Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

syn-Bimane as a Chelating O-Donor Ligand for Palladium(II)

Partha Jyoti Das,^a Yael Diskin-Posner,^b Michael Firer,^c
Michael Montag,*,^a Flavio Grynszpan*,^a

E-mails: flaviog@ariel.ac.il; michaelmo@ariel.ac.il

 ^a P. J. Das, Dr. M. Montag, Dr. F. Grynszpan Department of Chemical Sciences Ariel University
 Ariel 40700, Israel
 Fax: (+972)3-906-6634

b Dr. Yael Diskin-Posner
 Department of Chemical Research Support
 Weizmann Institute of Science
 Rehovot 76100, Israel

Prof. M. Firer
 Department of Chemical Engineering and Biotechnology
 Ariel University
 Ariel 40700, Israel

Table of contents

NMR spectra of complex 1 in CDCl ₃	Pages 1-4
Synthesis of [Pd(PPh ₃) ₂ (solvent) ₂](BF ₄) ₂	Page 5
NMR spectra of complex 1 and $[Pd(PPh_3)_2(DMSO-d_6)_2](BF_4)_2$ in DMSO-d ₆	Pages 6-7
NMR spectra of complex 1 and $[Pd(PPh_3)_2(CD_3CN)_2](BF_4)_2$ in CD_3CN	Pages 8-9
UV-vis spectra of <i>syn</i> -(Me,Me)bimane, [Pd(PPh ₃) ₂ (solvent) _n](BF ₄) ₂ and complex 1 in CHCl ₃	Page 10

Figure S1. ¹H NMR spectrum of complex **1** in CDCl₃ (400 MHz, room temperature).

Figure S2. ¹³C{¹H} DEPTQ NMR spectrum of complex 1 in CDCl₃ (101 MHz, room temperature).

Figure S3. ³¹P{¹H} NMR spectrum of complex **1** in CDCl₃ (162 MHz, room temperature).

Figure S4. ¹⁹F{¹H} NMR spectrum of complex **1** in CDCl₃ (376 MHz, room temperature).

Synthesis of [Pd(PPh₃)₂(solvent)₂](BF₄)₂

To a suspension of 50 mg (0.071 mmol) of Pd(PPh₃)₂Cl₂ in 1.5 ml of chloroform were added 28 mg (0.144 mmol) of AgBF₄, and the resulting mixture was stirred in the dark, at room temperature, for 15 min. The reaction mixture was then filtered through a cotton plug to remove AgCl. The resulting clear solution was divided into two portions, and the solvent was removed under vacuum. This quantitatively yielded the product as two samples of a solid residue. One sample was dissolved in DMSO-d₆ to afford [Pd(PPh₃)₂(DMSO-d₆)₂](BF₄)₂, and the second sample was dissolved in CD₃CN to afford [Pd(PPh₃)₂(CD₃CN)₂](BF₄)₂. The ¹H and ³¹P NMR spectra of these complexes are presented below (Fgures S5-8), ^{1,2} alongside the NMR spectra of complex 1 in the same solvents.

-

¹ The complex [Pd(PPh₃)₂(CH₃CN)₂](BF₄)₂ has been previously reported by Lai and Sen, but the available NMR data was collected under conditions that are different from the present work. See: T.-W. Lai, A. Sen, *Organometallics*, 1984, **3**, 866.

² The complex [Pd(PPh₃)₂(DMSO)₂](PF₆)₂ has been reported by Wilkinson *et al.*, but the available NMR data was collected under conditions that are different from the present work. See: F. R. Hartley, S. G. Murray, A. Wilkinson, *Inorg. Chem.*, 1989, **28**, 549.

Figure S5. ¹H NMR spectra of complex **1** (a) and [Pd(PPh₃)₂(DMSO-d₆)₂](BF₄)₂ (b) in DMSO-d₆ (400 MHz, room temperature). Trace adventitious impurities are marked with asterisks (*).

Figure S6. ³¹P NMR spectra of complex **1** (a) and [Pd(PPh₃)₂(DMSO-d₆)₂](BF₄)₂ (b) in DMSO-d₆ (162 MHz, room temperature).

Figure S7. ¹H NMR spectra of complex **1** (a) and [Pd(PPh₃)₂(CD₃CN)₂](BF₄)₂ (b) in CD₃CN (400 MHz, room temperature). Trace adventitious impurities are marked with asterisks (*).

Figure S8. ³¹P NMR spectra of complex **1** (a) and [Pd(PPh₃)₂(CD₃CN)₂](BF₄)₂ (b) in CD₃CN (162 MHz, room temperature). Unidentified species are marked with asterisks (*).

Figure S9. UV-vis spectra of syn-(Me,Me)bimane, $[Pd(PPh_3)_2(solvent)_n](BF_4)_2$ (solvent = CHCl₃, adventitious H₂O; n = 0-2), and complex 1 in CHCl₃ (50 μ M, room temperature).