Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supplementary information

Synthesis and catalytic applications of 1,2,3-triazolylidene gold(I) complexes in silver-free oxazoline syntheses and C–H bond activation

René Pretorius, ^{a,b} Manuel R. Fructos, ^c Helge Mueller-Bunz, ^b Robert A. Gossage, ^{a,d} Pedro J. Pérez, *c and Martin Albrecht*

Contents:

1 Synthesis of novel triazoles and triazolium salts		
2 Reactivity of 1f with Ag ₂ O	S5	
3 Reactivity of complexes 2 with MeOTf	S6	
4 Details pertaining to catalytic oxazoline syntheses	S8	
5 Crystallographic details	S10	

^a Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

^b School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

^c Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen 21007 Huelva, Spain

^d Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto ON M5B 2K3 Canada

1 Synthesis of triazoles and triazolium precursors

2-(1-butyl-1*H*-1,2,3-triazol-4-yl)propan-2-yl acetate (pre-1b)

4-Dimethylaminopyridine (60 mg, 0.49 mmol), NEt₃ (4.1 mL, 30 mmol) and acetic anhydride (1.4 mL, 2.0 mmol) were added to a solution of 2-(1-butyl-1*H*-1,2,3-triazol-4-yl)propan-2-ol (1.35g, 7.4 mmol) in dry CH₂Cl₂ (20 mL₂) and stirred for 3 days. The reaction mixture was partitioned between CH₂Cl₂ (50 mL) and H₂O (150 mL). The aqueous phase was further extracted with CH₂Cl₂(3 x 100 mL). The combined organic phases were washed with brine (2 x 150 mL), dried with MgSO₄, filtered, and all volatiles were removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and an excess of Et₂O added, resulting in a white precipitate. This suspension was gravity filtered, the mother liquor was retained and the volatiles removed under reduced pressure. Finally, the product was purified by column chromatography (SiO₂; pentane/EtOAc 3:2). The product was obtained as a clear oil which solidified by flash cooling (1.55 g, 6.1 mmol, 93 % yield). ¹H NMR (400 MHz, CDCl₃): δ 0.95 $(t, {}^{3}J_{HH} = 7.4 \text{Hz}, 3 \text{H}, \text{CH}_{2}\text{C}H_{3}), 1.31 - 1.41 \text{ (m, 2H, C}H_{2}\text{C}H_{3}), 1.84 \text{ (s, 6H, C}(\text{C}\text{H}_{3})_{2}), 1.85 - 1.93$ (m, 2H, NCH₂C H_2), 1.98 (s, 3H, C=OCH₃), 4.31 (t, ${}^3J_{HH}$ = 7.3 Hz, 2H, NCH₂), 7.49 (s, 1H, $C_{trz}H$) ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 13.6 (CH₂CH₃), 19.9(CH₂CH₃), 22.4 (C=OCH₃), 27.5 (C(CH₃)₂), 32.4 (NCH₃CH₂), 50.2(NCH₂), 77.0 (C(CH₃)₂), 121.2 (C_{trz}H), 151.3 (C_{trz}C), 170.2 (C=O) HRMS (ESI+): m/z 248.1375 [M + Na]⁺ (Calcd. for C₁₁H₁₉N₃O₂Na, 248.1379)

2-(1-butyl-1*H*-1,2,3-triazol-4-yl)propan-2-ol (pre-f)

To a solution of NaN₃ (2.09 g, 32. mmol) in H₂O/BuOH (14 mL, 1:1 v/v) was added 1-Iodobutane (1.10 mL, 11. mmol) and the mixture was stirred for 2 days. 2-methyl-3-butyne (1.10 mL, 11. mmol), sodium ascorbate (420 mg, 2.1 mmol) and CuSO₄·5H₂O (60 mg, 0.24 mmol) were added, and the reaction was irradiated with microwaves for 6 h at 100°C. The reaction mixture was diluted with H₂O (100 mL) and extracted with EtOAc (3 x 100 mL). Any emulsion formed was broken by Büchner filtration. The organic layers were combined, washed with water (100 mL), brine (100 mL), dried over MgSO₄, gravity filtered and the volatiles removed under reduced pressure yielding a green to brown oil. Remaining salts were removed by dissolving the oil in Et₂O (100 mL), drying with MgSO₄ followed by gravity filtration and removal of volatiles under reduced pressure. The oil was then purified using column chromatography (SiO₂; pentane/EtOAc 1:3). The product was obtained as a yellow oil (0.881 g, 4.8 mmol, 46 % yield). H NMR (400 MHz, CDCl₃): δ 0.93 (t, ³J_{HH} = 7.4Hz, 3H, CH₂CH₃),

1.29-1.37 (m, 2H, C H_2 CH₃), 1.62 (s, 6H, C(CH₃)₂), 1.82-1.90 (m, 2H, NCH₂C H_2), 4.30 (t, ${}^3J_{\text{HH}}$ = 7.3Hz, 2H, NCH₂), 7.42 (s, 1H, C_{Trz}H) 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 13.6 (CH₂CH₃), 19.9(CH₂CH₃), 30.6 (C(CH₃)₂), 32.4 (NCH₂CH₂), 50.1(NCH₂), 68.6 (C(CH₃)₂), 119.0 (C_{trz}H), 155.7 (C_{trz} C) HRMS (ESI+): m/z 184.1443 [M+H]⁺ (cald. for C₉H₁₈N₃O 184.1450)

Triazolium 1b

2-(1-butyl-1H-1,2,3-triazol-4-yl)propan-2-yl acetate (0.433 g, 1.9 mmol) was dissolved in Et₂O (5mL) and cooled to 0 °C. Addition of MeOTf (0.240 mL, 2.1 mmol) caused a clear oil to settle out almost immediately. The reaction was stirred for 1h, while the ice bath was maintained. An excess of cold Et₂O was added to allow maximum amount of product to settle out. The solvent was decanted and the oil rinsed with cold Et₂O and then cold pentane. The product was dried *in vacuo* yielding a viscous oil (0.85 g, 2.2 mmol, 90 % yield) This triazolium salt was stored in the freezer until further use. 1 H NMR (400 MHz, CDCl₃): δ 0.98 (t, 7.3Hz, 3H, CH₂CH₃), 1.36-1.46 (m, 2H, CH₂CH₃), 1.91 (s, 6H, C(CH₃)₂), 1.98-2.05 (m, 2H, NCH₂CH₂), 2.11 (s, 3H, C=OCH₃), 4.26 (s, 3H, NCH₃), 4.60 (t, 7.5Hz, 2H, NCH₂), 8.72 (s, 1H, C_{trz}H) 13 C (1 H) NMR (101 MHz, CDCl₃): δ 13.4 (CH₂CH₃), 19.5(CH₂CH₃), 21.4 (C=OCH₃), 26.5 (C(CH₃)₂), 31.1 (NCH₂CH₂), 39.5 (NCH₃), 54.3 (NCH₂), 74.3 (C(CH₃)₂), 129.0 (C_{trz}H), 146.6 (C_{trz}C), 169.9 (C=O) HRMS (ESI+): m/z 240.1711 [M – OTf]⁺ (calcd. for C₁₂H₂₂N₃O₂, 240.1712)

Triazolium 1c

A solution of 4-butyl-1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-1H-1,2,3-triazole (0.38g, 0.81mmol) and CF₃(CF₂)₅(CH₂)₂I in MeCN (20 mL) was irradiated for 10 h at 150 °C. Volatiles were removed under reduced pressure. The residue was dissolved in minimal CH₂Cl₂ and an excess of Et₂O (100 mL) added causing a gelatinous suspension to form. Centrifugation separated a pale yellow precipitate from a yellow supernatant. The precipitate was washed, followed by centrifugation with Et₂O (2 x 100 mL), and pentane (100 mL) and dried under vacuum. The supernatants were combined, volatiles removed, and the residue redissolved in MeCN (20 mL), irradiated with microwaves for 11 h at 160 °C, and the reaction mixture purified as before The precipitates were combined yielding the product as a white solid (0.252 g, 0.27 mmol, 33% yield). ¹H NMR (400 MHz, CDCl₃): δ 1.00 (t, ³ J_{HH} = 7.3Hz, 3H, CH₃), 1.45-1.55 (m, 2H, CH₂CH₃), 1.79-1.86 (m, 2H, C_{trz}CH₂CH₂), 2.89 – 2.93 (m, 2H, C_{trz}CH₂), 2.97 – 3.13 (m, 4H, 2 x CH₂CF₂), 4.91 (t, ³ J_{HH} = 6.5Hz, 2H, N3CH₂), 5.25 (t, ³ J_{HH} = 6.5Hz, 2H, N1CH₂), 9.33 (1H, s, C_{trz}H) ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 14.0 (CH₃), 22.3

(CH₂CH₃), 23.8 (C_{trz}CH₂CH₂), 29.1 (C_{trz}CH₂CH₂), 30.1 (t, ${}^{2}J_{CF}$ = 21.4Hz, N3CH₂CH₂), 31.0 (t, ${}^{2}J_{CF}$ = 21.9 Hz, N1CH₂CH₂), 44.3 (b, N3CH₂), 47.4 (b, N1CH₂), 130.3 (C_{trz}H), 145.7 (C_{trz}C_{nBu}) ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃): δ -126.37-(-126.23) (m, 4F), -123.43 (bs, 2F), -123.22 (bs, 2F), -122.99 (bs, 4F), -122.01-(-121.94) (m, 4F), -114.09-(-113.97) (m, 2F), -113.97-(-113.81) (m, 2F), -80.89-(-80.99) (m, 6F) HRMS (ESI+): m/z 818.1086 [M – I]⁺ (calcd. for C₂₂H₁₈N₃F₂₆, 818.1090) Anal. Calcd. for C₂₂H₁₈F₂₆IN₃: C, 27.95; H, 1.92; N, 4.45%. Found: C, 27.50; H, 1.57; N, 4.20%.

Triazolium 1f (tetrafluoroborate salt)

2-(1-butyl-1*H*-1,2,3-triazol-4-yl)propan-2-ol (2.20 g, 12. mmol) and Me₃OBF₄ (2.05g, 14 mmol) were suspended in dry CH₂Cl₂(100 mL) and stirred under N₂ atmosphere for 18 h, after which MeOH (5 mL) was added to quench the reaction. After 30 min of stirring, the volatiles were removed under reduced pressure. The resulting clear oil was washed with an excess of Et₂O. The oil was then suspended in CH₂Cl₂, filtered through Celite, and filtrate evaporated to dryness. The residue was redissolved in a minimum amount of CH₂Cl₂ and slowly added to cold Et₂O with vigorous stirring, which gave a white precipitate. The Et₂O was decanted and the solid washed with pentane. The residue was thoroughly dried affording the product as a hydroscopic white solid (2.7 g, 9.5 mmol, 79 % yield). ¹H NMR (400 MHz, CDCl₃): δ 0.95 (t, ³*J*_{HH} = 7.4Hz, 3H, CH₂C*H*₃), 1.32-1.45 (m, 2H, C*H*₂CH₃), 1.66 (s, 6H, C(CH₃)₂), 1.92-2.00 (m, 2H, NCH₂C*H*₂), 4.38 (s, 3H, NCH₃), 8.26 (C_{Trz}H) ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 13.4 (CH₂CH₃), 19.5 (CH₂CH₃), 29.0 (C(CH₃)₂), 31.0 (NCH₂CH₂), 40.0 (NCH₃), 53.8 (NCH₂), 67.5 (*C*(CH₃)₂), 127.4 (C_{trz}H), 149.2 (*C*_{trz}C) HRMS (ESI+): m/z 198.1603 [M – BF₄]⁺ (calcd. for C₁₀H₂₀N₃O, 198.1606) Anal. Calcd for C₁₀H₂₀N₃OBF₄: C, 42.13; H, 7.07; N, 14.74%. Found: C, 41.86; H, 6.95; N, 14.81%.

Triazolium 1f (triflate salt)

2-(1-butyl-1H-1,2,3-triazol-4-yl)propan-2-ol (0.473 g, 2.6 mmol) in CH₂Cl₂ (10 mL) was cooled to 0 °C and MeOTf (0.850 mL, 7.5 mmol) was added. The reaction was stirred for 16 h, then excess Et₂O was added. The formed oil was collected by decantation and dissolved in a minimal amount of CH₂Cl₂. This solution was added dropwise to cold Et₂O. The formed white precipitate was collected by filtration and dried, thus yielding the title product as a hydroscopic white solid (0.629 g, 0.91 mmol, yield 69 %). ¹H NMR (400 MHz, CDCl₃): δ 0.99 (t, ${}^{3}J_{HH}$ = 7.4Hz, 3H, CH₂CH₃), 1.38-1.48 (m, 2H, CH₂CH₃),1.70 (s, 6H, C(CH₃)₂), 1.96-2.03

(m, 2H, NCH₂CH₂), 4.43 (s, 3H, NCH₃), 8.36 ($C_{trz}H$) ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 13.4 (CH₂CH₃), 19.6 (CH₂CH₃), 29.2 (C(CH₃)₂), 31.1 (NCH₂CH₂), 40.2 (NCH₃), 53.9 (NCH₂), 67.2 (C(CH₃)₂), 127.4 ($C_{trz}H$), 149.9 ($C_{trz}C$) Anal. Calcd for $C_{11}H_{20}F_3N_3O_4S$: C, 38.04; H, 5.80; N, 12.10%. Found: C, 37.94; H, 5.59; N, 11.93%.

2 Reactivity of 1f with Ag₂O

Table S1. Product distribution from the reaction of Ag_2O and 1f using varying amounts of Ag_2O

[Ag] is either AgCl or [Ag(trz)]BF₄

3. Reactivity of complexes 2 with MeOTf

Preparation of [Au(trz)(isonitrile)]OTf

Methyl isocyanoacetate (7.8 μL, 0.086 mmol), and then MeOTf (18.3 μL, 0.16 mmol) was added to a solution of **2a** (35 mg, 0.081 mmol) in CD₂Cl₂ (2 mL). The reaction mixture was stirred protected from light for 20 h. The volatiles were removed yielding the product as an yellow oil (48.2 mg, 0.075 mmol, 92 %). 1 H (400 MHz, CD₂Cl₂): δ 0.97 (t, 3 J_{HH} = 7.3 Hz, 3H, CH₂CH₃), 0.98 (t, 3 J_{HH} = 7.4 Hz, 3H, CH₂CH₃), 1.32–1.40 (m, 2H, N(CH₂)₂CH₂), 1.40-1.48 (m, 2H, Ctrz(CH₂)₂CH₂), 1.69–1.77 (m, 2H, Ctrz(CH₂CH₂)), 1.97–2.04 (m, 2H, NCH₂CH₂), 2.80-2.76 (m, 2H,Ctrz(CH₂)), 3.88 (s, 3H, OCH₃), 4.06 (s, 3H, NCH₃), 4.44 (t, 3 J_{HH} = 7.2 Hz, 2H, NCH₂), 4.75 (s, 2H, CNCH₂) 13 C{ 1 H}(101 MHz, CD₂Cl₂): δ 13.7, 14.0 (2 x CH₂CH₃), 20.1 (N(CH₂)₂CH₂), 22.8 (Ctrz(CH₂)₂CH₂, 25.1 (CtrzCH₂), 31.9 (CtrzCH₂CH₂), 33.0 (NCH₂CH₂), 37.2 (NCH₃), 46.4 (CNCH₂), 54.6 (OCH₃), 56.2 (NCH₂), 150.5 (*C*trzC), 152 (Au–CN), 163.1, 163.3 (Ctrz–Au and COO) NC–Au not resolved, and CH₃O overlaps with CD₂Cl₂ 19 F (1 H) (282 MHz, CD₂Cl₂): δ –78.96 (s).

Coordination of isonitrile was inferred from the upfield shift of the isonitrile carbon from 160 (in the free ligand) to 151.9 ppm in the complex. Moreover, the methylene group bound to the isonitrile functionality was shifted downfield both in 13 C and 1 H NMR spectra (δ_{C} from 43.2 to 46.6, and δ_{H} from 4.25 to 4.75) upon ligation to the Au(trz) synthon. Of note, no such shifts were observed when the reaction was performed in the absence of MeOTf, suggesting that formation of the chloride-free [Au(trz)]⁺ intermediate is promoted by MeOTf.

Spectra of the product from reaction of 2c with MeOTf

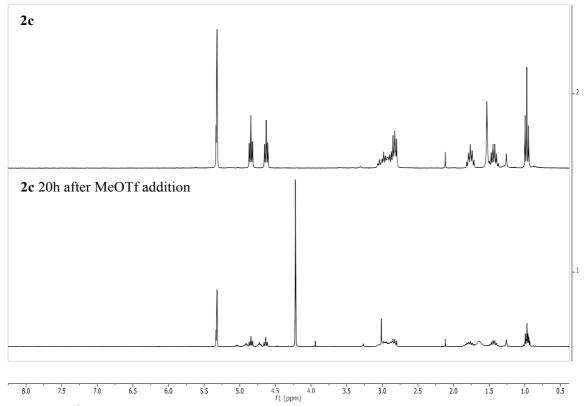


Figure S1. ¹H NMR traces for the reaction of 2c with MeOTf

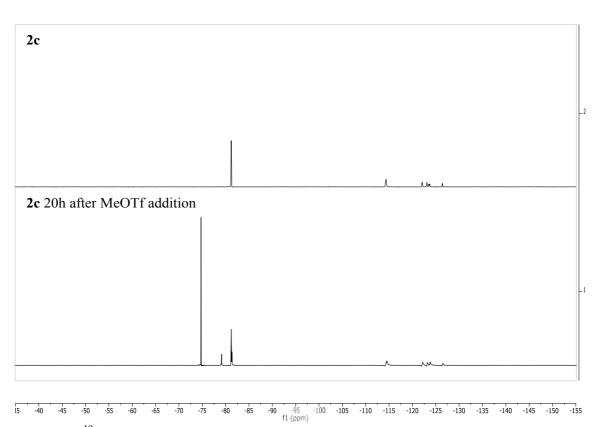


Figure S2. ¹⁹F NMR traces for the reaction of 2c with MeOTf

4 Details pertaining to catalytic oxazoline syntheses

Table S2. Conversions (%) for blank reactions for catalytic oxazoline synthesis

Time (h)	-	MeOTF	KOTf	KBF ₄	KPF ₆	KPF ₆ ^a
4	-	-	6	11	15	14
8	6	16	21	21	19	25
24	36	30	32	42	37	39
cis/trans		14/86	12/88	12/88	12/88	-

General conditions: 4-bromobenzyaldehyde (1.57 mmol), methyl isocyanoacetate (1.43 mmol), NEt*i*Pr₂ (0.14 mmol), Additive (0.05 mmol), trimethoxybenezene (0.36 mmol), CH₂Cl₂ (4 mL), 40° C, 8h; Conversions and *cis/trans* ratio determined by ¹H NMR spectroscopy, averaged over 2 runs. ^a Additive (0.02mmol)

Table S3. Conversion (%) for varying MeOTf mol% activation of 2a for oxazoline formation^a

Time (h)	1.1 mol% ^b	2 mol% ^b	5 mol% ^c	
0	0.0	0.0	0.0	
2	13.0	17.5	45.0	
4	21.0	37.8	70.0	
8	39.0	62.0	92.0	
24	81.0	94.8	100.0	
cis/trans	26/74	27/73	27/73	

^aGeneral conditions: 4-bromobenzyaldehyde (1.57 mmol), methyl isocyanoacetate (1.43 mmol), NEtiPr₂ (0.14 mmol), TrzAuCl (0.014 mmol), Additive (0.028 mmol), trimethoxybenezene (0.36 mmol), CH₂Cl₂ (4 mL), 40° C, 8h; Conversions and *cis/trans* ratio determined by ¹H NMR spectroscopy; ^b Average of 4 runs, (0.265 M MeOTF in CH₂Cl₂); ^c Average of 2 runs

Table S4. Conversion (%) for [Au]/Activator systems for catalytic oxazoline formation^a

Time (h)	2a/-	2a/KOTf	2a/KBF4	2a/KPF ₆	2b/KPF ₆	2c/KPF ₆	2e/KPF ₆
2	-	26	10	42	34	25	35
4	16	38	17	69^b	64	43	60
8	24	61	21	93^b	88	75	87
24	47	96	38	100^b	100	100	100
cis/trans	23/77	28/72	18/82	26/74 ^b	27/73	29/71	29/71

^a General conditions: 4-bromobenzyaldehyde (1.57 mmol), methyl isocyanoacetate (1.43 mmol), NEtiPr₂ (0.14 mmol), TrzAuCl (0.014 mmol), Additive (0.028 mmol), trimethoxybenezene (0.36 mmol), CH₂Cl₂ (4 mL), 40° C, 8h; Conversions and *cis/trans* ratio determined by ¹H NMR spectroscopy, averaged over 2 runs; ^b Average over 5 runs

5 Crystallographic details

Table S5. Crystal data and structure refinement for 2b

CCDC No 1481152

Empirical formula C₁₂H₂₁AuClN₃O₂

Formula weight 471.73

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 13.0817(2) Å $\alpha = 90^{\circ}$.

b = 9.70652(12) Å $\beta = 100.1394(13)^{\circ}.$

c = 12.2839(2) Å $\gamma = 90^{\circ}$.

Volume 1535.42(4) Å³

Z

Density (calculated) 2.041 Mg/m³
Absorption coefficient 9.757 mm⁻¹

F(000) 904

Crystal size $0.2456 \times 0.1841 \times 0.1412 \text{ mm}^3$

Theta range for data collection 2.97 to 32.74°.

Index ranges -19<=h<=19, -14<=k<=14, -15<=l<=17

Reflections collected 21706

Independent reflections 5327 [R(int) = 0.0396]

Completeness to theta = 31.00° 99.7 %

Absorption correction Analytical

Max. and min. transmission 0.353 and 0.250

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5327 / 0 / 177

Goodness-of-fit on F^2 1.049

Final R indices [I>2sigma(I)] R1 = 0.0219, wR2 = 0.0446R indices (all data) R1 = 0.0262, wR2 = 0.0466Largest diff. peak and hole 1.848 and -2.385 e.Å⁻³

Table S6. Crystal data and structure refinement for 2f

CCDC No 1481154

 $Empirical\ formula \qquad \qquad C_{10}H_{19}AuClN_3O$

Formula weight 429.7

Temperature 173(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 7.4494(2) Å $\alpha = 90^{\circ}$.

b = 11.8071(3) Å $\beta = 90.017(3)^{\circ}$.

c = 15.6623(3) Å $\gamma = 90^{\circ}$.

Volume 1377.59(6) Å3

Z 4

Density (calculated) 2.072 Mg/m3 Absorption coefficient 10.858 mm-1

F(000) 816

Crystal size 0.215 x 0.156 x 0.046 mm³

Theta range for data collection 1.725 to 28.282°.

Index ranges -9 <= h <= 9, -15 <= k <= 15, -20 <= l <= 20

Reflections collected 17191

Independent reflections 3401 [R(int) = 0.0301]

Completeness to theta = 25.242° 100 % Absorption correction Gaussian

Max. and min. transmission 0.626 and 0.196

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3401 / 0 / 151

Goodness-of-fit on F2 1.068

Final R indices [I>2sigma(I)] R1 = 0.0317, wR2 = 0.0783 R indices (all data) R1 = 0.0346, wR2 = 0.08 Largest diff. peak and hole 3.928 and -1.464 e.Å-3

Table S7. Crystal data and structure refinement for 2g

CCDC No 1481151

Empirical formula C₇H₁₃AuClN₃

Formula weight 371.62 100(2) K Temperature Wavelength 0.71073 Å Crystal system Triclinic P -1

Unit cell dimensions a = 5.66636(6) Å $\alpha = 82.2181(9)^{\circ}$.

> $\beta = 78.8756(9)^{\circ}$. b = 13.6052(2) Åc = 13.6584(2) Å $\gamma = 87.9581(8)^{\circ}$.

 $1023.61(2) \text{ Å}^3$ Volume

7

Space group

 $2.411 \, \text{Mg/m}^3$ Density (calculated) 14.586 mm⁻¹ Absorption coefficient

F(000)688

0.3838 x 0.1745 x 0.0991 mm³ Crystal size

3.02 to 32.98°. Theta range for data collection

-8 <= h <= 8, -20 <= k <= 20, -20 <= l <= 20Index ranges

Reflections collected 65960

Independent reflections 7351 [R(int) = 0.0627]

Completeness to theta = 32.00° 99.4 % Absorption correction Analytical

Max. and min. transmission 0.335 and 0.094

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 7351 / 0 / 221

Goodness-of-fit on ${\sf F}^2$ 1.051

Final R indices [I>2sigma(I)] R1 = 0.0201, wR2 = 0.0440R1 = 0.0237, wR2 = 0.0460R indices (all data) 1.140 and -1.877 e.Å-3 Largest diff. peak and hole

Table S8. Crystal data and structure refinement for 3a.

CCDC No 1481153

Empirical formula C₃₀H₃₆AuF₃N₃O₃PS

Formula weight 803.61

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 9.0044(2) Å $\alpha = 89.133(2)^{\circ}$.

b = 11.9604(3) Å $\beta = 81.768(2)^{\circ}.$ c = 15.0383(3) Å $\gamma = 86.780(2)^{\circ}.$

Volume $1600.31(6) \text{ Å}^3$

Z 2

Density (calculated) 1.668 Mg/m³
Absorption coefficient 4.764 mm⁻¹

F(000) 796

Crystal size $0.1619 \times 0.1374 \times 0.1310 \,\text{mm}^3$

Theta range for data collection 2.78 to 29.66°.

Index ranges -12 <= h <= 11, -15 <= k <= 15, -20 <= l <= 20

Reflections collected 30102

Independent reflections 7972 [R(int) = 0.0458]

Completeness to theta = 27.00° 99.2 % Absorption correction Analytical

Max. and min. transmission 0.620 and 0.544

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 7972 / 0 / 382

Goodness-of-fit on F² 1.028

Final R indices [I>2sigma(I)] R1 = 0.0312, wR2 = 0.0687 R indices (all data) R1 = 0.0339, wR2 = 0.0717 Largest diff. peak and hole 3.102 and -1.672 e.Å-3