Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

Substituent Effects of N4 Schiff Base Ligands on the Formation of Fluoride-Bridged Dicobalt(II) Complexes via B–F Abstraction: Structures and Magnetism

Yae In Cho, Meredith L. Ward and Michael J. Rose*

Department of Chemistry, The University of Texas at Austin

Supporting Information Contents	Page
X-ray data collection and refinement details	2-3
Figure S1. ORTEP diagram of [Co ^{II} (pnN ₃ -OMe/ _{hydrolzed})2](ClO ₄)2 (5(ClO ₄)).	4
Table S1. Crystal data and refinement parameters for 5(CIO ₄).	4
Table S2. Selected bond distances and angles for dimers with μ -F bridge(s).	5-6
Figure S2. Capped stick and spacefill representations of complex 2.	7
Figure S3. ORTEP diagram of [Co ^{II} (py) ₄ (MeCN) ₂](BF ₄) ₂ (4).	8
Figure S4. The reciprocol χ vs T and μ_{eff} vs T plots, plus simulation for 1 and 2 .	9

X-ray Diffraction Data Collection and Crystal Structure Refinement. The data were collected on a Rigaku AFC12 diffractometer with a Saturn 724+ CCD using a graphite monochromator with MoKα radiation ($\lambda = 0.71073$ Å). A total of 1220 frames of data were collected using ω-scans with a scan range of 0.5° and a counting time of 45 seconds per frame. The data were collected at 100 K using a Rigaku XStream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reduction were performed using the Rigaku Americas Corporation's Crystal Clear version 1.40.¹ The structure was solved by direct methods using SIR2004² and refined by full-matrix least-squares on F² with anisotropic displacement parameters for the non-H atoms using SHELXL-2014/7.³ Structure analysis was aided by use of the programs PLATON98⁴ and WinGX.⁵ The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2 × *U*_{eq} of the attached atom (1.5 × *U*_{eq} for methyl hydrogen atoms).

For complex **1**, The cobalt complex resides around a crystallographic two-fold rotation axis at $\frac{1}{2}$, y, $\frac{1}{4}$. The two-fold rotation axis passes through the bridging fluoride ion, F1. To maintain charge balance in the crystal, there are three BF₄ ions per dimeric complex. In the asymmetric unit, one of the tetrafluoroborate ions is given half-weight. This ion is disordered with a half-weighted molecule of acetonitrile. The two-fold symmetry of the complex results in the disorder of a molecule of water and a molecule of acetonitrile that are bound to the Co ion. By symmetry, the water and acetonitrile molecules are half-weighted in the refinement model. Because this disorder could be the result of imposing two-fold symmetry on the complex, a model in the lower symmetry space group, *C*c, was considered. In *C*c, there is no requirement that the water molecule and the acetonitrile molecule need be disordered. The refinement in *C*c was reasonable. Predictably, the refinement model in *C*c suffered from high correlation between parameters that would be related by the two-fold rotation axis. The agreement factors were also reasonable but significantly higher than those for the *C*2/c model. For the *C*c model, R1 = 0.0452 and wR2 = 0.149 and GOOF = 1.07, the *C*2/c model is superior.

The function, $\Sigma w(|F_0|^2 - |F_c|^2)^2$, was minimized, where $w = 1/[(\sigma(F_0))^2 + (0.0403^*P)^2 + (19.6854^*P)]$ and $P = (|F_0|^2 + 2|F_c|^2)/3$. $Rw(F^2)$ refined to 0.112, with R(F) equal to 0.0452 and a goodness of fit, S, = 1.07. Definitions used for calculating R(F), $Rw(F^2)$ and the goodness of fit, S, are given below.⁶ The data were checked for secondary extinction effects but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).⁷ All figures were generated using SHELXTL/PC.⁸

X-ray refinement references

- 1) CrystalClear 1.40 (2008); Rigaku Americas Corportion: The Woodlands, TX.
- SIR2004. A program for crystal structure solution. Altomare A., Burla M.C., Caliandro, M., Camalli M., Carrozzini, B., Cascarano G.L., De Caro, L., Giacovazzo C., Polidori G., Spagna R. J. Appl. Cryst., 2005, 38, 381-388.
- 3) Sheldrick, G. M. (2015). *SHELXL-2014*/7. Program for the Refinement of Crystal Structures. Acta Cryst., C71, 9-18.
- Spek, A. L. (1998). *PLATON*, A Multipurpose Crystallographic Tool. Utrecht University, The Netherlands.
- WinGX 1.64. (1999); An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. Farrugia, L. J. J. Appl. Cryst. 32. 837-838.
- 6) $R_w (F^2) = \{ \Sigma w(|F_0|^2 |F_c|^2)^2 / \Sigma w(|F_0|)^4 \}^{1/2}$, where w is the weight given each reflection. $R(F) = \Sigma (|F_0| - |F_c|) / \Sigma |F_0| \}$ for reflections with $F_0 > 4(\sigma(F_0))$. $S = [\Sigma w(|F_0|^2 - |F_c|^2)^2 / (n - p)]^{1/2}$, where n is the number of reflections and p is the number of reflections and p is the number of reflections.
- 7) International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A.
 J. C. Wilson, editor, Boston: Kluwer Academic Press.
- 8) Sheldrick, G. M. (1994). *SHELXTL/PC* (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Figure S1. ORTEP diagram (50% ellipsoids) of the cation of [Co(pnN₃-OMe)₂](BF₄)₂ (5). H's are not shown for sake of clarity.

Table S1. Crystal da	ta and refinement paramet	ers for of 5(ClO₄) .
----------------------	---------------------------	-----------------------------

	5			
Empirical formula	$C_{20}H_{30}CI_2CoN_6O_{10}$			
Molecular formula	$[Co^{II}(\textbf{pnN_3-OMe}/_{hydrolzed})_2](CIO_4)_2$			
FW	644.33			
Color	Reddish pink			
Habit	Needles			
Size (mm)	0.54 × 0.19 × 0.16			
Т (К)	100(2)			
λ (Å)	0.71073			
Lattice	Monoclinic			
Space group	P 21/c			
a (Å)	9.9009(5)			
b (Å)	17.9640(8)			
<i>c</i> (Å)	15.9921(9)			
α (°)	90.000			
β (°)	105.467(2)			
γ(°)	90.000			
V (Å ³)	2741.3(2)			
Z	4			
d _{calc} (g/cm ³)	1.561			
μ (mm ⁻¹)	0.884			
GOF on F ²	1.010			
<i>R</i> indices [<i>I>2σ(I)</i>]	R1 = 0.0355 wR2 = 0.0746			
<i>R</i> indices all data	R1 = 0.0568 wR2 = 0.0855			

Reference No.	Chemical Formula	M••••M	M-N*	M-N _{py}	M-N _{pyr}	M-F	∠M-F-M
This work	[Co ^{II} ₂ (µ-F)(pnN ₄ - PhCI) ₂ (OH ₂)(MeCN)](BF ₄) ₃ (1)	4.003	*Schiff-base: 2.103(2) 2.107(2)	2.2559(19) 2.282(2)	-	2.034(5)	159.47(11)
EDEVEG ¹	[Co ₂ (µ-F)(µ-L _m *) ₂](BF ₄) ₃	4.13	_	-	*pyrazole: avg: 2.099	2.0626(4)	180.00
HUQHOR ²	$[Co_2(\mu-F)(\mu-L_m)_2](BF_4)_3$	3.90	-	-	*pyrazole: avg: 2.09	1.9521(4) 1.9774(4) avg: 1.96	180
NIDBAD ³	[Co ₂ (µ-Br)L ¹](BPh ₄) ₂	3.577	-	-	1.944(1), 1.945(4)	2.077(3)	118.9(2)
DISTAA ⁴	$[Co_{3}(\mu-F)_{2}(detrH)_{6}(NCS)_{4}](H_{2}O)_{2}$	3.3726(3)	_	-	*triazole: 2.137(2)- 2.206(2)	1.992(1)- 2.019(1) avg: 2.006	114.44(7)
DOMHIW⁵	[Co ₃ (µ-F) ₂ (tmtr) ₄ (NCS) ₄ (H ₂ O) ₂](H ₂ O) ₄	3.4015(3)	-	-	*triazole: 2.131(2), 2.152(2), 2.168(2), 2.172(2)	2.023(1) 2.058(2) avg: 2.041	112.92(7)
DOTBUK ⁶	[Cr ₂ (µ-F)(F) ₂ (TPyA) ₂](BF ₄) ₃	3.862	*amine 2.059 2.065	2.016 2.042	-	1.977(16) 1.9347(16)	179.85(12)
This work	$[Co^{II}_{2}(\mu\text{-}F)_{2}(pnN_{4}\text{-}PhCI)_{2}](BF_{4})_{2}$ (2)	3.109	*Schiff-base: 2.2.115(4) 2.127(4)	2.288(4) 2.326(4)	-	2.045(4) 2.049(4)	98.8(2) 99.1(2)
CIBGOL ⁷	$[Co_4(L^{Mix})_2(F)_4](BF_4)_4$	3.114(9)	*amine: 2.127(5) 2.139(4) mean: 2.129	2.100(4)- 2.162(4) mean: 2.129	*pyrimidine: 2.233(4) 2.227(4) mean: 2.230	1.987(3)- 2.086(3) mean: 2.036	100.0(1) 99.4(1)
VEDTAB ⁸	$[Co_4(L^{Et})_2(F)_4](BF_4)_4$	3.194(5)	2.161(2) 2.177(2) mean: 2.169	2.134(2)- 2.198(2) avg: 2.155	*pyrimidine: 2.390(2) 2.316(2) mean: 2.353	1.992(1)- 2.095(1), mean: 2.049	100.64(5) 104.29(5)
FMPZCO ⁹	$[Co_2F_2(dmpz)_6](BF_4)_2$	3.092(2)	-	-	2.033(5), 2.040(5), 2.042(6)	1.924(4) 2.146(4)	98.8(2)
UZEYOO ¹⁰	[L ^{tBu} Co(µ-F)] ₂	3.062	*amine: 1.952 1.974	-	-	1.860 1.988	105.43
XUJTOM ¹¹	[Co ₆ L ₄ (µ-F) ₂](BF ₄) ₁₀	3.143	_	2.127(6)- 2.208(13) avg: 2.172	2.093(12)- 2.190(9)	2.035(6)- 2.058(5) avg: 2.047	100.18 100.36
BOMTII ¹²	[Co ₂ (µ-F) ₂ L ₂](BF ₄) ₂	3.157	*amine: 2.124(3)	2.143(3) 2.249(3) 2.251(3)	-	1.985(2), 2.098(2) avg: 2.196	101.24
NASHUL ¹³	[L ^{Me} Fe(µ-F)] ₂	3.0831(6)	*diketiminate 2.0081(18) 2.0161(17)	-	-	1.9757(12) 1.9774(14)	102.44(10) 102.56(9)
CENJIO ¹⁴	[Cu ₂ (µ-F) ₂ (tmpz) ₆](BF ₄) ₂	3.0141(8)	_	-	2.103(3) 2.009(3) 1.965(3)	2.183(2) 1.911(2)	94.59(7)
PIBPEV ¹⁵	$[Cu_2F_2(bnpy_2)_2](PF_6)_2$	3.137(1)	*amine: 2.064	2.014 2.019	-	1.918(2) 2.232(2)	97.97
This work	[Co ^{ll} ₂ (pnN ₄) ₃](BF ₄) ₄ (3)	6.801	*Schiff-base: 2.141(7) 2.144(7) 2.168(7)	2.154(7) 2.160(7) 2.166(7)	_	-	_
This work	[Co ^{II} (py) ₄ (MeCN) ₂](BF ₄) ₂ (4)	-	-	2.156(8)	-	-	-

Table S2. Selected bond distances (Å) and angles (°) for dimers with μ -F bridge(s) reported here and in literature.

Table S2 references

- (1) Reger, D. L.; Pascui, A. E.; Smith, M. D.; Jezierska, J.; Ozarowski, A. *Inorg. Chem.* **2012**, *51*, 11820–11836.
- Reger, D. L.; Foley, E. a; Watson, R. P.; Pellechia, P. J.; Smith, M. D.; Grandjean, F.; Long, G. J. *Inorg. Chem.* 2009, 48 (22), 10658–10669.
- (3) Meyer, F.; Heinze, K.; Nuber, B.; Zsolnai, L. *J. Chem. Soc. Dalt. Trans.* **1998**, No. 3, 207–213.
- (4) Rietmeijer, F. J.; van Albada, G. A.; de Graaff, R. A. G.; Haasnoot, J. G.; Reedijk, J. *Inorg. Chem.* **1985**, *24* (d), 3597–3601.
- (5) Rietmeijer, F. J.; Haasnoot, J. G.; Den Hartog, A. J.; Reedijk, J. *Inorg. Chim. Acta* **1986**, *113*, 147–155.
- (6) Zhu, Q.; Nelson, K. J.; Shum, W. W.; DiPasquale, A.; Rheingold, A. L.; Miller, J. S. Inorg. Chim. Acta 2009, 362 (2), 595–598.
- (7) Gobeze, W. A.; Milway, V. A.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Brooker, S. Eur. J. Inorg. Chem. 2013, 2013 (25), 4485–4498.
- (8) Gobeze, W. A.; Milway, V. A.; Moubaraki, B.; Murray, K. S.; Brooker, S. Dalt. Trans. 2012, 41 (32), 9708.
- (9) Reedijk, J.; Jansen, J. C.; van Koningsveld, H.; van Kralingen, C. G. *Inorg. Chem.* **1978**, *17* (7), 1990–1994.
- (10) Dugan, T. R.; Sun, X.; Rybak-akimova, E. V; Olatunji-ojo, O.; Cundari, T. R.; Holland, P. L. J. Am. Chem. Soc. 2011, 291 (I), 12418–12421.
- (11) Fenton, H.; Tidmarsh, I. S.; Ward, M. D. Dalton Trans. 2009, No. 21, 4199–4207.
- (12) Inomata, M.; Suenaga, Y. Acta Crystallogr. Sect. E Struct. Reports Online 2014, 70 (ii), m359–m360.
- (13) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. a.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. *J. Am. Chem. Soc.* **2005**, *127* (21), 7857–7870.
- (14) Rietmeijer, F. J.; De Graaff, R. A. G.; Reedijk, J. Inorg. Chem. 1984, 23 (5), 151–156.
- (15) Lee, S. C.; Holm, R. H. Inorg. Chem. 1993, 32 (22), 4745–4753.

Figure S2. Capped stick and space-filling representations of complex **2**, illustrating the π - π interactions between ligands. Red lines represent the plane of the aromatic ring. The closest C•••C distance is 3.616 Å.

Figure S3. Full ORTEP diagram (50% ellipsoids) of [Co^{ll}(py)₄(MeCN)₂](BF₄)₂ (**4**) including disorder model of the BF₄ counterions. H's are not shown for sake of clarity.

Figure S4. The reciprocol χ vs T and μ_{eff} vs T plots for complexes **1** and **2** obtained 1000 G; filled circles represent experimental data that is well-modeled by the magnetic simulation (red line). Open black circles are experimental data that deviates from the simulation.