Chiral Carbene–Borane Adducts: Precursors for Borenium Catalysts for Asymmetric FLP Hydrogenations

Jolie Lam,^a Benjamin A. R. Günther,^{ab} Jeffrey M. Farrell,^a Patrick Eisenberger^{*},^c Brian P. Bestvater,^c Paul D. Newman,^b Rebecca L. Melen,^{*b} Cathleen M. Crudden,^{*cd} Douglas W. Stephan^{*a}

Supporting Information

Table of Contents

¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of 2 ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of ¹³C NMR (126 MHz, CD₃CN, 298 K) spectrum of ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of 4 ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of 5 ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of ¹³C NMR (126 MHz, CDCl3, 298 K) spectrum of 6 ¹H NMR (400 MHz, CD₂Cl₂, 298 K) spectrum of ¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of ¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of ¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of 8 ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of 8 ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of ¹H NMR (400 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (500 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (500 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of ¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of ¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of

18

¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of ¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of ¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of ¹H NMR (500 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (500 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (500 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (400 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (125 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (400 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (125 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (400 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (125 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (400 MHz, C₆D₆, 298 K) spectrum of ¹³C NMR (125 MHz, C₆D₆, 298 K) spectrum of ¹¹B NMR (128 MHz, C₆D₆, 298 K) spectrum of ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of ¹³C NMR (125 MHz, CDCl₃, 298 K) spectrum of 24 ¹¹B NMR (128 MHz, d⁸-toluene, 298 K) spectrum of 24 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of ¹³C NMR (125 MHz, CDCl₃, 298 K) spectrum of

38

¹¹ B NMR (128 MHz, d ⁸ -toluene, 298 K) spectrum of 25	39
¹ H NMR (400 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 26	40
¹³ C NMR (125 MHz, CDCl ₃ , 298 K) spectrum of 26	40
¹¹ B NMR (128 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 26	41
¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of 27	42
¹³ C NMR (125 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 27	42
¹¹ B NMR (128 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 27	43
¹ H NMR (400 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 28	44
¹³ C NMR (125 MHz, CDCl ₃ , 298 K) spectrum of 28	44
¹¹ B NMR (128 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 28	45
¹ H NMR (600 MHz, C ₆ D ₆ , 298 K) spectrum of 29	46
¹³ C NMR (125 MHz, C ₆ D ₆ , 298 K) spectrum of 29	46
¹¹ B NMR (128 MHz, C ₆ D ₆ , 298 K) spectrum of 29	47
¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of 30	48
¹³ C NMR (100 MHz, CDCl ₃ , 298 K) spectrum of 30	48
¹ H NMR (500 MHz, CDCl ₃ , 298 K) spectrum of 31	49
¹³ C NMR (100 MHz, CDCl ₃ , 298 K) spectrum of 31	49
¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of 32	50
¹ H NMR (500 MHz, CDCl ₃ , 298 K) spectrum of 33	51
¹³ C NMR (125 MHz, CDCl ₃ , 298 K) spectrum of 33	51
¹ H NMR (500 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 34a	52
¹³ C NMR (125 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 34a	52
¹¹ B NMR (128 MHz, CD ₂ Cl ₂ , 298 K) spectrum of 34a	53
Table for catalytic hydrogenations of 20 , 21, 23 , 24 , 25 , 26 , 27 , 28 , and 34	54

^{13}C NMR (126 MHz, CDCl₃, 298 K) spectrum of 2

¹³C NMR (126 MHz, CD₃CN, 298 K) spectrum of **3**

¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of **7**

¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of **7**

¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of **7**

-23.12
-23.81

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)

¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of **8**

¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of **9**

¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of **10**

N H N B)0 80 70 30 20 10 -10 -20 -30 -40 -50 -60 -ç 60 50 40 0 f1 (ppm) -70 -80

¹³C NMR (126 MHz, C₆D₆, 298 K) spectrum of **11**

n frankrike geselen verste son frankrike son server alle son server alle

-12.51

50 40 30 f1 (ppm) 130 120 70 60 20 10 -10 -20 110 80 0 -30 -40 -50 100 90

¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of **12**

¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) spectrum of **12**

¹³C NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of **14**

¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) spectrum of **14**

3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 f1(ppm)

24.57 35.26 35.95 36.63

¹³C NMR (125 MHz, C₆D₆, 298 K) spectrum of **23**

¹¹B NMR (128 MHz, d⁸-toluene, 298 K) spectrum of **24**

S38

¹¹B NMR (128 MHz, d⁸-toluene, 298 K) spectrum of **25**

¹³C NMR (125 MHz, CDCl₃, 298 K) spectrum of **26**

-9.43
 -9.43
 -22.19

¹³C NMR (125 MHz, CDCl₃, 298 K) spectrum of **28**

 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W

¹³C NMR (125 MHz, C₆D₆, 298 K) spectrum of **29**

¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of **31**

¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of **32**

¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of **33**

¹³C NMR (125 MHz, CDCl₃, 298 K) spectrum of **33**

¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of **34a**

¹³C NMR (125 MHz, CD₂Cl₂, 298 K) spectrum of **34a**

5 mol% precursor + 5 mol% [Trityl][BArF] substrate product DCM, 102 atm H₂ Entry Substrate Precursor t (h) Temp. Product Yield (%) e.e. r.t. r.t. r.t. 0°C 50 °C r.t. 50 °C r.t. -r.t. -ΗN r.t. -30 24^a -24^b -30 <5 -30 <5 ---30 -HN N r.t. HN r.t. EtO EtO 20^c r.t. OH О 20^c 70 °C 21° r.t. 21^c 70 °C ŌН r.t. r.t.

Table for catalytic hydrogenations of 20, 21, 23, 24, 25, 26, 27, 28, and 34

Carried out in ^a toluene, ^b chlorobenzene, ^c diethyl ether