Supplementary Information

syn-Bimane as a Chelating O-Donor Ligand for Palladium(II)

Partha Jyoti Das, ${ }^{\text {a }}$ Yael Diskin-Posner, ${ }^{\text {b }}$ Michael Firer, ${ }^{\text {c }}$
Michael Montag,*,a Flavio Grynszpan*,a

[^0]
Table of contents

NMR spectra of complex $\mathbf{1}$ in CDCl_{3} Pages 1-4
Synthesis of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\text { solvent })_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ Page 5
NMR spectra of complex 1 and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ in DMSO- d_{6} Pages 6-7
NMR spectra of complex 1 and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ Pages 8-9
UV-vis spectra of syn-(Me,Me)bimane, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\text { solvent })_{n}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and complex 1 in CHCl_{3} Page 10

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of complex 1 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz}$, room temperature).

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of complex $\mathbf{1}$ in CDCl_{3} (101 MHz , room temperature).

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1}$ in $\mathrm{CDCl}_{3}(162 \mathrm{MHz}$, room temperature).

Figure S4. ${ }^{19}$ F $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1}$ in $\mathrm{CDCl}_{3}(376 \mathrm{MHz}$, room temperature).

Synthesis of $\left[\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{2}(\text { solvent })_{2}\right]\left(\mathbf{B F}_{4}\right)_{2}$

To a suspension of $50 \mathrm{mg}(0.071 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in 1.5 ml of chloroform were added 28 mg (0.144 mmol) of AgBF_{4}, and the resulting mixture was stirred in the dark, at room temperature, for 15 min . The reaction mixture was then filtered through a cotton plug to remove AgCl . The resulting clear solution was divided into two portions, and the solvent was removed under vacuum. This quantitatively yielded the product as two samples of a solid residue. One sample was dissolved in DMSO- d_{6} to afford $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, and the second sample was dissolved in $\mathrm{CD}_{3} \mathrm{CN}$ to afford $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of these complexes are presented below (Fgures S5-8), ${ }^{1,2}$ alongside the NMR spectra of complex $\mathbf{1}$ in the same solvents.

[^1]

(b)

(a)

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of complex 1 (a) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathrm{~b})$ in DMSO- $\mathrm{d}_{6}(400 \mathrm{MHz}$, room temperature). Trace adventitious impurities are marked with asterisks (*).
(b)

(a)

Figure S6. ${ }^{31} \mathrm{P}$ NMR spectra of complex 1 (a) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathrm{~b})$ in DMSO- $\mathrm{d}_{6}(162 \mathrm{MHz}$, room temperature).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of complex 1 (a) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (b) in $\mathrm{CD}_{3} \mathrm{CN}(400 \mathrm{MHz}$, room temperature). Trace adventitious impurities are marked with asterisks $\left({ }^{*}\right)$.

Figure S8. ${ }^{31} \mathrm{P}$ NMR spectra of complex 1 (a) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (b) in $\mathrm{CD}_{3} \mathrm{CN}(162 \mathrm{MHz}$, room temperature). Unidentified species are marked with asterisks (${ }^{*}$).

Figure S9. UV-vis spectra of syn - $(\mathrm{Me}, \mathrm{Me})$ bimane, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\text { solvent })_{n}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (solvent $=\mathrm{CHCl}_{3}$, adventitious $\left.\mathrm{H}_{2} \mathrm{O} ; \mathrm{n}=0-2\right)$, and complex 1 in $\mathrm{CHCl}_{3}(50 \mu \mathrm{M}$, room temperature).

[^0]: ${ }^{\text {a P. J. Das, Dr. M. Montag, Dr. F. Grynszpan }}$
 Department of Chemical Sciences
 Ariel University
 Ariel 40700, Israel
 Fax: (+972)3-906-6634
 E-mails: flaviog@ariel.ac.il; michaelmo@ariel.ac.il
 ${ }^{\mathrm{b}}$ Dr. Yael Diskin-Posner
 Department of Chemical Research Support
 Weizmann Institute of Science
 Rehovot 76100, Israel
 ${ }^{\text {c }}$ Prof. M. Firer
 Department of Chemical Engineering and Biotechnology
 Ariel University
 Ariel 40700, Israel

[^1]: ${ }^{1}$ The complex $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ has been previously reported by Lai and Sen, but the available NMR data was collected under conditions that are different from the present work. See: T.-W. Lai, A. Sen, Organometallics, 1984, 3, 866.
 ${ }^{2}$ The complex $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMSO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ has been reported by Wilkinson et al., but the available NMR data was collected under conditions that are different from the present work. See: F. R. Hartley, S. G. Murray, A. Wilkinson, Inorg. Chem., 1989, 28, 549.

