An Aminopyrimidine-Functionalized Cage-Based Metal-Organic

Framework Exhibiting Highly Selective Adsorption of C₂H₂ and CO₂

over CH₄

Jingjing Jiao,^{*a*} Li Dou,^{*b*} Huimin Liu,^{*a*} Fengli Chen,^{*a*} Dongjie Bai,^{*a*} Yunlong Feng,^{*a*} Shunshun Xiong,^{**c*} De-Li Chen^{**b*} and Yabing He^{**a*}

^{*a*} College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>chendl@zjnu.cn</u>

^c Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China. E-mail: <u>superssxiong@163.com</u>

Fig. S1 Photograph of the as-synthesized crystals of ZJNU-54.

Fig. S2 PXRD patterns.

Fig. S3 TGA curve of as-synthesized **ZJNU-54** under a nitrogen atmosphere with a heating rate of 5 K min⁻¹.

Fig. S4 FTIR spectra of the organic ligand (black) and as-synthesized ZJNU-54 (red).

Fig. S5 Topological analysis based on two different simplifications of the organic ligands. If the organic ligand is considered as having a pair of 3-coordinated branch points (a), and the dicopper paddlewheel is regarded as 4-connected node (b), the overall network is a (3,4)-c binodal network with Schläfli symbol of $(6^2 \cdot 10^4)(6^3)_2$ (c). If the organic ligand and the dicopper paddlewheel are taken as 4-connected nodes (d, e), the overall network is a 4-connected 2-binodal network with the Schläfli symbol of $(4^2 \cdot 6^4)(4^2 \cdot 8^4)$ (f).

 $S_{\text{BET}} = 1/(5.97431 \times 10^{-8} + 0.00204)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2134 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00179)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2432 \text{ m}^2 \text{ g}^{-1}$ *Fig. S6* BET (a) and Langmuir (b) plots for **ZJNU-54a**.

Fig. S7 Five cycles of C_2H_2 adsorption at 298 K in **ZJNU-54a**. Note that the reactivation process was applied between each cycle, which was achieved by heating the sample at 333 K until the degassed rate reached 3 μ mHg min⁻¹.

Fig. S8 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-54a** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S9 IAST calculations of mixture adsorption isotherms of **ZJNU-54a** for (a) $50/50 C_2H_2/CH_4$ and (b) $50/50 CO_2/CH_4$ gas mixtures at 298 K.

Fig S10 Isostere plots for C_2H_2 (a), CO_2 (b) and CH_4 (c) adsorption in **ZJNU-54a**.

110 100 1 1 1 ppm

Empirical formula	$C_{20}H_{14}N_3O_{10}Cu_2$
Formula weight	583.44
Temperature (K)	150
Wavelength (Å)	0.71073
Crystal system	Hexagonal
Space group	<i>P</i> 6 ₃ /mmc
	a = 18.5653(6) Å .
	b = 18.5653(6) Å
Unit cell dimensions	c = 23.9636(11) Å
Unit cell dimensions	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$
Volume (Å ³)	7153.0(5)
Ζ	6
Calculated density (g cm ⁻³)	0.813
Absorption coefficient (mm ⁻¹)	0.921
<i>F</i> (000)	1758
Crystal size (mm)	0.24 × 0.21 × 0.09
θ range for data collection (°)	1.27 to 27.60
	$-24 \le h \le 24,$
Limiting indices	$-21 \le k \le 24,$
	$-31 \le l \le 31$
Reflections collected / unique	115179 / 3099
R _{int}	0.0866
Completeness to $\theta = 27.60$	99.9 %
Max. and min. transmission	0.9217 and 0.8092
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3099 / 0 / 101
Goodness-of-fit on F^2	1.169
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0777, wR_2 = 0.1629$
<i>R</i> indices (all data)	$R_1 = 0.1024, wR_2 = 0.1774$
Largest diff. peak and hole $(e.Å^{-3})$	0.632 and -0.717
CCDC	1480522

Table S1 Crystal data and structure refinement for **ZJNU-54**.

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-54a**

	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v
C_2H_2	16.21986	4.98323×10 ⁻⁶	22.60	0.71494
CO ₂	25.96059	2.07758×10 ⁻⁷	23.24	0.98438
CH ₄	10.13841	1.78756×10 ⁻⁶	15.91	1.0

MOFs	Metal ions	Ligand structure	C ₂ H ₂ uptake	ref
FJI-H8	Cu ²⁺		224 cm ³ (STP) g ⁻¹ (295 K and 1 atm)	1
NJU-Bai17	Cu ²⁺	ноос соон ноос соон	222.4 cm ³ (STP) g ⁻¹ (296 K and 1 bar)	2
ZJNU-47	Cu ²⁺	ноос соон ноос соон	213 cm ³ (STP) g ⁻¹ (295 K and 1 bar)	3
ZJNU-54	Cu ²⁺		211 cm ³ (STP) g ⁻¹ (295 K and 1 atm)	This work
Cu ₂ TPTC-OMe	Cu ²⁺	ноос о соон	204 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	4
Cu ₂ TPTC-Me	Cu ²⁺	ноос соон	203 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	4
HKUST-1	Cu ²⁺	ноос соон	201 cm ³ (STP) g ⁻¹ (295 K and 1 atm)	5
CoMOF-74	Co ²⁺	ноос но—————————————————————————————————	197 cm ³ (STP) g ⁻¹ (295 K and 1 atm)	6
ZJU-8	Cu ²⁺	ноос соон ноос NH ₂ соон	195 cm ³ (STP) g ⁻¹ (296 K and 1 bar)	7
ZJU-5	Cu ²⁺	ноос соон	193 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	8

Table S3 Comparison of C_2H_2 adsorption in the existing reports.

ZJU-9	Cu ²⁺	ноос соон	193 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	9
ZJU-7	Cu ²⁺	ноос соон	180 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	10
Cu-TDPAT	Cu ²⁺		177.7 cm ³ (STP) g ⁻¹ (298 K and 1 atmr)	11
ZJU-72	Cu ²⁺	ноос соон соон	167.7 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	12
CPM-200-Fe/Mg	Fe ³⁺ , Mg ²⁺	ноос Коон	160.8 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	13
Cu-EBTC	Cu ²⁺	ноос соон	160 cm ³ (STP) g ⁻¹ (296 K and 1 bar)	14
Cu-TDPAH	Cu ²⁺		155.7 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	15
Cu-L	Cu ²⁺	HOOC HOOC HOOC HOOC HOOC HOOC HOOC HOOC	154 cm ³ (STP) g ⁻¹ (296 K and 1 atm)	16
ZJU-61	Cu ²⁺	ноос о соон	139.23 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	17

FJU-22a	Cu ²⁺	ноос соон	114.8 cm ³ (STP) g ⁻¹ (296 K and 1 bar)	18
Zn ₂ L ₂ (dabco)	Zn ²⁺		106 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	19
UTSA-50	Cu ²⁺	ноос соон	91 cm ³ (STP) g ⁻¹ (296 K and 1 atm)	20
ZJU-26	Cu ²⁺	ноос соон	84 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	21
Mg(HCOO) ₂	Mg ²⁺	о н ^щ о ^{,н}	65.7 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	22
Cu ₂ (pzdc) ₂ (pyz)	Cu ²⁺		$42 \text{ cm}^3 \text{ (STP) g}^{-1}$	23

MOFs	Ligand structure	CO ₂ uptake (conditions)	Ref
ZJNU-54		120 cm ³ (STP) g ⁻¹ (295 K and 1 atm)	This work
JLU-Liu21	HOOC N-N COOH HOOC COOH	118 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	24
NJU-Bai21	HOOC NH HN COOH	115.1 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	25
ZJNU-44	ноос соон ноос соон	116 cm ³ (STP) g ⁻¹ (296 K and 1 atm)	26
PCN-124	HOOC NH HN COOH	114 cm ³ (STP) g ⁻¹ (295 K and 1 atm)	27
ZJNU-47	ноос соон	108 cm ³ (STP) g ⁻¹ (296 K and 1 atm)	28
NPC-6	ноос соон ноос соон	108 cm ³ (STP) g ⁻¹ (293 K and 1 bar)	29
ZJNU-45	ноос соон ноос N N соон	107 cm ³ (STP) g ⁻¹ (296 K and 1 atm)	26
Cu-L1	HOOC NH ₂ COOH COOH	104.4 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	30
ZJU-72	соон ноос соон соон соон	103.9 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	12

Table S4 Comparison of CO_2 adsorption in copper-based MOFs constructed from diisophthalate ligands.

	ноос	103 cm^3 (STP) g ⁻¹	
ZJNU-43	ноос	(296 K and 1 atm)	26
	ноос но- соон	$102 \text{ cm}^3 \text{(STP) g}^{-1}$	
QI-Cu		(293 K and 1 har)	31
	ноос / Соон		
NTU-101-Cu	HOOC	$101 \text{ cm}^3 \text{ (STP) g}^{-1}$	32
1110-101-Cu	Соон	(273 K and 1 atm)	
	ноос	$100 \text{ cm}^3 \text{ (STP) g}^{-1}$	22
NJU-Bai14	ноос NO ₂ соон	(296 K and 1bar)	33
		97.4 cm ³ (STP) g^{-1}	
ZJNU-41		(200 K and 1 atm)	34
	ноос соон	(298 K and 1 atm)	
7111.9	ноос соон	95 cm ³ (STP) g ⁻¹	7
ZJ U-8	HOOC NH ₂ COOH	(298 K and 1 bar)	
	HOOC O COOH	94 cm ³ (STP) g ⁻¹	
PCN-88		(296 K and 1 atm)	35
	соон соон		
	ноос	93 cm ³ (STP) g ⁻¹	36
HNUST-1	HOOC O HN	(296 K and 1 bar)	50
	соон		
NOTT 125	ОСООН	92.6 cm ³ (STP) g^{-1}	37
NOT 1-125	ноос о ни соон	(298 K and 1 bar)	
ZJNU-40		85.7 cm (SIP) g	34
	ноос соон	(298 K and 1 atm)	
	HOOC	84.5 cm ³ (STP) g^{-1}	
HNUST-3		(298 K and 1bar)	38
	Соон	(2/011 und 1000)	
Z.IU-25	HUUC	$82 \text{ cm}^3 \text{ (STP) g}^{-1}$	39
	ноос соон	(296 K and 1 atm)	

SNU-50		$80 \text{ cm}^3 \text{ (STP) g}^{-1}$	40
	ноос о соон	(298 K and 1 bar)	
PCN-308	СF ₃ ноос соон соон соон	78 cm ³ (STP) g ⁻¹ (297 K and 1 bar)	41
PCN-305	ноос соон	74 cm ³ (STP) g ⁻¹ (297 K and 1 bar)	41
PCN-307	ноос соон	73 cm ³ (STP) g ⁻¹ (297 K and 1 bar)	41
NJU-Bai22	HOOC COOH HOOC COOH COOH COOH COOH COOH COOH	72.9 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	25
PCN-306	ноос соон соон	70 cm ³ (STP) g ⁻¹ (297 K and 1 bar)	41
Cu-L		64 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	42
HNUST-4		62.9 cm ³ (STP) g ⁻¹ (296 K and 1bar)	43
NJU-Bai23	HOOC COOH	49.0 cm ³ (STP) g ⁻¹ (298 K and 1 bar)	25
ZJNU-42	ноос N ^{Se} N соон ноос соон	37.6 cm ³ (STP) g ⁻¹ (298 K and 1 atm)	34

Reference

- 1. J. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan and M. Hong, *Nat. Commun.*, 2015, **6**, 7575.
- 2. M. Zhang, B. Li, Y. Li, Q. Wang, W. Zhang, B. Chen, S. Li, Y. Pan, X. You and J. Bai, *Chem. Commun.*, 2016, 10.1039/C1036CC03198F.
- 3. C. Song, J. Jiao, Q. Lin, H. Liu and Y. He, *Dalton Trans.*, 2016, **45**, 4563-4569.
- 4. T. Xia, J. Cai, H. Wang, X. Duan, Y. Cui, Y. Yang and G. Qian, *Micropor. Mesopor. Mater.*, 2015, **215**, 109-115.
- 5. S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu and B. Chen, *J. Am. Chem. Soc.*, 2009, **131**, 12415-12419.
- 6. S. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu and B. Chen, *Angew. Chem. Int. Ed.*, 2010, **49**, 4615-4618.
- J. Cai, H. Wang, H. Wang, X. Duan, Z. Wang, Y. Cui, Y. Yang, B. Chen and G. Qian, *RSC Adv.*, 2015, 5, 77417-77422.
- 8. X. Rao, J. Cai, J. Yu, Y. He, C. Wu, W. Zhou, T. Yildirim, B. Chen and G. Qian, *Chem. Commun.*, 2013, **49**, 6719-6721.
- 9. X. Duan, H. Wang, Y. Cui, Y. Yang, Z. Wang, B. Chen and G. Qian, *RSC Adv.*, 2015, **5**, 84446-84450.
- 10. J. Cai, Y. Lin, J. Yu, C. Wu, L. Chen, Y. Cui, Y. Yang, B. Chen and G. Qian, *RSC Adv.*, 2014, **4**, 49457-49461.
- 11. K. Liu, D. Ma, B. Li, Y. Li, K. Yao, Z. Zhang, Y. Han and Z. Shi, *J. Mater. Chem. A*, 2014, **2**, 15823-15828.
- 12. X. Duan, R. Song, J. Yu, H. Wang, Y. Cui, Y. Yang, B. Chen and G. Qian, *RSC Adv.*, 2014, **4**, 36419-36424.
- 13. Q.-G. Zhai, X. Bu, C. Mao, X. Zhao and P. Feng, *J. Am. Chem. Soc.*, 2016, **138**, 2524-2527.
- 14. Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L. Wang, J. Bai and B. Chen, *Chem. Commun.*, 2009, 7551-7553.
- 15. K. Liu, B. Li, Y. Li, X. Li, F. Yang, G. Zeng, Y. Peng, Z. Zhang, G. Li, Z. Shi, S. Feng and D. Song, *Chem. Commun.*, 2014, **50**, 5031-5033.
- 16. Y.-S. Xue, Y. He, S.-B. Ren, Y. Yue, L. Zhou, Y.-Z. Li, H.-B. Du, X.-Z. You and B. Chen, *J. Mater. Chem.*, 2012, **22**, 10195-10199.
- 17. X. Duan, Q. Zhang, J. Cai, Y. Cui, C. Wu, Y. Yang and G. Qian, *Microporous Mesoporous Mater.*, 2014, **190**, 32-37.
- Z. Yao, Z. Zhang, L. Liu, Z. Li, W. Zhou, Y. Zhao, Y. Han, B. Chen, R. Krishna and S. Xiang, *Chem. Eur. J.*, 2016, 22, 5676-5683
- 19. D. Tanaka, M. Higuchi, S. Horike, R. Matsuda, Y. Kinoshita, N. Yanai and S. Kitagawa, *Chem. Asian J.*, 2008, **3**, 1343-1349.
- H. Xu, Y. He, Z. Zhang, S. Xiang, J. Cai, Y. Cui, Y. Yang, G. Qian and B. Chen, *J. Mater. Chem. A*, 2013, 1, 77-81.
- 21. X. Duan, J. Cai, J. Yu, C. Wu, Y. Cui, Y. Yang and G. Qian, *Microporous Mesoporous Mater.*, 2013, **181**, 99-104.
- 22. D. G. Samsonenko, H. Kim, Y. Sun, G.-H. Kim, H.-S. Lee and K. Kim, Chem.

Asian J., 2007, 2, 484-488.

- R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe and Y. Mita, *Nature*, 2005, 436, 238-241.
- 24. B. Liu, S. Yao, C. Shi, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2016, **52**, 3223-3226.
- 25. Z. Lu, J. Bai, C. Hang, F. Meng, W. Liu, Y. Pan and X. You, *Chem. Eur. J.*, 2016, **22**, 6277-6285.
- 26. C. Song, J. Hu, Y. Ling, Y. Feng, R. Krishna, D.-l. Chen and Y. He, *J. Mater. Chem. A*, 2015, **3**, 19417-19426.
- J. Park, J.-R. Li, Y.-P. Chen, J. Yu, A. A. Yakovenko, Z. U. Wang, L.-B. Sun, P. B. Balbuena and H.-C. Zhou, *Chem. Commun.*, 2012, 48, 9995-9997.
- C. Song, J. Hu, Y. Ling, Y. Feng, D.-L. Chen and Y. He, *Dalton Trans.*, 2015, 44, 14823 -14829.
- Q. Mu, H. Wang, L. Li, C. Wang, Y. Wang and X. Zhao, *Chem. Asian J.*, 2015, 10, 1864-1869
- 30. T. K. Pal, D. De, S. Neogi, P. Pachfule, S. Senthilkumar, Q. Xu and P. K. Bharadwaj, *Chem. Eur. J.*, 2015, **21**, 19064-19070.
- 31. C. Wang, L. Li, S.-F. Tang and X. Zhao, *ACS Appl. Mater. Interfaces*, 2014, **6**, 16932-16940.
- 32. X.-J. Wang, P.-Z. Li, L. Liu, Q. Zhang, P. Borah, J. D. Wong, X. X. Chan, G. Rakesh, Y. Li and Y. Zhao, *Chem. Commun.*, 2012, **48**, 10286-10288.
- M. Zhang, Q. Wang, Z. Lu, H. Liu, W. Liu and J. Bai, *CrystEngComm*, 2014, 16, 6287-6290.
- 34. C. Song, Y. Ling, L. Jin, M. Zhang, D.-L. Chen and Y. He, *Dalton Trans.*, 2016, **45**, 190-197.
- 35. J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena and H.-C. Zhou, *Nature Commun.*, 2013, **4**, 1538.
- 36. B. Zheng, H. Liu, Z. Wang, X. Yu, P. Yia and J. Bai, *CrystEngComm*, 2013, **15**, 3517-3520.
- N. H. Alsmail, M. Suyetin, Y. Yan, R. Cabot, C. P. Krap, J. Lü, T. L. Easun, E. Bichoutskaia, W. Lewis, A. J. Blake and M. Schröder, *Chem. Eur. J.*, 2014, 20, 7317-7324.
- 38. Z. Wang, B. Zheng, H. Liu, X. Lin, X. Yu, P. Yi and R. Yun, *Cryst. Growth Des.*, 2013, **13**, 5001-5006.
- 39. X. Duan, Y. He, Y. Cui, Y. Yang, R. Krishna, B. Chen and G. Qian, *RSC Adv.*, 2014, **4**, 23058-23063.
- 40. T. K. Prasad, D. H. Hong and M. P. Suh, *Chem. Eur. J.*, 2010, **16**, 14043-14050.
- 41. Y. Liu, J.-R. Li, W. M. Verdegaal, T.-F. Liu and H.-C. Zhou, *Chem. Eur. J.*, 2013, **19**, 5637-5643.
- 42. P. Zhang, B. Li, Y. Zhao, X. Meng and T. Zhang, *Chem. Commun.*, 2011, **47**, 7722-7724.
- 43. B. Zheng, X. Lin, Z. Wang, R. Yun, Y. Fan, M. Ding, X. Hua and P. Yi,

CrystEngComm, 2014, 16, 9586-9589.