Supporting Information for:

On the Mechanism of Ni(II)-Promoted Michael-Type Hydroamination of Acrylonitrile and Its Substituted Derivatives

Sébastien Lapointe and Davit Zargarian[†]

[†] Département de chimie, Université de Montréal, Montréal (Québec), Canada H3C 3J6

	7	9	10
chemical formula	C ₂₃ H ₃₆ NNiO ₄ P ₂ ,CF ₃ O ₃ S	C ₂₉ H ₄₀ NNiO ₄ P ₂ ,CF ₃ O ₃ S	C ₂₈ H ₄₀ NNiO ₃ P ₂ ,C ₉ H ₇ N,CF ₃ O ₃ S
crystal colour	yellow	yellow	yellow
Fw; F(000)	660.25; 688	736.34; 1536	838.00; 1753
<i>T</i> (K)	100	100	100
wavelength (Å)	1.34139	1.54178	1.34139
space group	P -1	P 1 21/n 1	P 1 21/n 1
<i>a</i> (Å)	8.1449(4)	7.88780(8)	9.2880(6)
b (Å)	10.6295(5)	10.89270(11)	35.220(2)
c (Å) α (deg)	18.1924(8) 78.203(2)	40.6954(4) 90	12.8458(8) 90
β (deg)	77.454(2)	91.8910(5)	102.689(4)
γ (deg)	89.556(2)	90	90
Ζ	2	4	4
<i>V</i> (Å ³)	1503.84(12)	3494.62(6)	4099.5(5)
ρ_{calcd} (g·cm ⁻³)	1.458	1.400	1.358
μ (mm ⁻¹)	5.020	2.748	3.755
θ range (deg); completeness	2.213 - 60.849; 1.000	2.172 - 71.668; 0.999	2.183 - 60.730; 0.999
collected reflections; R_{σ}	45548; 0.0342	92637; 0.0099	61357; 0.0307
unique reflections; R _{int}	45548; 0.0550	92637; 0.0250	61357; 0.0463
R1 ^a ; wR2 ^b [I > $2\sigma(I)$]	0.0370; 0.0946	0.0316; 0.0821	0.0477; 0.1155
R1; wR2 [all data]	0.0481; 0.1008	0.0320; 0.0824	0.0518; 0.1178
GOF	1.044	1.124	1.108
largest diff peak and hole	0.646 and -0.375	0.387 and -0.272	1.524 and -0.427

 Table S1 Crystal Data, Collection, and Refinement Parameters for complexes 7, 9 and 10

a) $R_1 = \Sigma(||F_o| - |F_c||) / \Sigma|F_o|$ b) $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{\frac{1}{2}}$

	11	12
chemical formula	C ₁₈ H ₃₄ NNiO ₂ P ₂ ,CF ₃ O ₃ S	C ₂₀ H ₃₆ NNiO ₄ P ₂ ,CF ₃ O ₃ S
crystal colour	yellow	colourless
Fw; F(000)	566.18; 592	624.22; 652
<i>T</i> (K)	100	100
wavelength (Å)	1.34139	1.34139
space group	P -1	P -1
<i>a</i> (Å)	7.5940(3)	7.5293(3)
<i>b</i> (Å)	12.8525(5)	11.2755(5)
c (Å) α (deg)	14.7380(5) 76.845(2)	17.2859(7) 84.276(2)
β (deg)	76.375(2)	88.649(2)
γ (deg)	73.105(2)	87.103(2)
Ζ	2	2
V (Å ³)	1317.91(9)	1458.08(11)
ρ _{calcd} (g·cm ⁻³)	1.427	1.422
μ (mm ⁻¹)	5.625	5.154
θ range (deg); completeness	2.724 - 60.788; 1.000	2.235 - 60.764; 0.998
collected reflections; R_{σ}	38553; 0.0318	42662; 0.0316
unique reflections; R _{int}	38553; 0.0486	42662; 0.0505
R1 ^a ; wR2 ^b [I > $2\sigma(I)$]	0.0298; 0.0776	0.0327; 0.0885
R1; wR2 [all data]	0.0337; 0.0798	0.0361; 0.0903
GOF	1.067	1.078
largest diff peak and hole	0.543 and -0.294	0.609 and -0.234

 Table S2 Crystal Data, Collection, and Refinement Parameters for complexes 11 and 12

a) $R_1 = \Sigma(||F_o| - |F_c||) / \Sigma|F_o| b) wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{\frac{1}{2}}$

Figure S1 Side view of the molecular diagram for complex 7.

Thermal ellipsoids are shown at the 50% probability level. *P*-substituents and hydrogens are omitted for clarity.

Figure S2 Side view of the molecular diagram for complex 9.

Thermal ellipsoids are shown at the 50% probability level. *P*-substituents and hydrogens are omitted for clarity

Figure S3 Side view of the molecular diagram for complex 10.

Thermal ellipsoids are shown at the 50% probability level. *P*-substituents and hydrogens are omitted for clarity

Details of the diffraction studies

Crystals of compound **7** were obtained by slow evaporation of a concentrated THF solution at r.t. Crystals of compound **9** and **10** were obtained by slow evaporation of a concentrated dichloromethane solution at r.t. Crystals of compound **11** and **12** were obtained by slow evaporation of a concentrated acetone solution at r.t. The crystallographic data for all complexes were collected on a Bruker Venture Metaljet equipped with a Metal Jet source, an Helios MX Mirror Optics monochromator and a Bruker Photon 100 CMOS Detector. Cell refinement and data reduction were done using the ShelXL routine version July 2014.¹ An empirical absorption correction, based on the multiple measurements of equivalent reflections, was applied. The space group was confirmed by ShelXT ² routine in the program OLEX2.³ The structures were solved by direct methods (ShelXT) and refined by full-matrix least-squares and difference Fourier techniques with OLEX2.³ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were set in calculated positions and refined as riding atoms with a common thermal parameter

NMR Analysis

Figure S5 ¹H NMR spectra (400 MHz) of complex 7 in CDCl₃

Figure S7 ³¹P{¹H} NMR spectra (162 MHz) of complex 7 in CDCl₃

Figure S8 Representation of complex [$\{2,6-(iPr_2PO)_2-4-(OMe)C_6H_2\}$ Ni(NCCH=CH₂)][OSO₂CF-₃] (8)

212.5 210.0 207.5 205.0 202.5 200.0 197.5 195.0 192.5 190.0 187.5 185.0 182.5 180.0 177.5 175.0 Figure S11 ${}^{31}P{}^{1}H$ NMR spectra (162 MHz) of complex 8 in C₆D₆

25 220 215 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 7: fl(ppm)

Figure S15 ${}^{31}P{}^{1}H$ NMR spectra (MHz) of complex 9 in CDCl₃

Figure S16 Representation of complex [$\{2,6-(iPr_2PO)_2-4-(OMe)C_6H_2\}Ni(NCCH=CHPh)$][OSO₂CF₃]. (NCCH=CHPh) (10)

Figure S17 ¹H NMR spectra (400 MHz) of complex 10 in C_6D_6

Figure S18 ¹³C{¹H} NMR spectra (101 MHz) of complex 10 in CDCl₃

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 f1(ppm)

Figure S19 ³¹P{¹H} NMR spectra (162 MHz) of complex 10 in CDCl₃

Figure S20 Representation of complex $[\{2,6-(iPr_2PO)_2C_6H_3\}Ni(NH_3)][OSO_2CF_3]$ (11)

Figure S21 ¹H NMR spectra (400 MHz) of complex 11 in C_6D_6

Figure S23 ${}^{31}P{}^{1}H$ NMR spectra (162 MHz) of complex 11 in C₆D₆

Figure S24 Representation of complex [$\{2,6-(iPr_2PO)_2-4-(CO_2Me)C_6H_2\}Ni(NH_3)$][OSO₂CF₃] (12)

Figure S25 ¹H NMR spectra (500 MHz) of complex 12 in C_6D_6

Figure S26 ${}^{13}C{}^{1}H$ NMR spectra (125 MHz) of complex 12 in C₆D₆

Figure S27 $^{31}P\{^{1}H\}$ NMR spectra (202 MHz) of complex 12 in C_6D_6

Catalytic Tests

Figure S28 Plot of the yield (TON) for the hydroamination of crotonitrile (14a) catalyzed by 3 and 4 for the mono-addition product over 2 h.

Figure S29 Plot of the yield (TON) for the hydroamination of methacrylonitrile (14b) catalyzed by **3** and **4** for the mono-addition product over 2 h.

Figure S30 Plot of the TOF (TON/time, h⁻¹) for the hydroamination of crotonitrile (14a) catalyzed by **3** and **4** for the mono-addition product over 2 h.

Figure S31 Plot of the TOF (TON/time, h⁻¹) for the hydroamination of methacrylonitrile (14b) catalyzed by **3** and **4** for the mono-addition product over 2 h

Figure S32 Plot of the yield (TON) for the hydroamination of crotonitrile (14a) catalyzed by 3 and 4 for the mono-addition product over 20 h.

Figure S33 Plot of the yield (TON) for the hydroamination of methacrylonitrile (14b) catalyzed by **3** and **4** for the mono-addition product over 20 h.

Figure S34 Plot of the TOF (TON/time, h⁻¹) for the hydroamination of crotonitrile (14a) catalyzed by 3 and 4 for the mono-addition product over 20 h

Figure S35 Plot of the TOF (TON/time, h⁻¹) for the hydroamination of methacrylonitrile (14b) catalyzed by **3** and **4** for the mono-addition product over 20 h.

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	TOF^{a} [h ⁻¹]
1			3	28,6±0,6	$14,3 \pm 0,3$
2	13 a	15a	4	40 ± 1	$20,0 \pm 0,7$
3		HNN A	3	$4,9 \pm 0,1$	$2,43 \pm 0,03$
4	13b	F 15b	4	9 ± 2	4 ± 1
5			3	$2,6 \pm 0,5$	$1,3 \pm 0,3$
6	13c		4	$1,3 \pm 0,2$	$0,7 \pm 0,1$
7			3	$2,0 \pm 0,1$	$1,0 \pm 0,1$
8	13d	Br 15d	4	$3,9 \pm 0,4$	$2,0 \pm 0,2$
9	13e	L L L L L L L L L L L L L L L L L L L	3	0	0
10			4	0	0
11			3	$1,1 \pm 0,1$	$0,56 \pm 0,04$
12	13f		4	$4,8 \pm 0,3$	$2,4 \pm 0,2$
13		M N	3	0	0
14	13g	O ₂ N 15g	4	0	0
15			3	$36,4 \pm 0,6$	$18,2 \pm 0,3$
16	13h	15h	4	$23,9 \pm 0,6$	11,9 ± 0,3
17	13i	Č. CN	3	56,1 ± 0,6	$28,0 \pm 0,3$
18		CH ₃ (CH ₂) ₇ -N H 15i	4	$28,2 \pm 0,8$	$14,1 \pm 0,4$
19			3	18 ± 1	$9,1 \pm 0,7$
20	13j	15j	4	$6,8 \pm 0,1$	$3,4 \pm 0,1$

Table S3 Results of the single addition product from the hydroamination reaction of crotonitrile(14a) catalyzed by complexes 3 and 4 over 2 h

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	TOF ^a [h ⁻¹]
1	12		3	48 ± 5	2,4 ± 0,3
2	13a	15a	4	29 ± 1	1,5 ± 0,1
3		H N N	3	11 ± 1	0,5 ± 0,1
4	13b	F 15b	4	7,1 ± 0,4	0,35 ± 0,02
5			3	3,5 ± 0,5	0,18 ± 0,02
6	13c		4	1,8 ± 0,2	0,09 ± 0,01
7			3	1,3 ± 0,2	0,06 ± 0,01
8	13d	Br 15d	4	2,0 ± 0,6	0,09 ± 0,03
9	13e	H CN 15e	3	0	0
10			4	0	0
11			3	15 ± 2	0,7 ± 0,1
12	13f		4	10 ± 2	0,5 ± 0,1
13		H N N	3	0	0
14	13g	O ₂ N 15g	4	0	0
15			3	43,5 ± 0,7	2,17 ± 0,04
16	13h	15h	4	26 ± 0,1	1,299 ± 0,004
17		CN	3	64,4 ± 0,2	3,22 ± 0,01
18	13i	CH ₃ (CH ₂₎₇ -N H 15i	4	33 ± 1	1,7 ± 0,1
19			3	12 ± 2	0,6 ± 0,1
20	13j	^٤ 15j	4	5,8 ± 0,4	0,29 ± 0,02

Table S4 Results of the s	ingle addition pro	oduct from th	e hydroamination	n reaction of	of crotonitrile
(14a) catalyzed by	complexes 3	and 4 over 20 h		

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	$\mathbf{TOF^{a}}$ $[h^{-1}]$
1		CN	3	0	0
2	13 a	I5k	4	0	0
3		CN	3	0	0
4	13b		4	0	0
5		CN	3	0	0
6	13c	CI 15m	4	0	0
7		CN	3	0	0
8	13d	Br 15n	4	0	0
9		CN	3	0	0
10	13e		4	0	0
11		CN	3	0	0
12	13f		4	0	0
13		CN	3	0	0
14	13g	O ₂ N 15q	4	0	0
15		CN	3	0	0
16	13h	15r	4	0	0
17			3	3,5 ± 0,1	$1,73 \pm 0,03$
18	13i	CN 15s	4	0	0
19	101		3	0	0
20	13j	§ 15t	4	0	0

Table S5 Formation of the double addition products from the hydroamination reaction of
crotonitrile (14a) catalyzed by complexes 3 and 4 over 2 h

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	$\mathbf{TOF}^{\mathbf{a}}$ $[\mathbf{h}^{-1}]$
1		CN	3	0	0
2	13 a		4	0	0
3		CN	3	0	0
4	13b		4	0	0
5		CN	3	0	0
6	13c		4	0	0
7		CN	3	0	0
8	13d		4	0	0
9		CN	3	0	0
10	13e		4	0	0
11		CN	3	0	0
12	13f	Т К 15р	4	0	0
13		CN	3	0	0
14	13g	0 ₂ N 15q	4	0	0
15		CN	3	0	0
16	13h	CN 15r	4	0	0
17			3	3,6 ± 0,1	0,178 ± 0,005
18	13i	CN 15s	4	0	0
19	101		3	0	0
20	13j	§ 15t	4	0	0

Table S6 Formation of the double addition products from the hydroamination reaction of
crotonitrile (14a) catalyzed by complexes 3 and 4 over 20 h

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	$\mathbf{TOF}^{\mathbf{a}}$ $[\mathbf{h}^{-1}]$
1		H CN	3	21 ± 1	$10,6 \pm 0,7$
2	13a	16a	4	35 ± 1	$17,5 \pm 0,7$
3				38 ± 2 *	19 ± 1 *
4		H.	3	5,2 ± 0,7	2,6 ± 0,4
5	13b	F 16b	4	7,8 ± 0,4	3,9 ± 0,2
6			3	$3,2 \pm 0,3$	$1,6 \pm 0,2$
7	13c		4	0	0
8			3	$2,4 \pm 0,5$	$1,2 \pm 0,2$
9	13d	Br 16d	4	$3,2 \pm 0,5$	$1,6 \pm 0,3$
10	13e	H L L L L L L L L L L L L L L L L L L L	3	0	0
11			4	0	0
12			3	7 ± 1	$3,6 \pm 0,5$
13	13f		4	$0,6 \pm 0,1$	$0,30 \pm 0,03$
14		M L au	3	0	0
15	13g	0 ₂ N 16g	4	0	0
16			3	39 ± 1	$19,7 \pm 0,6$
17	13h	16h	4	$22,7\pm0,6$	$11,3 \pm 0,3$
18	13i	CH ₃ (CH ₂) ₇ -N CN	3	$34,6 \pm 0,7$	$17,3 \pm 0,3$
19		16i	4	12 ± 1	$6,1 \pm 0,5$
20			3	$14,6 \pm 0,7$	$7,3 \pm 0,4$
21	13j	HU ~ ~ CN 10 J	4	0	0

Table S7 Results of the single addition product from the hydroamination reaction of
methacrylonitrile (14b) catalyzed by complexes 3 and 4 over 2 h

a) TON and TOF are the average of three experiments under the same conditions. * In this experiment, 5 mmol of amine was used instead of 1 mmol

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a	TOF ^a
				(Yield, %)	[h ⁻¹]
1	12		3	41 ± 3	$2,0 \pm 0,1$
2	13a	16a	4	28 ± 1	$1,\!38\pm0,\!05$
3	101		3	12 ± 2	0,6 ± 0,1
4	136	F 16b	4	10 ± 1	$0,5 \pm 0,1$
5	10		3	$3,3 \pm 0,3$	$0,\!17\pm0,\!02$
6	130	ci 16c	4	$3,4 \pm 0,1$	$0,\!17\pm0,\!01$
7	10.1		3	$1,9 \pm 0,2$	$0,09 \pm 0,01$
8	130	Br 16d	4	$2,2 \pm 0,2$	$0,11 \pm 0,01$
9	10		3	0	0
10	13e	16e	4	0	0
11		13f	3	$15,5 \pm 0,5$	$0,77 \pm 0,02$
12	131		4	14 ± 1	$0,7 \pm 0,1$
13	12		3	0	0
14	13g	0 ₂ N 16g	4	0	0
15	101		3	41 ± 2	$2,07 \pm 0,09$
16	13h	16h	4	$25,4 \pm 0,5$	$1,27 \pm 0,03$
17		CH ₃ (CH ₂₎₇ -NCN	3	$36,4 \pm 0,4$	$1,82 \pm 0,02$
18	131	161	4	16 ± 2	$0,8 \pm 0,1$
19	10.	HO N CN 16i	3	10 ± 1	$0,5 \pm 0,1$
20	13j	- °j	4	$1,5 \pm 0,7$	0.08 ± 0.04

Table S8 Results of the single addition product from the hydroamination reaction of
methacrylonitrile (14b) catalyzed by complexes 3 and 4 over 20 h

a) TON and TOF are the average of three experiments under the same conditions.

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	$\mathbf{TOF^{a}}$ $[h^{-1}]$
1		CN	3	4,7 ± 0,8	$2,3 \pm 0,4$
2	13 a		4	0	0
3		CN	3	0	0
4	13b		4	0	0
5		CN	3	0	0
6	13c		4	0	0
7		CN	3	0	0
8	13d	Br 16n	4	0	0
9		CN	3	0	0
10	13e		4	0	0
11		CN	3	0	0
12	13f		4	0	0
13			3	0	0
14	13g	0 ₂ N CN 16q	4	0	0
15	101		3	0	0
16	13n	16r	4	0	0
17		CH ₃ (CH ₂₎₇ -N CN	3	$2,1 \pm 0,1$	$1,04 \pm 0,06$
18	13i	CN 16s	4	0	0
19	12.		3	0	0
20	13j	с́м 16t	4	0	0

Table S9 Formation of the double addition products from the hydroamination reaction of
methacrylonitrile (14b) catalyzed by complexes 3 and 4 over 2 h

ENTRY	SUBSTRATE	PRODUCT	CATALYST	TON ^a (Yield, %)	TOF ^a [h ⁻¹]
1		CN	3	5 ± 1	$0,2 \pm 0,1$
2	13 a	16k	4	0	0
3		CN	3	0	0
4	13b		4	0	0
5		CN	3	0	0
6	13c		4	0	0
7		CN	3	0	0
8	13d	Br 16n	4	0	0
9		CN	3	0	0
10	13e		4	0	0
11		CN	3	0	0
12	13f	16p	4	0	0
13			3	0	0
14	13g	0 ₂ N 16q	4	0	0
15	101		3	0	0
16	13h		4	0	0
17		CH ₃ (CH ₂) ₇ -N CN	3	$2.0 \pm 0,2$	$0,101 \pm 0,01$
18	13i	CN 16s	4	0	0
19	12:		3	0	0
20	13j	с́м 16t	4	0	0

Table S10 Formation of the double addition products from the hydroamination reaction of
methacrylonitrile (14b) catalyzed by complexes 3 and 4 over 20 h

ENTRY	SUBSTRATE	PRODUCT	NITRILE	TON ^a (Yield, %)	TOF ^a [h ⁻¹]
1	12		14a	0	0
2	13a	15a	14b	0	0
3		H N	14a	0	0
4	13b	F 15b	14b	0	0
5		H N CN	14a	0	0
6	13c		14b	0	0
7			14a	0	0
8	13d	Br 15d	14b	0	0
9			14a	0	0
10	13e	15e	14b	0	0
11		H	14a	0	0
12	13f	15f	14b	0	0
13		H N N	14a	0	0
14	13g	O ₂ N 15g	14b	0	0
15		H N N	14a	0	0
16	13h	15h	14b	0	0
17		Č. CN	14a	0	0
18	13i	CH ₃ (CH ₂₎₇ -N H 15i	14b	0	0
19			14a	0	0
20	13j	٤ 15j	14b	0	0

Table S11 Testing the formation of the hydroamination product in the presence of either 14a or14b and in the absence of catalyst over 2 h

References

(1) Sheldrick, G. Acta Crystallographica Section A **2008**, *64*, 112.

(2) Sheldrick, G. Acta Crystallographica Section A 2015, 71, 3.

(3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Crystallogr.* **2009**, *42*, 339.