 6.712216 4.884885 10.127799
- C 3.339499 6.884147 12.105413
- C 4.358581 9.050831 11.877764
- C 5.507372 8.454263 11.361368
- C 4.497974 6.296604 11.595387
- C 3.268559 8.266977 12.255710
- C 5.618017 7.060011 11.220783
- C 10.966925 7.260476 12.699045
- C 9.970911 7.791941 14.925000
- C 8.819072 8.541008 12.810692
- C 7.854879 5.214335 16.039083
- $C \ 6.423939 \ 6.875474 \ 14.801280$

- C 6.332794 4.438885 14.212464
- C 7.234191 5.583559 14.685576
- C 5.153384 4.924082 8.248866
- C 6.014838 4.182442 9.217139
- $C \ 6.164389 \ 2.796903 \ 9.247386$
- C 7.011139 2.201434 10.185387
- C 7.742805 2.968479 11.092168
- C 8.139972 5.614002 11.581766
- C 9.652917 7.441310 13.468656
- C 7.575971 4.343349 11.015023
- B 6.945074 6.384577 10.637716
- H 2.369253 8.730933 12.651600
- H 2.492446 6.260641 12.380033
- H 4.309601 10.132586 11.973122
- H 6.331102 9.085226 11.040529
- H 4.518019 5.214168 11.482253
- Н 11.479648 8.229687 12.674154
- H 11.640616 6.549190 13.184012
- H 10.816612 6.949431 11.661810
- H 9.075640 8.013810 15.510925
- H 10.541444 7.003972 15.423706
- H 10.589848 8.697290 14.927013
- H 8.667581 8.352585 11.745239
- H 7.844364 8.673734 13.283774
- H 9.367424 9.486944 12.902206
- H 7.044909 5.133808 16.774078
- H 8.363524 4.246866 16.010148

- H 8.557564 5.965592 16.405317
- Н 5.591298 6.693840 15.492155
- Н 7.011554 7.698815 15.214254
- H 5.997036 7.188296 13.846533
- H 5.822001 4.685420 13.279536
- H 6.882978 3.501586 14.093349
- Н 5.561233 4.273518 14.974477
- Н 5.774613 5.542769 7.592866
- H 4.571336 4.231809 7.638221
- H 4.474011 5.600354 8.776035
- H 5.614769 2.189437 8.536413
- Н 7.114785 1.120181 10.199985
- H 8.409711 2.510349 11.812190
- H 9.095136 5.780845 11.066503
syn-5.BClPh

Ga 10.328041 3.835206 13.772354

Cl 11.704798 4.365987 15.420606

Cl 9.263240 1.922938 14.213908

Cl 11.358601 3.658475 11.804974

Cl 5.603811 7.119436 11.387100

P 8.650919 5.645910 13.406831

N 6.717588 4.850055 10.140071

C 7.925223 9.290352 8.105066

C 9.292362 7.396852 7.521089

C 8.711586 6.668770 8.557068

C 7.344663 8.550905 9.136020

C 8.900684 8.715991 7.293092

C 7.724092 7.224331 9.392700

C 10.884446 7.261300 12.769733

C 9.880411 7.656978 15.019184

C 8.709586 8.485624 12.941569

C 7.741459 4.942755 15.973222

 $C \ 6.365496 \ 6.729355 \ 14.867192$

- C 6.224484 4.361850 14.060463
- $C \ 7.148070 \ 5.433939 \ 14.646310$
- C 5.041848 4.964496 8.374296
- C 5.941987 4.180819 9.271412
- C 6.037925 2.789802 9.288501
- C 6.917875 2.158109 10.169946
- C 7.723024 2.892221 11.042388
- C 8.208027 5.519379 11.563251
- C 9.566768 7.372857 13.546929
- C 7.588802 4.271957 10.994927
- B 7.105231 6.349314 10.580692
- H 9.352532 9.289809 6.488364
- Н 7.611499 10.317313 7.935309
- H 10.051113 6.936063 6.893776
- H 9.038704 5.640891 8.711057
- H 6.579143 9.010067 9.755472
- H 11.391026 8.232299 12.827995
- Н 11.562647 6.516477 13.194384
- H 10.736378 7.040430 11.709380
- H 8.982015 7.813845 15.620518
- H 10.480467 6.863700 15.472824
- H 10.466791 8.582438 15.068028
- H 8.531586 8.332559 11.874697
- Н 7.745051 8.597916 13.438775
- H 9.254804 9.431490 13.050981
- H 6.922294 4.833608 16.694161
- H 8.220102 3.965082 15.874637

- H 8.463535 5.643513 16.399444
- Н 5.519548 6.499991 15.527632
- H 6.960200 7.498346 15.365385
- Н 5.962233 7.131603 13.936996
- Н 5.743853 4.701714 13.139389
- Н 6.749405 3.420191 13.877757
- H 5.432437 4.158190 14.791562
- Н 5.612108 5.731508 7.841292
- H 4.550282 4.312711 7.650116
- H 4.278117 5.483196 8.962977
- Н 5.423670 2.207555 8.609976
- H 6.984571 1.073814 10.171381
- Н 8.410849 2.406323 11.723754
- Н 9.207813 5.616935 11.119442

Ga 3.444161 0.027353 5.270877

- Cl 4.815699 -1.169163 3.979258
- Cl 3.351557 2.114852 4.509617
- Cl -2.016694 -1.504942 2.638759
- Cl 4.044455 -0.102244 7.393675
- Cl -2.011073 1.550112 2.621469
- P 1.110854 -0.814435 4.975821
- N 0.000498 -0.008315 1.342922
- C -0.243715 -3.395720 5.123574
- C 1.497678 3.087333 3.346741
- C 0.367713 -0.921510 7.729093
- C -1.472725 -0.269413 6.129322
- C 0.374475 1.335020 6.658227
- C 0.015861 -0.142663 6.457616
- C -1.312104 -0.000213 -0.716570
- C 2.186262 3.295708 5.749935
- C 1.109880 -2.765746 4.793219
- C 0.449555 0.131121 3.460221
- C 1.245157 -0.020676 -0.624007

- C 2.414211 -0.019744 0.140455
- C 2.371700 -0.000230 1.535388
- C 1.112133 0.009145 2.113218
- C -0.001993 -0.009497 -0.001590
- B -0.980119 0.019911 2.595316
- Н -0.257717 1.726710 7.464242
- H 1.414323 1.480261 6.962892
- H 0.179035 1.945780 5.772844
- Н 0.068412 -1.970723 7.676065
- Н 1.433125 -0.864697 7.967288
- Н -0.181011 -0.471093 8.564793
- H -1.758098 0.331545 5.263025
- Н -1.783284 -1.300067 5.952097
- H -2.041706 0.106395 6.988808
- H 2.189266 -4.390504 5.686494
- Н 3.187946 -2.951950 5.478999
- Н 1.994912 -3.027983 6.791899
- H -0.164164 -4.474681 4.940217
- Н -0.519862 -3.268251 6.172494
- H -1.043350 -3.007549 4.491951
- Н 0.723344 -2.779322 2.639150
- Н 2.453712 -2.636574 3.066732
- H 1.610388 -4.174800 3.256964
- Н -1.885050 0.893216 -0.448406
- Н -1.162510 -0.016543 -1.797255
- Н -1.914301 -0.866263 -0.424776
- Н 1.294988 -0.029087 -1.707450

- Н 3.377990 -0.025904 -0.360634
- H 3.276003 0.003531 2.131488
- Н 0.579221 1.169547 3.791463