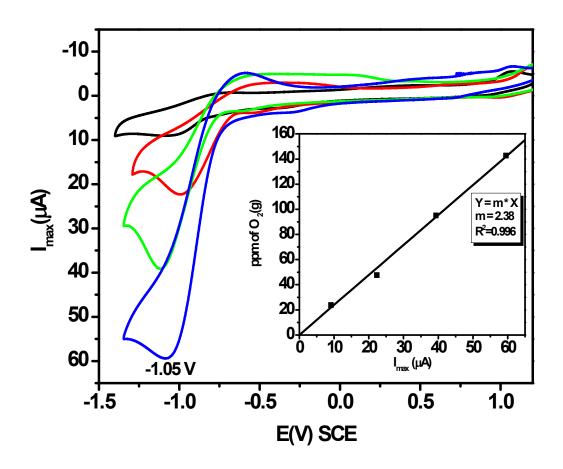
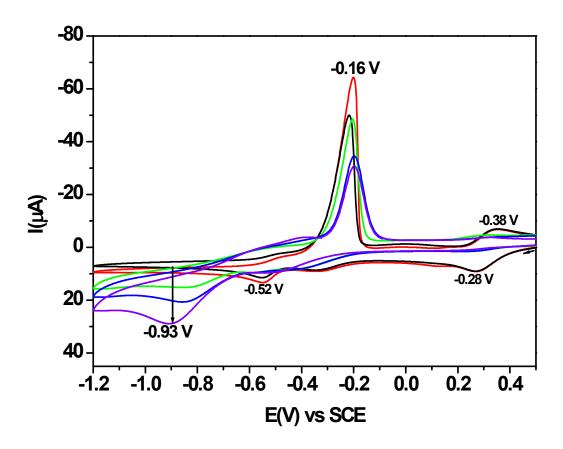
Electron Transfer Mechanism of Catalytic Superoxide Dismutation *via* Cu(II/I) Complexes: Evidence of Cupric-superoxo/-hydroperoxo Species

Ram Chandra Maji,^a Partha Pratim Das,^b Anirban Bhandari,^a Saikat Mishra,^a


Milan Maji^a and Apurba K. Patra*^a

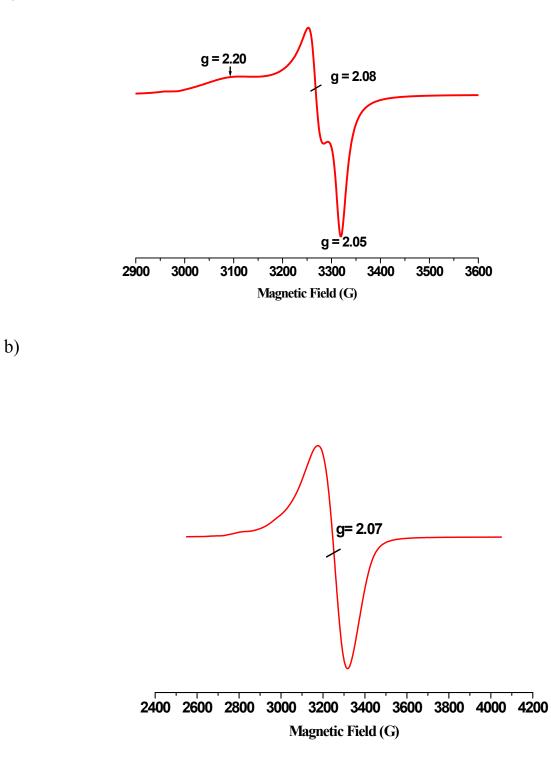
^aDepartment of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi


Avenue, Durgapur 713 209, India;

^bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.

Tał	ble of contents
1	Fig. S1: Cyclic voltammograms of dissolved O ₂ (g) in CH ₃ CN and standardization plot.
2	Fig. 4 of the main text (to show the O_2 quantification): Cyclic voltammograms of 1 showing O_2
	(g) liberation upon reaction with KO ₂ . % O ₂ (g) liberated calculation
3	Fig. S2: X-Band EPR spectrum of 1 at solid state and in CH ₃ CN-toluene glass at 77 K.
4	Fig. S3: DFT optimized structures of modelled complex $[(L1)_2Cu]^{2+}$.
5	Table S1: Comparison of bond distances and Angles of $[(L1)_2Cu]^{2+}$ optimized structure and X-ray
	structure of 1.
6	Fig. S4: DFT optimized structures of modelled complex [(L1) ₂ Cu] ⁺ .
7	Table S2: Comparison of bond distances and Angles of $[(L1)_2Cu]^+$ optimized structure and X-ray structure of 2 .
8	Fig. S5: UV-Vis spectra of 0.030 mM NBT and NBT+ KO _{2.}
9	Fig. S6: UV-Vis spectral changes of NBT with KO ₂ in presence of 1 .
10	Fig. S7: % inhibition of NBT <i>vs</i> –log [1] plot for IC ₅₀ calculation.
11	Fig. S8: Cyclic voltammograms of 1 in $CH_3CN + KO_2$ (5 x 0.2 equiv.) at 298 K.
12	Fig. S9: ESI positive mass spectrum of a solution mixture of $1 + KO_2$.
13	Fig. S10: FTIR spectra of 1 and $[(L1)_2Cu(OOH^-)]ClO_4$.
14	Fig. S11: Cyclic voltammograms of 1 showing O_2 (g) liberation upon reaction with KO_2 in pure aprotic solvent in presence of 18-Crown-6-ether at 233 K.
15	Fig. S12: UV-Vis spectral traces obtained from titration of CH ₃ CN solution of 1 with a CH ₃ CN solution of KO ₂ + 18C6E showing $1 \rightarrow 2$ transformation at 233 K in aprotic solvent.
16	Fig. S13: Spin density plot of HOMO and LUMO of DFT optimized modelled structure of $[(L1)_2Cu(O_2^{-})]^+$ and $[(L1)_2Cu(OOH^-)]^+$.
17	Table S3: Bond distances and Bond Angles of $[(L1)_2Cu(O_2 \cdot -)]^+$ optimized structure.
18	Table S4: Bond distances and Bond Angles of [(L1) ₂ Cu(OOH ⁻)] ⁺ optimized structure.
19	Fig. S14: UV-Vis spectra of 1 and 2 in CH ₃ CN.
20	Fig. S15: UV-Vis spectrum of I_3^- , generated from a reaction of $2+KO_2+HClO_4+NaI$, to quantify liberated H_2O_2 .
21	Fig. S16: ESI positive mass spectrum of (a) a frozen solution of $1 + O_2(g)$, (b) a frozen solution of $2 + KO_2$ and (c) a frozen solution of $1 + KO_2$.

Fig. S1: Cyclic voltammograms of O_2 dissolved in 6 mL CH₃CN solution containing (Bu₄N)ClO₄ as supporting electrolyte at 298 K at a platinum working electrode at a scan rate of 100 mV s⁻¹ using *SCE* as reference electrode: [O₂] are 0.1 mL (23.83 ppm, black trace), 0.2 mL (47.67 ppm, red trace), 0.4 mL (95.17 ppm, green trace), 0.6 ml (142.83 ppm, blue trace); maximum i_{pc} observed electrochemically are 9.1, 22.32, 39.30 and 59.49 respectively. Inset: Standardization plot.


Fig. 4, Top in the main text: Cyclic voltammograms in CH₃CN containing 0.1 M $[(n-Bu)_4N]CIO_4$ as a supporting electrolyte at 298 K at a platinum working electrode at a scan rate of 100 mV s⁻¹ using SCE as reference electrode of **1** in CH₃CN (Black trace), then after adding KO₂ repeated scans until reach to a maximum i_{pc} (green-blue-violate) at -0.93 V. Red trace after purging of N₂ (g) to complete remove of O₂(g) produced. Calculated amount of O₂(g) evolution is 97%.

Calculation for liberated O₂(g) from reaction of 2 in 6 mL CH₃CN with KO₂.

I_{max}(A) obtained at -0.93 V after addition of KO₂ to a CH₃CN solution of 10 mg of 1 (or 13.16 x10⁻³ mmol of 1) = 28.58 μ A (See Fig. S21). From the slope of the calibration plot (See Fig. S20) this I_{max} correspond to 2.38 x 28.58 = **8.02 ppm** of O₂(g) that is liberated from a 13.16 x10⁻³ mmol of 1 in CH₃CN. F.Wt. of **2** = 759.4 **1** + KO₂ = **2** + O₂ (g) 759.4 gm of **1** will liberate 32 gm of O₂ (g) at NTP Then, 10 mg of **1** will liberate 0.4214 mg of O₂ (g) at NTP This, 0.4214 mg of O₂(g) is dissolved in 6 ml of CH₃CN = (0.4214 x 1000)/6 = **70.23 ppm** of O₂ (g) [ppm = mg/L]

If **70.23 ppm** O_2 (g) liberates then it will be 100% O_2 (g) evolution, however the liberated amount of O_2 (g) is **68.02 ppm**.

Therefore yield % of O₂(g) evolution = (68.02 x 100)/70.23 = 97%

Fig. S2: X-Band EPR spectrum of (a) solid **1** at 77 K, (b) of **1** in CH₃CN-toluene solution at 77 K. Spectrometer settings: frequency = 9.456 GHz, power= 0.189 mW, modulation frequency = 100 kHz; modulation amplitude = 5 G and receiver gain = 1×10^3 (for solid) and receiver gain = 1×10^4 for solution phase measurement.

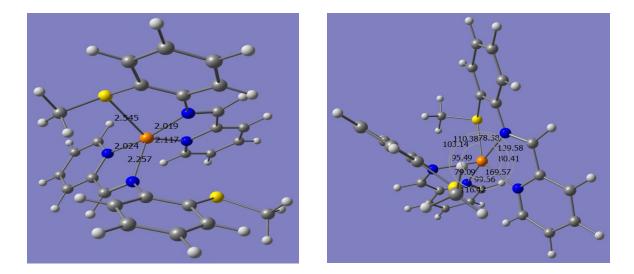


Fig. S3: DFT optimized structures of modelled complex [(L1)₂Cu]²⁺ (Cation of 1)

Bond distance (Å)	DFT optimized structure	Crystal structure (Fig. 1, top)
Cu1-N1	2.117	2.017(3)
Cu1-N2	2.024	1.958(3)
Cu1-N3	2.019	1.956(3)
Cu1-N4	2.257	2.153(3)
Cu1-S1	2.545	2.4461(10)
Cu1-S2	3.701	3.667(2)
Bond angle (°)		
N1-Cu1-N2	80.41	81.73(11)
N1-Cu1-N3	103.14	100.72(11)
N1-Cu1-N4	116.42	119.79(11)
N1-Cu1-S1	139.58	142.37(8)
N2-Cu1-N3	169.57	174.82(12)
N2-Cu1-N4	110.38	102.43(11)
N2-Cu1-S1	78.38	80.29(8)
N3-Cu1-N4	79.09	80.39(11)
N3-Cu1-S1	95.49	95.14(8)
N4-Cu1-S1	99.56	96.30(8)

Table S1: Comparison of bond distances and Angles of [(L1)₂Cu]²⁺ optimized structure and X-ray structure of **1**.

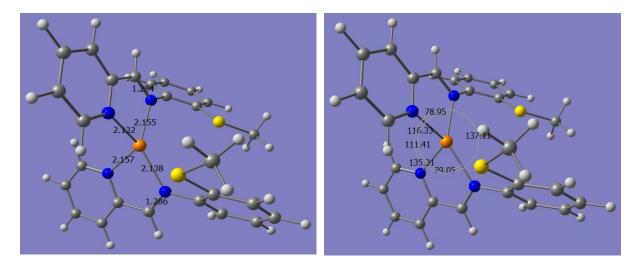


Fig. S4: DFT optimized structures of modelled complex of $[(L1)_2Cu]^+$ (Cation of 2)

Bond distance (Å)	Optimized Structure	Crystal Structure (Fig.1, bottom)
Cu1-N1	2.132	2.093(6)
Cu1-N2	2.155	2.019(5)
Cu1-N3	2.138	2.029(5)
Cu1-N4	2.157	2.112(4)
Cu1-S1	3.477	3.212(2)
Cu1-S2	3.357	3.173(2)
Bond angle (°)		
N1-Cu1-N2	79.05	80.7(2)
N1-Cu1-N3	111.41	106.3(2)
N1-Cu1-N4	116.33	112.8(2)
N2-Cu1-N3	137.41	138.7(2)
N2-Cu1-N4	135.31	135.02(19)
N3-Cu1-N4	78.95	80.86(18)

Table S2: Comparison of bond distances and Angles of $[(L1)_2Cu]^+$ optimized structure and X-ray structure of **2**.

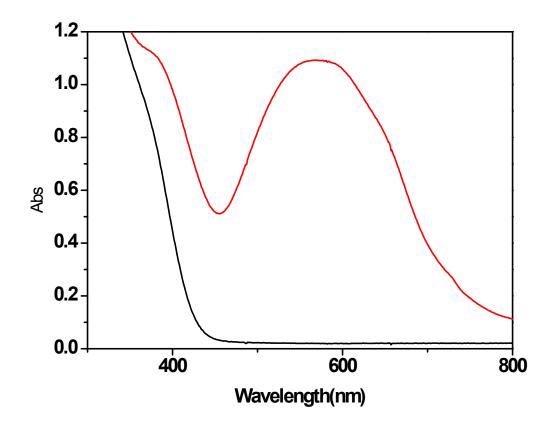
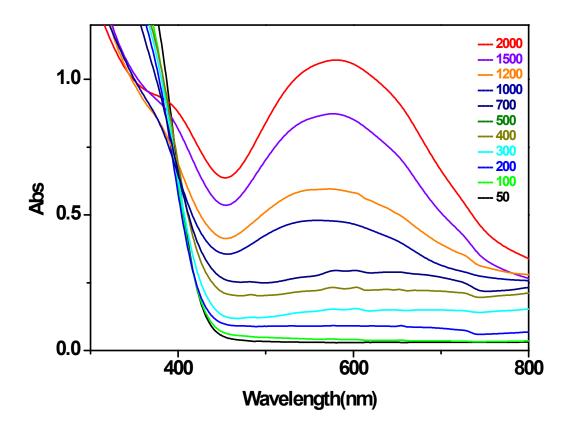
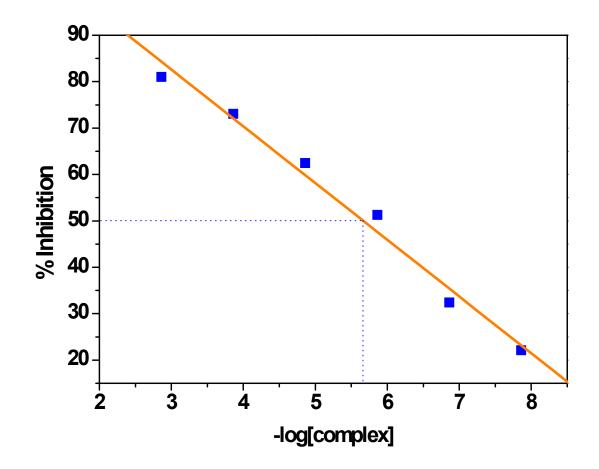
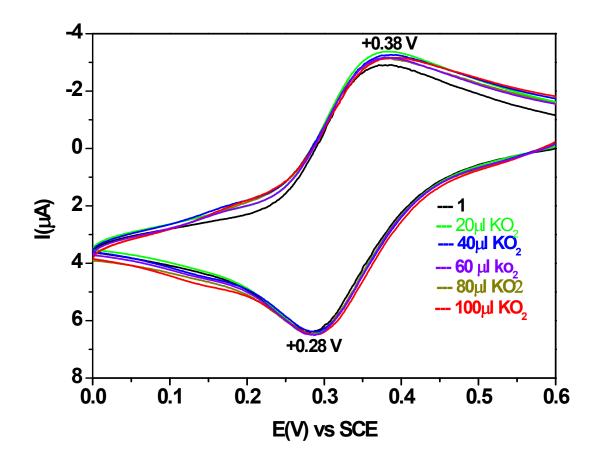
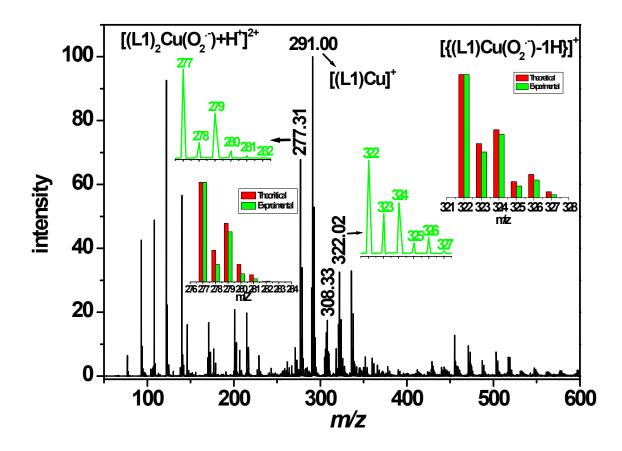



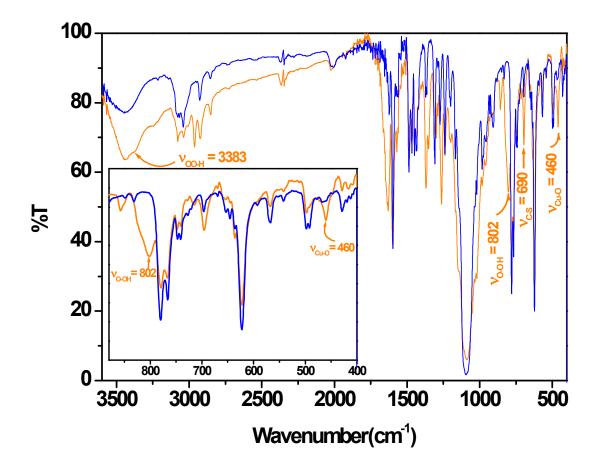
Fig. S5: UV-Vis spectra of 0.030 mM NBT (black trace) and NBT+ DMSO solution of 50 equiv. KO_2 (Red trace) taken in NEM buffer at PH 7.4.

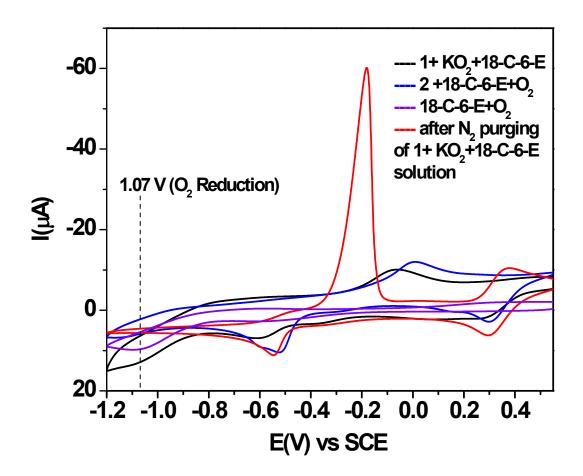
Fig. S6: UV-Vis spectral changes of NBT, treated with various amount of KO_2 in presence of **1** (black \rightarrow red traces) in NEM buffer at PH 7.4. The numerical values 50 to 2000 are the equivalent amount of KO_2 , added to 1 equivalent of complex **1**.

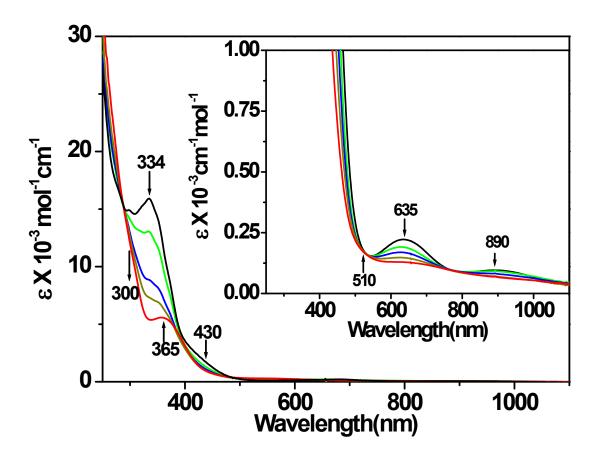
Calculation for % inhibition of NBT assay:

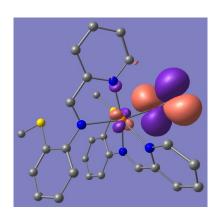
Kinetically the reduction of NBT to formazane has been determined following the absorbance changes at λ = 560 nm using the following equation. % Inhibition = {[(ΔA_{560nm} /minutes)_{blank}-(ΔA_{560nm} /minutes)_{sample}]/(ΔA_{560nm} /minutes)_{blank}}X100 ΔA_{560nm} /minutes = [A_{560nm} at time 4:30 minutes - A_{560nm} at 0:30 minutes]/4


Fig. S7: % inhibition of NBT vs –log[complex 1] plot. The position of 50% inhibition has been shown using dotted lines.


Fig. S8: Cyclic voltammograms of **1** in CH₃CN containing 0.1M [(*n*Bu)₄N]ClO₄ as a supporting electrolyte at 298K at a Pt working electrode at 50 mV s⁻¹ using SCE as reference electrode. Stoichiometric KO₂ was dissolved in 100µl CH₃OH, then 20 µL aliquots were added and after each addition the CV scan was taken.


Fig. S9: ESI positive mass spectrum of a solution mixture of **1** + KO₂ made at 233 K in CH₃CN then quickly measured at 298 K. Peak at m/z = 277.31, 291.0037, 308.0098 and 322.02 corresponds to $[(L1)_2Cu(O_2)+1H^+]^{2+}$, $[(L1)Cu]^+$, $[(L1)Cu(O_2)Cu(L)]^{2+}$ and $[\{(L1)Cu(O_2)-1H\}]^+$ respectively. Inset: Isotopic mass distribution, experimental (green) and simulated (red trace) of the corresponding peak marked with arrow.


Fig. S10: FTIR spectra of $[(L1)_2Cu](CIO_4)_2$.CH₃CN, **1**.CH₃CN, (blue trace) and $[(L1)_2Cu(OOH^-)](CIO_4)$ (orange trace) in KBr disk, shown in the range 400 cm⁻¹-3600 cm⁻¹.

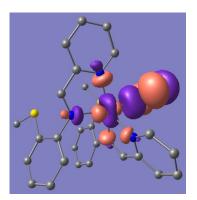
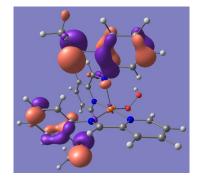
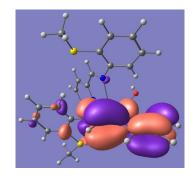

Fig. S11: Cyclic voltammograms in CH₃CN containing 0.1 M $[(n-Bu)_4N]CIO_4$ as a supporting electrolyte at 233 K at a platinum working electrode at a scan rate of 100 mV s⁻¹ using SCE as reference electrode of **1+KO₂+18-C-6-E** in CH₃CN (**Black trace**), **2 +18-C-6-E+O₂** (blue trace), **18-C-6-E+O₂** (violet trace), after N₂ purging to the mixture of 1+KO₂+18-C-6-E i.e **1+KO₂+18-C-6-E + N₂** (red trace).

Fig. S12: UV-Vis absorption traces showing conversion of a CH₃CN solution of **1** (1 x 10⁻⁴ M, black trace) + KO₂ + 18C6E \rightarrow **2** (red trace) at 233 K, inset: [**1**] = 1 x 10⁻³ M. One equiv. of KO₂ and 18C6E together was dissolved in CH₃CN then added and after each time addition spectrum taken.


ΗΟΜΟ(α)


LUMO(α)

	MO number	Energy (ev)	Ligand contribution (%)	Metal contribution (%)	Oxygen contribution (%)
ΗΟΜΟ(α)	137	-0.298404083	8.2	3.6	88.2
LUMO(a)	138	-0.231471565	17.3	25.965	56.73

b)

ΗΟΜΟ(α)

LUMO(α)

	MO number	Energy (ev)	Ligand contribution (%)	Metal contribution (%)	Oxygen contribution (%)
ΗΟΜΟ(α)	138	-0.305387341	96.705	1.675	1.62
LUMO(a)	139	-0.19335202	95.234	4.05	0.716

Fig. S13: Spin density plot of HOMO and LUMO of DFT optimized modelled structure of (a) $[(L1)_2Cu(O_2^{\cdot})]^+$ and of (b) $[(L1)_2Cu(OOH^{\cdot})]^+$. Metal, ligand and oxygen orbital contribution has been shown for each modelled structure in the Tables.

a)

$[(\mathbf{L})_{2}\mathbf{C}\mathbf{u}^{\mathrm{H}}\mathbf{O}_{2}^{-})]^{+}$			
Bond distances(Å)			
Cu1-N1	2.176		
Cu1-N2	2.207		
Cu1-N3	2.099		
Cu1-N4	2.203		
Cu1-O1	2.070		
01-02	1.261		
	Bond Angles(⁰)		
N1-Cu1-N2	108.39		
N1-Cu1-N3	78.76		
N1-Cu1-N4	97.23		
N1-Cu1-O1	168.05		
N2-Cu1-N3	122.35		
N2-Cu1-N4	77.31		
N2-Cu1-O1	82.49		
N3-Cu1-N4	160.30		
N3-Cu1-O1	91.49		
N4-Cu1-O1	89.87		

Table S3: Bond distances and Bond Angles of DFT optimized structure of $[(L)_2Cu^{II}O_2 \cdot)]^+$.

[(L) ₂ Cu ^{II} -OOH)] ⁺ Bond distances(Å)			
Cu1-N1	2.357		
Cu1-N2	2.091		
Cu1-N3	2.075		
Cu1-N4	2.199		
Cu1-O1	1.966		
01-02	1.425		

Bond angles(⁰)				
N1-Cu1-N2	105.54			
N1-Cu1-N3	76.46			
N1-Cu1-N4	92.87			
N1-Cu1-O1	108.59			
N2-Cu1-N3	175.48			
N2-Cu1-N4	77.51			
N2-Cu1-O1	92.09			
N3-Cu1-N4	98.42			
N3-Cu1-O1	91.08			
N4-Cu1-O1	158.08			

 $\textit{Table S4:} Bond \ distances \ and \ Bond \ Angles \ of \ DFT \ optimized \ structure \ of \ [(L)_2Cu^{II}O_2H)]^+.$

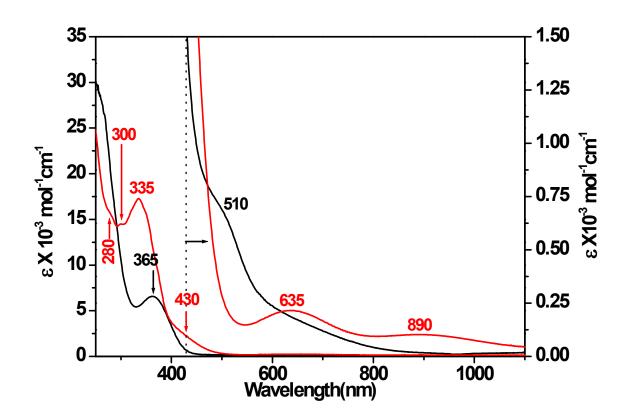


Fig. S14: UV-Vis spectra of $[(L1)_2Cu](CIO_4)_2$.CH₃CN, 1.CH₃CN, (red trace) and $[(L1)_2Cu](CIO_4)$, 2, (black trace) in CH₃CN.

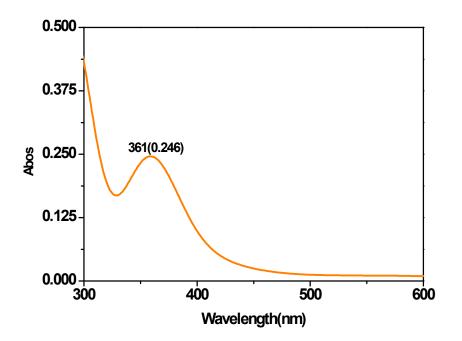
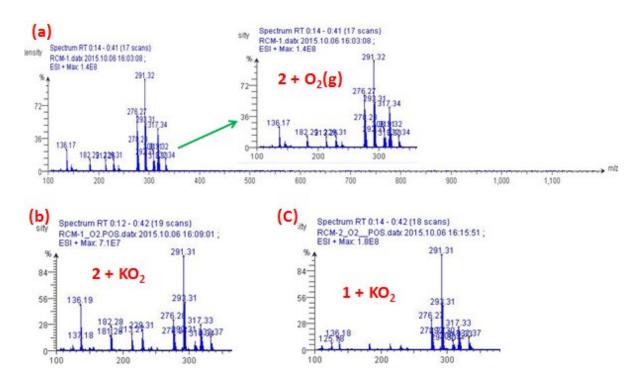



Fig. S15: UV-Vis spectrum of I_3^- generated from the reaction $2+KO_2+2HCIO_4 + (excess) \text{ Nal} \rightarrow I_3^-$. ($2+KO_2+2HCIO_4 \rightarrow 1 + H_2O_2, H_2O_2+HCIO_4 + I^- \rightarrow I_2, I_2+I^- \rightarrow I_3^-$).

Calculation for the amount of H₂O₂ liberated from reaction:

Concentration of $2 = 10^{-4} \text{ M}$ $\varepsilon = 2.5 \times 10^{4} \text{ M}^{-1} \text{ cm}^{-1}$ A=0.246 Hence C= (ε /A) M $= (0.246/2.5 \text{ X } 10^{4}) \text{ M}$ $= 0.098 \text{ X } 10^{-4} \text{ M}$ Since the solution was diluted 10 times Hence concentration of H₂O₂ = (0.098 X 10^{-4}) M X 10 $= 0.98 \text{ X } 10^{-4} \text{ M}$ Hence % of H₂O₂ =98 %.

Fig. S16: ESI positive mass spectrum of **1** and **2** in the range 100-1200: CH₃CN solution of **1** and **2** were frozen at 77 K, (a) To frozen solution of **1** + $O_2(g)$, (b) frozen solution of **2** + KO_2 , (c) frozen solution of **1** + KO_2 when melt the sample injected for mass spectrum. Spectral profile looks same for all three reactions indicates progress to achieve the final $[(L1)_2Cu(OOH)]^+$ product. So we did the higher resolution mass spectra of (b), see **Fig. S9:** for peak assignment.

This experiment support, $[(L1)_2Cu^1]+O_2 \rightarrow \{[(L1)_2Cu(O_2^{-})]^+ \leftrightarrow [(L1)_2Cu(O_2^{2-})]\} \rightarrow [(L1)_2Cu(OOH^{-})]^+$ conversion.